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On a two-server finite queuing system with 
ordered entry and deterministic arrivals 

W.M.  N A W I J N  
Department of Mechanical Engineering, Twente University of Technology, Enschede, Netherlands 

Abstract. Consider a two-server, ordered entry, queuing system with heterogeneous servers and finite 
waiting rooms in front of the servers. Service times are negative exponentially distributed. The arrival 
process is deterministic. A matrix solution for the steady state probabilities of the number of customers in 
the system is derived. The overflow probability will be used to formulate the stability condition of a 
closed-loop conveyor system with two work stations. 

Keywords: Queues 

1. Introduction 

Consider a two-server queuing system with heterogeneous exponential servers. Both servers have a finite 
waiting room capacity. The arrival process is deterministic. Every arriving customer tries to join the queue 
in front of server 1 first (i.e. 'ordered entry'  selection): if the waiting room is full he tries to join the queue 
in front of server 2. If both waiting rooms are full the customer is lost. Having joined a queue a customer 
will eventually leave the system after being served. Overflow models of the above type, with two or more 
servers, have been considered by several authors. For Poisson arrivals we refer to Disney [3,4] and Gupta  
[5]. In Disney [4] a matrix-geometric solution is given for the joint distribution of the queue sizes, while 
Gupta  gives the probability generating function. Several authors have dealt with the queue G I / M / S / N  
(i.e. renewal input, exponential servers, and finite capacity). Since the overflow process from this queue is 
again a renewal process the results are relevant for the model considered here. These overflow models are 
of interest for e.g. communication networks, in which it is often assumed that the service times are 
exponential, whereas the input process of a particular queue result from superposition of several output or 
overflow processes from other queues and may be approximated by a renewal process. For some relevant 
contributions to the queue G I / M / S / N ,  see (~inlar and Disney [1], Rath and Sheng [11], De Smit [2] and 
McNickle [8]. The latter author considers a simple network model in which the overflows of a G I / M / S / N  
queue form the input to a single exponential server queue with infinite waiting room. 

For the particular model considered here we give a matrix solution for the joint distribution of the queue 
sizes under steady-state conditions, which is easily programmed. The result will be used to formulate the 
stability condition of a certain type of closed-loop conveyor. 

2. The mathematical model 

Let the subsequent arrivals occur at the epochs t,, = nd, n = 0, 1. . .  (d > 0). We suppose that the service 
times at station j(= 1, 2) are independent negative exponentially distributed with parameter #/, both 
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families of random variables being independent of each other and independent of the state of the system. 
The waiting rooms at the servers 1 and 2 have capacities N - 1 and M - 1 respectively. 

Let x i (n)  denote the number of customers in the queue plus in service at server j ( j  = 1, 2) at epoch 
n d -  O, n >~ 0, i.e. just before the arrival of a customer. The process {(xl(n),  x2(n)), n >/0} is a vector 
Markov chain, with finite state space, which is irreducible and aperiodic. Consequently, the chain is ergodic 
and possesses a unique stationary probability distribution• Let this distribution be denoted by 

w ( i , j )  = lim P r ( x ~ ( n ) =  i, x2(n ) = j l x l ( 0 ) =  i o, x2(0)=J0}  (1) 

f o r i = 0 ,  1 . . . . .  N a n d j = 0 ,  1 . . . . .  M .  
Let the states ( i , j )  of the process { ( x ~ ( n ) ,  x2(n))} be ordered lexicographically, i.e. in the order (0, 0), 

(0, 1) . . . . .  (0, M), (1, 0), (1, 1) . . . . .  (1, M)  . . . . . . . . .  ( N ,  0), ( N ,  1) . . . . .  ( N ,  M ) .  Then the one-step transition 
matrix Q of the process can be written in the following block-partitioned form: 

O = 

¢ q l A  po A 0 . . .  0 

q2A p l A  po A . . .  0 

qN A P N - I A  p,,,,_2A . . .  po A 

qN B Ppv - lB  P x - 2  B . . .  poB  

(2) 

where 

and 

( ~ t d ) ,  2-1  
j !  e - " ' a '  ql = 1 - Y'~ Pk 

k = O  

A = 

'1 0 0 ... 0 

ql ,Oo 0 ... 0 

G l - 1  # . ~ -  2 P~,1- 3 ".. 0 

where P /and  F:/l are given by (3) with/-h replaced by #2. 

( j ~ l ) ,  

B = 

(3) 

'ql Po 0 . • .  0 

• , .  0 

(4) 

Observe that A is a nonsingular lower-triangular (M + 1 ) × ( M +  1) matrix. The matrix B is an 
(M + 1 )x  ( M +  1) matrix with zeros on all but the first superdiagonais. The latter type of matrices are 
called 'almost left triangular'. 

Observe also that A and B are stochastic matrices: the elements of B A -  1 on its first superdiagonal and 
the last element of its last row all equal one, all other elements being zero. 

Introducing the row vectors 

~, = (,~(i, 0), ~(1, 1) . . . . .  ~ ( i ,  M ) ) ,  i = 0 , 1  . . . . .  N, (5) 

the steady-state equations of the process can now be written as 

N - I  

~ro= Y'~ q,+,Tr3A + q u c rxB ,  (6a) 
j=O 

N - 1  

rr,= Y" p,_,+,rr,  A +p,~ 7rxB, i =  1 . 2  . . . . .  N ,  (6b) 
j = i -  l 
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together with the normalizing condit ion 

N M 

E E 1. 
J - o  j = o  

Our problem is now to determine the vectors ~rj, i = 0, 1 . . . . .  N satisfying (5), (6) and (7). 

(7) 

3. A solution for the steady-state probabilities 

In view of  the almost left triangular block structure of Q we introduce the ( M  + 1) × ( M  + 1) matrices 
Cj, j = O, 1 . . . . .  N, which relate the vector ~r, to the vector ~r N according to 

~, = , ~ N C , , _ , ,  i = O, 1 . . . . .  N ,  (8) 

where C O = I is the identity matrix of  rank M + 1. 
Upon  substituting (8) into (6b) we obtain 

j + l  

Cj= ~_. pj_k+~CkA+pjB, j = 0 , 1  . . . . .  N - 1 .  (9) 
k - 1  

Rewriting this as 

and noting that the inverse A -  ~ exists, we obtain a recursive scheme from which the matrices Cj can be 
determined since Co = I. 

By adding all the equations in (6) we obtain 

N N 

E E + N(B -A). (11) 
i - 0  t = 0  

Substitution of  (8) then yields the following relation for the row vector ~tN: 

Iru { C( I -  A ) -  B + A } =0,  (12) 

where 
N 

C= ~_, Cj. (13) 
j - 0  

Lemma 1. Let D = C ( I - A ) -  B + A = (d , j ) ,  i=  O, 1 . . . . .  M; j =  O, 1 . . . . .  M. 
(a) D is almost left triangular, i.e. dcj = O for i + 2 ~<j ~< M, i = 0, 1 . . . . .  M - 2; 
(b) The matrix D obtained f_rom D by deleting its first column and its last row is a lower triangular Toeplitz 

matrix, i.e. its entries satisfy d,.g = dcj  = di_j+ ~, i = 0, 1 . . . . .  M - 1 ; j  = 1, 2 . . . . .  M; 
(c) The elements dci+l = do, i = 0, 1 . . . . .  M - 1 on the first superdiagonal of D ( c.q. the main diagonal of 

D) are negative, that is d o < 0; 
(d) The rank of D equals M. 

Proof.  The assertions (a) and (b) follows from (10) and the particular form of  A and B. The main 
observations are that: 

(1) any matrix satisfying (a) and (b) when right multiplied by a matrix having the same form as A yields 
a matrix which also satisfies (a) and (b) and 
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(2) A - 1 is of the same form as A,  i.e. it is lower t r iangular  and moreover  the mat r ix  ob ta ined  f rom A - 
by dele t ing its first co lumn and last row is a Toepl i tz  matr ix .  

To prove (c) let C~' J = 1, 2 . . . . .  N be an e lement  on the first (nonzero)  supe rd iagona l  of  Cj. T a k i n g j  = 0 
in (10) and not ing  that  C 0 = l  it follows that  c a = - 1 .  In the same way we ob ta in  for j =  1 that  
c 2 = - 1 / p  2, so that  c 2 < c a = - 1 .  Observing  that  the e lements  on the first superd iagona l  of BA -a are 
equal  to 1 it follows from (10) that  

not ing  that the matr ices  Cj, j = 1, 2 . . . . .  N sat isfy the proper t ies  (a) and  (b) of  the lemma.  
Now we proceed by induct ion  in o rder  to prove that  c u < CN_ ~ < . . .  < C 2 < C~ = --1.  Suppose  that  

c / <  C/- 1 < . . .  < cl = - 1, which is true f o r j  = 2. By (14) we then have 

I C,+a < P o  I P ° a -  =1 pk c/. (15) 

Observ ing  that  p o l (  Po  a j - a  - E , = a P k  ) > 1 and not ing that  c, < O, it follows that  CJ+a < ( / <  " "  < cl = - 1 "  
Consequen t ly  c u < c N_ a < . . -  < cl = - 1 by induct ion  on j .  Hence  c = E~'=,C/< 0 and since d o = c(1 - P0) 

- P o  we also have d o < 0. 
F ina l ly  to prove par t  (d) first note that  De = 0 where e is a co lumn vector  all whose M + 1 e lements  

equal  1. Hence  the rank of D is at most  M. However ,  by  dele t ing its first co lumn and  last row we ob ta in  the 
matr ix  D which in view of par t s  (b) and (c) is nonsingular ,  since d e t ( D )  = do M ~ 0. Consequen t ly  the rank 

of  D equals M. 

Since D is of rank  M it is poss ible  to de te rmine  the e lements  ¢ r ( N , j ) , j  = 0, 1 . . . . .  M - 1 of  the vector  orN 
in terms of  0r(N, M )  using the equat ion  orND = 0, cf. (12). 

Therefore,  in t roduc ing  the row vector  g, let 

or N = gor( N ,  M ) =  ( g . ,  g M -  , . . . . .  g, , 1 )o r [N ,  M ). (16) 

It follows from the preceding  l emma that  the vector  (gM, g g -  1 . . . .  g l )  is the unique  solut ion of  the equa t ion  

( gM.  g M - ,  . . . . .  g , )  D = - ( d . . , .  d . . 2  . . . . .  d M . .  ) (17) 

f rom which it is readi ly  verified that  the numbers  gj are de te rmined  recursively by  

g , =  d M , g - , + ,  + Y'. g * d ~ 4 - k . M - , + ,  / I d o l ,  j = 1, 2 . . . . .  M ,  (18) 
k = l  

where  d o = d,.,+ a. 
By def ini t ion we have, cf. (8) and  (16). 

or, = o r ( N ,  M ) g C , _ , ,  i = O ,  1 . . . . .  N ,  (19) 

so that  all p robab i l i t i e s  can be expressed in terms of  or(N, M ) .  The la t ter  p robab i l i t y  obvious ly  follows 
f rom the normal iz ing  cond i t ion  Y ~ o r ( i , j )  = 1 which can be wri t ten as ~r(N, M ) g C e  = 1 so that  

or(N,  M ) =  ( g C e )  -a (20) 

We summar ize  our  result  in the fol lowing theorem. 

T h e o r e m  ! .  The unique s tat ionary distribution { or,, i = 0, 1 . . . . .  N } = ( or(i, j ) ,  i = 0, 1 . . . . .  N; j -~ 0, 1 . . . . .  M } 
sat is fy ing (6) and  (7) is given by 

~ =  g C N _ J ( g C e )  
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where the vector g = (gM, gM- ~ . . . . .  g~, 1) is uniquely determined by (18) and the ( M + 1 ) x ( M + 1 ) matrices 
Cs, j = O, 1 . . . . .  N are uniquely determined by (10) with C O = I. 

Remark  1. Consider  the case N = M =  1. F rom (10) we obtain C~ = p ( ~ t A - I - B A - ~ ,  so that C =  1 +  
p o ~ A - I - B A - ~ .  Hence D = C ( I - A ) + A - B = I - p o ~ I + p o ~ A - ~ - B A - )  and C e = p o ~ e .  It is readily 
verified that d0o = 1, d0~ = - 1 ,  d~0 = - ? / 1 / ( P 0 P 0 )  and d~  = ?h / (  Po ,V0 ). 

Therefore  f rom (18) we obtain g~ = 7:/1/(P0P0) and consequently ( g~, 1)Ce = (1 - q~ Po)/PoPo, so that the 
overf low probabi l i ty  ~r(1, 1) is given by 

P°P°2 , N = M = I .  (21) 
~r(1, 1 ) =  1 - q~,v0 

Taking  #l =/~2 in (21) one obtains  the loss probabi l i ty  for the D / M / 2 / 2  loss system, see Takhcs [12]. 

Remark  2. It can be verified f rom (10) that all the elements  of  the vector  Ce are identical. In implement ing  
the solution for compute r  computa t ion  the memory  requirement  and the number  of  e lementary  compu ta -  
tions can be reduced taking into account  that  the matrices C~'J = 1, 2 . . . . .  N and D satisfy par t  (a) and (b) 
of  L e m m a  1. 

Remark  3. It is interesting to notice that the transit ion matr ices Q(~) and QC~-~) for the models  with s and 
s - 1 servers, respectively, are connected in the following way when the states are ordered lexicographically 
(assuming equal wait ing room capacit ies and #~ = it2 . . . . .  #~). 

' q lA  ¢~-1)× po A(~-l)× 0 . . .  0 

qEA (~-l)× p l A  (~-1)× po A(s-~)× . . .  0 
Q(S) = (22) 

qNA( s-l)× p N _ I A  (~-1)× PNl2 A(~-I)× p0A(.,- 1) × 

qNQ (s-l)× p u _ l Q  (s-l)× p u l z Q (  ,'-I)× . . ,  poQ (~-l)× 

where A (s-ll× is the ( s -  1)-fold Kronecker  product  of  A with itself. For  the definit ion of the Kronecker  
product  see e.g. Marcus  and Minc [7, p. 9]. Taking  s = 2 in (22) we obtain  (2) once we note that Q(1)= B is 
indeed the transit ion matr ix  of  the single server case. F rom (22) we see that Q(") has the same block 
structure as Q so that  the preceding method can be generalized for s > 2, at least in principal.  

Remark  4. Finally it should be ment ioned that the single server case with transit ion matrix B can be 
handled by the method of Raju and Bhat, in part icular  see Theorem 2.2.1 in [9, p. 252]). We also note the 
similarity between their results and our results, see Raju and Bhat [10, section 3]. 

We end this section with some numerical  results and a worked example.  In Fig. 1 the overflow 
probabi l i ty  rr(N, M )  is shown as a function of M for some values of  N and three combina t ions  o f / . qd  and 
/.tEd. The values of  # l d  and l~2d for these combina t ions  are chosen so that  ~2 > bt~ (~1 +/x2 > d-)) , /~1 = ~2 
(/~1 + ~2 = d - l )  and Ix2 </~1 (~l +/~2 < d-~)  • 

Note  the asymptot ic  behaviour  for N---, ~ ( w i t h  fixed M )  and M---, oo (with fixed N) .  Observe  that the 
dependence  on M for given N decreases when kt~ + ~2 $0, while for large values of  ~t, +/~2 the dependence  
on N, for fixed M, decreases. 

Example.  Consider  the case / t  1 = ~2 = 0.5 with N = 1 and M = 3. F rom (3) and (4) we obta in  

A = 

1.000 0 0 0 
0.394 0.607 0 0 
0.090 0.303 0.607 0 
0.014 0.076 0.303 0.607 

B = 

0 . 3 9 4  0.607 0 0 

) 0.090 0.303 0.607 0 
0.014 0.076 0.303 0.607 " 
0.014 0.076 0.303 0.607 
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F r o m  (10) we have  C~ = { A -  t _ p o B A - i } / p o "  giv ing  

1.649 - 1 0 0 
C1 = - 1 . 0 7 0  2.718 - 1 0 

0 .290 - 1.359 2.718 - 1 ' 
- 0 . 0 5 0  0.340 - 1.359 1.718 

S ince  C o = 1 ( the  iden t i ty  ma t r ix )  and  e T = (1, 1, 1, 1) it fo l lows  f r o m  (13) that  ( C e )  v = (Coe + C l e )  v = 1.649 

e T. M o r e o v e r ,  f rom D = C(  I -  A ) + A - B we ob t a in  

1 - 1  0 0 
- 1 . 0 7 0  2.070 - 1 0 

D =  
0.290 - 1.360 2.070 - 1 

- 0 .050 0 .340 - 1.360 1.070 

T h e  T o e p l i t z  ma t r ix  D is o b t a i n e d  f rom D by de le t ing  its first  c o l u m n  and  its last  row. T h e  vec to r  

g = (g3, g2, gl ,  1) fo l lows  f rom (18) y ie ld ing  g = (0.654, 0.854, 1.070, 1). N e x t  ~r(1, 3) is c a l cu l a t ed  us ing  

re la t ion  (20) g iv ing  ~r(1, 3) = {1.649 × (0.654 + 0.854 + 1.070 + 1)} -1 = 0.169. 

N o w  f rom T h e o r e m  1 we f ina l ly  have,  cf. (5), (8), (16), 

~r, = ~r(1, 3 ) g  = (0 .111,  0 .145,  0 . 1 8 1 , 0 . 1 6 9 )  

and  

~r o = ~rlC 1 = (0 .072,  0 .094,  0 .118,  0 .110) .  
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4. An application to the stability condition of a conveyor system 

The reason for analyzing the present model lies in a study of  stability condit ions for a certain class of 
closed-loop conveyors.  

Consider a closed chain, moving with constant  speed, equipped with r equidistantly spaced hooks. The 
time to make one revolution equals T. Somewhere along the chain units arrive according to a renewal 
process with arrival rate X. The units are connected to a hook, with one unit per hook, for further transport  
to a work station. There are two work stations along the conveyor,  which are characterized by our 
previously discussed two-server system, i.e. the first station has storage capacity N -  1 and the second 
M -  1 and the processing times at the stations are exponentially distributed with parameters  ~1 and ~2. 
Loaded hooks are automatical ly unloaded when passing a station, provided that the storage is not full. 

Now imagine that the system is highly congested so that several loaded hooks cannot  be unloaded at 
either one of  the stations. In this case units recirculate one or more times before unloading into a storage 
takes place. Consequently,  at the loading point  a queue may built up. 

The question arises under  which condit ion the system is stable, i.e. that the queue at the loading point 
reaches a statistical equilibrium in the long-run. To answer this question let X* be the maximal attainable 
departure rate f rom the system. It will be intuitively clear that the system is stable if X < X*, a condit ion 
that can be proved along the lines of  Lavenberg [6]. 

To obtain ?~* imagine a saturated system in which there is an unbounded  queue in front of  the loading 
point. Since every hook arriving at the first station is loaded, the arrival process at this station is 
deterministic with interarrival time ~" = T/r .  The arrival process at the second station is the overflow 
process at the first station, translated in time over the travel time between the two stations. Hence, we may 
well asume that this travel time is zero. Then it is readily seen from its definition, that the process 
( (x l (n) ,  x2(n)),  n >/1} describes the states of  the stations just before the arrival of  a hook at the epochs 
n ~ ' - 0 ,  n =  1, 2 . . . . .  

N o w  the number  of units unloaded from the hook arriving at epoch n~" - 0 equals min(1, N + M - x~(n) 
- x 2 ( n ) ) .  Therefore, the expected number  of  unloaded units per hook equals 

E ( m i n ( 1 ,  N + M -  x l ( n ) - x 2 ( n ) ) }  = P r ( x l ( n  ) + x 2 ( n )  <~ N + M -  1} 

= 1 - P r ( x , ( n )  + x z ( n ) =  N +  M } .  

Consequently,  under  steady-state conditions, the expected number  of unloaded units per unit of time in the 
saturated system equals (1 - ~r(N, M)}/~' ,  from which we conclude that )~* = {1 - ~:(N, M)}/ ' r .  

Hence the stability condit ion we are looking for becomes 

X ~ ' < I  - ~ r ( N , M ) .  (23) 

Table 1 
Overflow probabilities ~r( N, N ) ( ~t = 1 ) 

~- N 

1 2 3 5 8 10 

0.05 0.903 0.900 0.900 0.900 0.900 0.900 
0.1 0.811 0.801 0.800 0.800 0.800 0.800 
0.2 0.644 0.606 0.601 0.600 0.600 0.600 
0.3 0.503 0.426 0.408 0.401 0.400 0.400 
0.4 0.387 0.276 0.240 0.214 0.204 0.202 
0.5 0.293 0.165 0.119 0.079 0.054 0.044 
0.6 0.220 0.092 0.051 0.020 0.006 0.003 
0.7 0.163 0.050 0.020 0.004 0.001 0.000 
0.8 0.121 0.026 0.007 0.001 0.000 0.000 
0.9 0.089 0.013 0.003 0.000 0.000 0.000 
1.0 0.065 0.007 0.001 0.000 0.000 0.000 
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T a b l e  1 gives s o m e  va lues  of  the o v e r f l o w  p r o b a b i l i t y  ~'( N, M )  for the  case  N = M as a f u n c t i o n  of  N and  ~" 

wi th  #l  = bt2 = 1. 

O b s e r v e  that  ~ ( N ,  N ) - - - I  - 9 . r  for  smal l  ~'. T h e  tab le  suggests ,  m o r e o v e r ,  tha t  for  large  bu t  f in i te  N 

~r( N, N ) --, 1 - 2 r  if ~" < 0.5 and  ~r( N, N ) ---, 0 if ~" > 0.5. T h e  res t r i c t ion  on  N to r e m a i n  f in i te  s t ems  f r o m  

the  fact  that  ou r  two-se rve r  m o d e l  degene ra t e s  in to  the  o n e  server  m o d e l  D / M / 1  w h e n  N is u n b o u n d e d .  

In view of  this obse rva t ion ,  n o t i n g  tha t  ~ = 1, we see that  for smal l  va lues  o f  ~- the  s tabi l i ty  c o n d i t i o n  is 

< 2, whe reas  for  large va lues  o f  r we f ind ~"  < 1. T h e  f o r m e r  cond i t i on ,  wh ich  can  be  wr i t t en  as 

~ / ~  = O < 2, is the s tabi l i ty  c o n d i t i o n  for the classical  G I / G / 2  q u e u i n g  sys tem and  the la t te r  s t ems  f rom 

the G I / D / 1  q u e u e  at the l oad ing  poin t .  In the case  of  smal l  ~" on ly  the  servers  d e t e r m i n e  the  s tabi l i ty ,  

whi le  for large ~" on ly  the c o n v e y o r  is the bo t t l eneck ,  as cou ld  be expec ted .  
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