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1. Introduction 

This paper is concerned with the generalization 
of some recently obtained results for nonlinear 
systems of the form 

k=A(x) + 2 qB,(x) (1.1) 
i-l 

(such systems are called uffine, or input-linear) to 
general nonlinear systems 

.k=f(x, f4). (1.2) 

As such the paper is a continuation of [7], where 
the necessary and sufficient conditions for (local) 
controlled invariance for affine systems were gen- 
eralized to general nonlinear systems, thereby solv- 
ing for instance the disturbance decoupling prob- 
lem for these systems (see [8]). First we recall the 
framework used in these references. 

A coordinate free description of a smooth non- 
linear system (1.2) consists of the following in- 
gredients (see [7,12] for references). The state space 
M is a smooth manifold of dimension n (smooth 
will always mean C” or C” with k sufficiently 

large). There is a smooth (n + m)-dimensional fibre 
bundle B over M, with projection IT: B + M. Fi- 
nally a smooth map f : B --+ TM is given such that 
the diagram 

B f TM 

(1.3) 
M 

commutes (v,,, is the usual projection of TM on 
M). We denote the system (1.3) by X(M, B, f). 
Take local coordinates 

(x, u)= (x1 ,..., x,, u 1,“‘) urn) 

for B such that (x,, . . . , x,) are coordinates for M 
((x, y) are called fibre respecting coordinates). In 
such coordinates (x, u) for B and (x, R) for TM, 
we can write by the commutativity of (1.3) and 
with a slight abuse of notation 

f(x, u)=(x,f(x* u>), 

and one immediately recovers the local coordinate 
expression (1.2). In the case of an affine system 
(l.l), B is a uector bundle and f: B --, TM is an 
affine map. Hence the image of f is an affine 
distribution A on M, in local coordinates given by 

A(x)=+) +A&), 

with A, the distribution 

for certain (locally) defined vector fields A, 
B ,, . . . , B,, on M. We denote the affine system also 
by (4 A,). 

Of fundamental importance to us is the fact 
that we can associate with every nonlinear system 
z‘( M, B, f ) an affine system (A”, A’,), the extended 
system, introduced in [12]. The affine distribution 
de on B is defined as 

A%, u>= {XE &$+J=f(x, ~1) (1.4) 
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and the distribution As as 

A;(x, u)= { XE T,,,,,Bla.X=O}. (1.5) 

If X(M, B, f) is in local fibre respecting coordi- 
nates given by k =f(x, u), then (A”, A’,) is given 
by 

2 =f(x, 4, ic=u, 0 -6) 

with u E R”’ the new input. Therefore, taking the 
extended system amounts to ‘integrating the in- 
puts one time’. 

2. Controlled invariance 

First we quickly review the results on (local) 
controlled invariance for general nonlinear sys- 
tems 8( M, B, f) obtained in [7], see also [13]. The 
concept of controlled invariance for nonlinear sys- 
tems was firstly introduced in [1,3]. We call a 
distribution regular if it is involutive and has con- 
stant dimension. Then a regular distribution D on 
M is called locally controlled invariant if for every 
x E M there exists an open neighborhood V of x 
and a trivialization a-‘(V) = V x U (U is the 
standard fibre of B) such that 

[f(*,~),DlcD, t’u~u, (2.1) 

with 

f: vx u= a-‘(v) --) TV. 

In other words there exist local fibre respecting 
coordinates .(x, u) such that in these coordinates 
[f( *, u), D] c D for every U. Given a set of fibre 
respecting coordinates (x, U) for B and a corre- 
sponding representation i =f(x, u) this is equiva- 
lent to the local existence of a nonlinear feedback 

u = fx(x, ii) (2.2) 

with (&~/aii) everywhere nonsingular, such that 
[f(-, ii), D]c D for every ii, where 2 =f(x, ii) is 
the feedback transformed system, i.e. 

Pb, 5) =f(x, (4x3 fi)). (2.3) 
The basic idea is that local feedback corresponds 
to another choice of fibre respecting coordinates 
(x, 6). 

Necessary and sufficient conditions for local 
controlled invariance of D are now given as fol- 
lows.. Since D is regular, there exist local coordi- 

28 

natesx=(x ,,..., x,,) such that 

,...,&) (kgn). 

Then we define the regular distribution b on TM 
by setting [7,13] 

D=span a a a a q,..., ax,, aa, ,...,K) -- (2.4) 

with the coordinate functions k, on TM defined by 

mi(u)=dxi(o), UETM. 

Theorem 2.1 [7]. Let Z( M, B,f) be a nonlinear 
system, let D be a regular distribution on M and 
assume that the distribution A’, n f ’ *( b) has con- 
stant dimension (with A’, as in (1.5)). Then D is 
locally controlled invariant if and only if 

f&G’(D)) = b +f*(At,). (2.9 

Let now D be regular, locally controlled in- 
variant and such that As ny,‘(b) has constant 
dimension. Then it is quite easily seen that E = 
f*‘(b) is a regular distribution on B such that 
rr,E = D and f *E c i> (see [13]). This is also 
equivalent to 

[A’,E]cE+Ae,, ?T*E=D. (2.6) 

On the other hand, a regular distribution E on B 
such that E n As has constant dimension is locally 
controlled invariant if and only if 

[A’, E]cE+A; 

(see [3,7]). Therefore E =f*‘(i>) is locally con- 
trolled invariant w.r.t. (A’, A’,). Conversely if E is 
a regular distribution on B (with En A”, of con- 
stant dimension), which is locally controlled in- 
variant w.r.t. (A’, A’,), then n,E is well defined 
[12] and is a locally controlled invariant distribu- 
tion w.r.t. X( M, B, f ). This shows the close rela- 
tionship between local controlled invariance w.r.t. 
X(M, B, f) and w.r.t. the extended system 
(A’, A’,). In terms of the required feedbacks we 
obtain the following. Let D be locally controlled 
invariant w.r.t. Z( M, B, f) and let E, with P * E = 
D, be locally controlled invariant w.r.t. (de, A;). 
Suppose that the feedback u = ,x(x, ii) makes D 
invariant, i.e. [f( *, u), D] C D. Let us formally 
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differentiate (Y(x, ii) along 5~ =f(x, u): 

-$x(x. ii) = tkx(x, ii) ax j-(X, u) + “a(ax; n, ii. 
(2.7) 

Then it is easily seen that the affine feedback 

(2.8) 

with 8 E R”’ the new input, and where we sub- 
stitute (after performing the differentiations) ii = 
fi( x, U) with p satisfying cu( x, p( x, u)) = u, is the 
required feedback which makes E invariant. This 
was first noted, in the case of the extended system 
of an uffine system, in [l]. Consequently the re- 
quired feedback for the extended system can al- 
ways be chosen in the special form (2.8). 

3. Linearization 

First we will review some results about the 
linearization by feedback of an affine system 
(A, A,) with state space M. Let us define the 
following sequence of distributions Ai on M: 

A, = [A, A,,], 
A,+, = [A, AJ, ia 1. (3.1) 

ItisclearthatA,cA,cA,c .a-.Themaintheo- 
rem is now as follows [2,4,14]. 

Theorem 3.1. Let x0 EM be such that A(x,) = 
A,(x,). Then there exist coordinates x around x0 
such that (A, A,,) has the controllable linear rep- 
resentation 

i=Ax+Bu (3.2) 

(i.e. A(x)=Ax + Im B with A and B matrices) if 
and only if the distributions Ai are regular in a 
neighborhood of x0 and dim A,,- ,( x,,) = n ( = 
dim M). 

Remark. If the affine system (A, A,) has a rep- 
resentation 

k =A(Z) + 5 niBi( A(0) =O, (3.3) 
i-l 

then this is equivalent to the existence of a feed- 

back 

with /3(Z) an m X m-matrix, and a coordinate 
transformation 

Z=+(x), withcp(O)=O, 

such that (3.3) is transformed into (3.2). 

Now we want to derive the conditions in order 
to transform (locally) a general nonlinear system 
zi = f(x, u) by a coordinate transformation and a 
general nonlinear feedback u = a(x, 6) into a lin- 
ear system. Let therefore X(M, B, f) be a nonlin- 
ear system with extended system (A’, A”,). Define 
the distribution A: on B by 

A;+, = [Ae,A;], i=O, l,.... (3.4) 

We obtain the following remarkably simple result: 

Theorem 3.2. Let X( M, B, f ) be a nonlinear system 
and let b, E B be such that f( b,) = 0. Then there 
exist fibre respecting coordinates (x, u) around b, 
such that X(M, B, f) has the controllable linear 
representation 

R=Ax+Bu 

(i.e. f(x, u) = Ax + Bu, with A and B matrices) if 
and only if the distributions A: are regular around 6, 
and 

dim d”,, (b,) = dim B 

(with dim M=n). 

Remark 1. If the system has the representation 

k=f(Z, fi), withf(O,O)=O, 

then this amounts to the existence of a feedback 
ii = a(.?, u) and a coordinate transformation 5 = 
(p(x), with or(0, 0) = 0 and (g(O) = 0, such that k = 
f(Z, fi) is transformed into i = Ax + Bu. 

Remark 2. The condition dim A’,(b,) = dim B is 
equivalent to the strong accessibility of the ex- 
tended system as well as the strong accessibility of 
X(M, B, f) around b,, cf. [12,13]. (Note that 
A:( 6,) = A’,,(b,), k & n, if A’, is regular.) 

Remark 3. It follows that X(M, B, f) is lineariz- 
able if and only if its extended system is lineariz- 
able (see Theorem 3.1). 
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Proof. The ‘only if’ direction is trivial. For the ‘if’ 
direction we notice that since A’, c A: the projec- 
tions s,A: are regular distributions on M (all our 
statements will be local around bO or ~(6,)). De- 
note 

Di=r*A:, i=l,..., n. 

Since dim A’,,(&) = dim B there exists an N G n 
such that dim D, = n. Therefore the sequence D, 
c D, c . . . c D, satisfies the condition of Lemma 
1 in [4]. Hence around x0 = rr(b,) there exists a 
coordinate system x = (x,, . . . ,x,,) such that the 
integral manifolds of D, around x0 are of the form 

xi = ci, i=pj+l ,..., n, Ciconstant, 

with dim Di=pi. Denote x=(x’,...,x~) where 
xi consists of the first p, = IL, coordinates of x, x2 
consists of the next p2 = pa - p, coordinates,. . . ,x N 
consists of the last pN = pN - pN-, coordinates of 
x. Let (x, u) be fibre respecting coordinates of B 
and write f = (f ‘. . . . ,f”) corresponding to the 
splitting x = (x’ , . . . ,xN). Then the following basic 
facts follow from the proof of Theorem 1 in [4]: 

(A) The component functions f j do not depend 
on the variables x1,. . . ,xj-* forj = 3, 4,. . . ,N. Also 
the fj do not depend on u for j > 2. 

(B) Rank afj/axj-’ = pi for j 2 2 and 
rank aft/au =p,. 

Now we exactly follow the procedure of 
Jakubczyk and Respondek and modify the coordi- 
nates (x1 ,...,xN) in such a way that the integral 
manifolds of Di remain constant. In the first step 
we define the new coordinates yN-‘, yj = xi if 
j # N - 1, in such a way that in the new y-coordi- 
nates 

f= 0’ ,. . . ,f N-1, y”-‘), 

where pN-’ are pN coordinates of yN-‘. This is 
possible since rank af N/axN-l = pN, and f N does 
not depend on u, x1,. . . , xN-*. Denoting the new 
coordinates again by (x1 , . . . ,x N ), we introduce in 
the second step the new coordinates yN-*, yj = xi, 
if j # N - 2, in such a way that 

f= (f’ )..., fN-*,JN-*, TN-‘), 

where jjNd2 are pN-, coordinates of yN-*. This is 
again possible because of (A) and (B). So we 

30 

proceed N - 1 steps till we obtain 

f= (f’, 2 ,..., x”-1). 

Finally by (B) we can choose new input coordi- 
nates ii such that 

f= (I, 2 )...) P’), 

where 6 are p, coordinates of P. The relation 
between the old coordinates u and the new coordi- 
nates B is given by a feedback u = (Y(x, ii). There- 
fore in the new fibre respecting coordinates (x, fi) 
we obtain the linear system k = Ax + Bii, with 
(A, B) in a (slightly modified) Brunovsky form. 
- 
l-l 

Remark. Notice that the adaptation of the x-coor- 
dinates in every step of the Jakubczyk-Respondek 
procedure can also be understood in terms of 
applying feedback! In fact in the i-th step the new 
coordinate functions yN-’ are defined by 

Y N-i, (fN-i+l, EN-~), 

where EN-’ denotes pNmi -pNBi+, coordinates of 
xNmi chosen in such a way that 

ranks =pNei 

(cf. [4]). Now since by (A), fNei+’ does not de- 
pend on the variables u, x1,. . . ,xN-‘+‘, the rela- 
tion between yN-’ and xNmi is of the following 
form: 

Y N-i=a(XN-i+l ,..., XN, ,N-i). 

By interpreting (xNmi+’ ,...,xN) as the state vari- 
ables this constitutes a nonlinear feedback 
transforming the old ‘input ’ coordinates xNei into 
the new ones yN-‘. 

4. Input-output decoupling 

The input-output decoupling problem with 
state feedback for general nonlinear systems can 
be formulated as follows. Consider a system with 
m inputs u=(u ,,..., u,,,) 

k =f(x, u) (4.la) 

together with m output maps 

yi=hi(x, u), i=l,..., m, (4.lb) 
where hi: B + Ni is a smooth map from B to a 
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smooth pi-dimensional manifold Ni. We now seek 
for a feedback 

u=a(x,ii), ii=(n ,,...‘ii,,,), 

such that in the modified system 

.i =f(x, ii), 
y, = ?I(,, ii), 

i=l ,...,m, (4.2) 

with 

and 

h,(x, fx(x, ii)) = &(x, a), 

the input iii does not affect the output vj for j # i. 
Moreover we require the input iii to ‘control’ the 
output yi, i = 1,. . . , m (cf. [3,9]). In order to avoid 
not well posed problems we will require throughout 
that the output maps are independent, i.e. 

rank( h, ,...JL,)=p 

withp=p, + ..- +p,,,. 
Recently the above problem was solved for 

affine systems 
,)I 

i =/4(x) + c UiBi(X) 
i-l 

with output maps y, = C,(x) only depending on 
the state [9]. In fact our Theorem 4.2 will only be a 
generalization of the results obtained in [9]. 

Again the trick will be to consider the extended 
sys tern 

i =f(x, u>, il=lJ 7 (4.3a) 

with the output maps (now only depending on the 
state (x, u)) 

yi=hi(x, u), i= l,..., m, (4.3b) 

and to solve the input-output decoupling problem 
for this affine system. 

Recall the definition of a controllability distri- 
bution for an affine system (A, A,) (see [6], also 
[5]). A regular distribution R, such that A, n R has 
constant dimension, is a controllability distribu- 
tion if 

(1) [A, R] c R + A, (i.e. R is locally controlled 
invariant), 

(2) there does not exist a regular distribution 
R’ c R such that R’n A, = R n A,, and [A, R’] c 
R’ + A,. 

Remark: In the terminology of [6] these are the 
regular controllability distributions. 

Let now Rr be a controllability distribution of 
an extended system (A’, A’,). Then since [A,, Re] 
c Re + A,,, Re projects to a regular distribution R 
on M [12]. Motivated by this we give the following 
definition of a controllability distribution for a 
general nonlinear system X( M, B, f ). 

Definition 4.1. A regular distribution R on M such 
that f*‘li n A’, has constant dimension, is a con- 
trollability distribution for 8( M, B, f) if 

(1) f*(~;‘( R)) c h +f,(A’,) (i.e. R is locally 
controlled invariant), 

(2) there does not exist a regular distribution 
R’ c R such that 

and 

Remark. Recall that Z(M, B,f) is strongly acces- 
sible if there does not exist a regular distribution 
D # TM such that f*(~;‘( D)) c b (cf. [12,13]). 
So the above definition implies, as it should be, 
that the system ‘restricted’ to a controllability 
distribution is strongly accessible (cf. [6]). 

Consequently, if R is a controllability distribu- 
tion for 8( M, B, f) then f ‘*( k) is a controllabil- 
ity distribution for the extended system (A’, A’,). 
Let us now denote by RS* the maximal controlla- 
bility distribution (with respect to the extended 
system) contained in 

n Ker hi, 
j+i 

(Rr* exists, see [5,6]). 
We will make two standing assumptions: 
(Al) R:* has constant dimension, Vi, 
(A2) R:* n A’, has constant dimension, Vi. 
(Or said in another way we will restrict our- 

selves to open subsets of B where the above as- 
sumptions hold.) Then RF* will be regular distri- 
butionsonB,andR~:=n.*R;,i=l,...,m,willbe 
regular distributions on M. We will call Rr the 
maximal controllability distribution (w.r.t. 
Z( M, B, f) ‘contained in fljzi Ker A,*‘. The main 
theorem reads now as follows. 

31 
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Theorem 4.2. Let X( M, B, f ) be a strongly accessi- 
ble system with output maps 

hi: B+Ni, i=l,..., m, 

such that 

rank(h,,..., h,,,) = dim( Ni X * * * X N,,,). 

Suppose that assumptions (Al) and (A2) hold and 
that CietRS* has constant dimension for every sub- 
set I of {l,..., m }. Then the input-output decou- 
pling problem with static feedback can be locally 
solved if and only if 
A” = A= n Re* + . . . 

0 0 1 +A;nR;J’. (4.4) 

Remark 1. Condition (4.4) is equivalent to the 
solution of the input-output decoupling problem 
for the extended system, see [9]. 

Remark 2. Consider the statements: 
(A) Cis,Rf* has constant dimension, VI, 
(B) CielRT has constant dimension, VI. 

It is clear that, under the standing assumption 
(A2): 

(B) + (4.4) * (A) and (A) + (4.4) j (B). 

Remark 3. One can give examples where assump- 
tions (Al) or (A2) are not satisfied but input-out- 
put decoupling still can be achieved. In this sense 
Theorem 4.2 only gives ‘sufficient’ conditions for 
input-output decoupling. 

Proof. We closely follow the proof of Theorem 3.1 
in [9]. An essential step is that condition (4.4) 
implies that for every I c { 1,. . . , m } the distribu- 
tions CiE,R:* are involutive and hence regular. 
This yields that for every I, Ci6,R;* is a regular 
controllability distribution w.r.t. (A’, A’,), with 

c R:*nAe, 
iCI 

of constant dimension. 
Hence CiE,RT is for every I a regular controlla- 

bility distribution w.r.t. X( M, B, f ). We are now 
going to construct the feedback u = 01(x, ii) which 
will make every RT invariant, i.e. 

[f(-, ii), RF] CRT, Vfi,i=l,..., m. 
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Since Cj+iRr* is regular and by (4.4) 

dim xR;*nA’, =m-1, 
i j#i 1 

we can (locally) construct an (n + m - l)- 
dimensional regular distribution Ei on B such that 

c Rr* c Ei and a,E, = TM. 
j#i 

This we can do for every i = 1,. . . ,m. Now it is 
clear from (4.4) that E := fl,ni, Ei is again a regular 
distribution satisfying ?T* E = TM. In fact dim E 
= dim M, so E is (locally) a horizontal regular 
distribution on B (cf. [7]), or said in another way, 
an integrable connection (locally) on B. The 
required feedback u = (u(x, ii) is now basically 
determined by the following condition [7]: The 
sections fii = Ci (Ci constants) are the integral 
manifolds of E. 

In such new fibre respecting coordinates (x, n), 
the distribution R: on M can be trivially lifted.to 
distributions on B, also denoted by RT, by requir- 
ing that RT c E. The distributions RT* are then 
given (possibly after renumbering of ti,, . . . , fi,,) by 

RS*=RT+rank $ , 
1 I 

i=l ,..., m. 
I 

Since A’, c CyL, R;’ and the system is strongly 
accessible it follows that 

g R:* = TB and f RF = TM. 
i-l i=l 

Hence 

(h ,,..., h,&gR:*=T(N,x - . . x K > 
i* 1 

and hi*Rf*=TNi for every i=l,...,m. This 
means that the i-th input iii controls the i-th out- 
put yi. q 

Remark 1. The required coordinates (ii,, . . . , ic,,,), 
or the integrable connection E are basically con- 
structed as follows. Each distrib,ution Ci+iRr* 
determines the connection in the a/atii-direction. 
Hence together they determine the total connec- 
tion. 

Remark 2. Analogous to [lo] the above theorem is 
easily extended to the case of more inputs than 
output maps. 
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