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A relationship between parallel rewriting systems and two-way machines is investigated.
Restrictions on the “copying power” of these devices endow them with rich structuring
and give insight into the issues of determinism, parallelism, and copying. Among the
parallel rewriting systems considered are the top-down tree transducer, the generalized
syntax-directed translation scheme and the ETOL system, and among the two-way
machines are the tree-walking automaton, the two-way finite-state transducer, and
(generalizations of) the one-way checking stack automaton. The. relationship of these
devices to macro grammars is also considered. An effort is made to provide a systematic
survey of a number of existing results.

1. INTRODUCTION

In this paper we make an effort to provide a systematic survey of the relationships
between top-down tree transducers, generalized syntax-directed translation, L systems
(in particular ETOL systems), two-way transducers, and checking machines (and,
additionally, macro grammars). We investigate in particular the effect of restricting the
“copying power’’ of these devices. The need for such a survey was prompted by the
presence (in the literature) of quite a number of partial connections, together with the
similarity between certain results in seemingly unconnected areas.

As a systematic approach to language definition we will use the concept of output-
language of a transducer. In fact, a transducer may be viewed both as a generating device

* Present address : Rijksuniversiteit Leiden, Institute of Applied Mathematics and Computer
Science, Leiden, Netherlands.

* Present address: Clarkson College of Technology, Dept. of Mathematics and Computer Science,
Potsdam, New York 13676.

150
0022-0000/80/020150-53802.00/0
Copyright © 1980 by Academic Press, Inc.
All rights of reproduction in any form reserved.



TREES, L, AND TWO-WAY 151

(grammar) and as a recognizing device (acceptor) of its output language. The transducer
is considered to be a grammar by viewing each of its computations as a derivation, the
output of the computation as the generated string and its input as a control string of the
derivation. The transducer is considered to be an acceptor by viewing its output as an
input to the acceptor and its input as a preset memory of the acceptor (for instance, if
the transducer is two way then the preset memory is a checking stack). Analogous remarks
hold for trees instead of strings.

The main two models that we will use in this way to present this survey are the
following.

(1.) The top-down tree transducer [48, 56, 9, 18], which serves as a model of the
generalized syntax-directed translation (GSDT) of [4], and simultaneously, by restricting
the input trees to be monadic (i.e., “vertical strings™) and taking yields of the output
trees, as a model of the (controlled) ETOL systems of [49], see [6, 20]. By viewing the
top-down tree transducer as a grammar as explained above we obtain, therefore, a
generalization of the ETOL system which may still be called a parallel rewriting system.
The parallelism of the system is twofold: first, an independent parallelism (due to
processing different input subtrees) and second, a dependent or synchronized parallelism
(due to different processing of a single input subtree); only the second kind of parallelism
is present in ETOL systems. Bounding the copying power of top-down tree transducers
(i.e., the number of translations that can be made of each input subtree; see [4]) corre-
sponds then to bounding the index (i.e., the number of nonterminals in each sentential
form) of ETOL systems [50, 62].

(2} A “new” tree-to-string transducer called checking tree pushdown transducer
(or shortly ct—pd transducer). Such a pushdown transducer has an input tree, a pushdown
memory, an output string, and a finite control with three pointers: one to a node of the
input tree, one to the top of the pushdown tape, and one to the end of the output tape.
The two elementary moves of the transducer are (depending, of course, on the label of
the input node and the topsymbol of the pushdown) to move up to the father of the
node and simultaneously pop the pushdown, or to move down to a (specific) son of the
node and simultaneously push a symbol on the pushdown (and, in both cases, produce
some output string). Thus the movements down and up the tree are synchronized with
the pushes and pops on the pushdown, respectively.

By taking monadic input trees (i.e., strings) and viewing the transducer as an acceptor,
as described above, we obtain the checking stack — pushdown (cs—pd) automaton of [61,
26], equivalent to the ETOL system [61], and by dropping the pushdown memory we
obtain the tree-walking automaton of [4], equivalent to the top-down tree transducer
with bounded copying power [4]. Taking both restrictions simultaneously (i.e., monadic
input trees and no pushdown) results in the usual two-way finite-state transducer (or
two-way gsm) of [3] and (viewed as an acceptor) the usual (one-way) checking stack
automaton of [31].

The above two models are introduced in Sections 3 and 4 of this paper. Section 3
contains the definition of the top-down tree transducer together with several restrictions
on its copying power, and its restriction to ETOL systems. The results in this section
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provide an insight into the nature of the resulting restrictions on the generating power
of the top-down tree transducer. In Section 4 the ct-pd transducer is defined and it is
shown that it has the same generating power as the top-down tree transducer. This is
the main result linking the parallel rewriting systems (of model (1)) to the two-way
machines (of model (2)). It is then shown which restrictions on the ct—pd transducer
correspond to the above restrictions on the top-down tree transducer. At the end of the
section a comparison is made with several classes of stack automata and macro grammars
considered in [26].

In Section 5 of this paper we consider the closure properties of the classes of languages
defined by the above devices. Apart from the usual AFL and hyper-AFL operations we
investigate closure under two-way deterministic finite-state transducers (and show, for
instance, that the class of ranges of GSD'T mappings is closed under such transducers).

Section 6 contains a discussion of macro grammars which are related to ETOL systems
by their fixed-point characterization [13]. It turns out that the restrictions on the copying
power of ETOL systems is related to both the copying power of the corresponding
macro grammars and the number of arguments of their nonterminals.

Generalized macro grammars may be viewed as a particular kind of bottom-up tree
transducer, equivalent to the top-down tree transducer.

2. PRELIMINARIES

We assume the reader to be familiar with formal language theory [36, 52] and some
tree language theory [57, 58, 59, 21]. In this section we fix some notation and recall some
facts.

For a finite set 4, #(A) denotes its cardinality.

For a string w, | w | denotes its length and alph(w) the set of symbols occurring in w
(i.e., alph(w) is the smallest alphabet 2’ such that @ € Z'*). The empty string is denoted
by A, thus | A| = 0 and alph(}) = @. A language is A-free if it does not contain A.

X ={x;,x,, %;,...} is a denumerably infinite set of variables, X, = @ and, for
n>=1, X, ={x, %5 ,..., ¥,}. In examples we will use %, y, z,... rather than x,, x,, x5,....
For an alphabet X and strings w, € (&' U X,))* and v, ,..., w, € Z* (n == 0), wy[w, ,..., w,]
denotes the result of substituting @ for x; in @, (1 < i < n).

A gsm mapping is a mapping from languages into languages realized by a (nondeter-
ministic) generalized sequential machine (i.e., a finite-state automaton which outputs a
string for each input symbol, as defined in [36]). Similarly, a sequential machine mapping
is a mapping from languages to languages realized by a (nondeterministic) sequential
machine, i.e., a gsm which outputs one symbol for each input symbol. The classes of
regular, linear, and context-free languages will be denoted by REG, LIN, and CF,
respectively.

In the rest of this section we recall some tree terminology. An alphabet X' is ranked if
2 = n-o Zn , where the X, are (not necessarily disjoint) subsets of = such that only
finitely many of them are nonempty. If o € Z,, , then we say that o has rank z. A tree over 2
is either a symbol of rank O or a string of the form o(¢; --* t,), where ¢ has rank # and ¢,
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is a tree over 2 (1 < ¢ << n). The set of all trees over X is denoted Ty, thus T5C
(ZU{(,)*. A tree language over X' is a subset of T5. If ¥ is a set of strings, then
Ts[Y7is the smallest set of strings such that Z, U Y C T5[Y] andif o € X, and ¢; € T[Y]
for 1 <i < m, then o(t; - t,) € T5[Y]. Thus Ty = T5[o].

We shall also employ the usual more intuitive terminology concerning the above-
defined finite labeled ordered rooted trees. Figure 1 displays the tree ¢t = b(aa( f¢) c(d))
over the ranked alphabet 2 with 2, = {a, d, f, g}, 2, = {¢}, 2, = {4} and Z; = {b} (and
2, = @& otherwise). The root of ¢ is the node labeled b. The nodes labeled f and g are
the first and second son of the rightmost node labeled @, and the latter is their father., The
father is connected to its sons by arcs. A path is a sequence of connected arcs. The tree
a(fg) is a subtree of ¢ with (the rightmost) a as root. The nodes labeled 4, f, g, and d are
the leaves of #, and its yield is afgd. The height of # is 3.

Formally, for a ranked alphabet Z, ¢, is a subtree of 2, is #, = ut,v for some u, v €
(ZU{(,))*. The yield and height are defined formally as follows:

(i) for o€, yield(s) = o and height (¢) = 1;

(i) foroeZ, (n>=1),yield(s(t, - £,)) = yield(t,) -~ yield(2,) and height(a(2; **- £,)))
= 1 + maxfheight(z,) | 1 <7< n}.

Thus yield(z) € Zy*. We will often abbreviate “yield”” by “y”.

The reader is assumed to be familiar with the notion of a (nondeterministic) finite tree
automaton [57]. A tree language is recognizable if it can be accepted by a finite tree
automaton. The class of recognizable tree languages will be denoted by REC. For
properties of REC see {57-59, 21]. We only recall that y(REC) = CF. A finite-state
relabeling is a mapping realized by a (top-down or bottom-up) finite tree automaton which
changes the symbols on the tree; it is the tree analog of the sequential machine mapping.
The notions of deterministic top-down and deterministic bottom-up finite-state relabeling
should be clear; more formal definitions will be given in Definition 3.1.7 of Section 3
(see also [18, 19]).

A ranked alphabet X is monadic if £ = %, = 2, and X, = @ for n > 2, ie., each
symbol in X' has ranks 0 and 1 and no other ranks. Trees and tree languages over such
a X are also called monadic. We will identify an unranked alphabet X' with the correspond-
ing monadic ranked alphabet, the monadic tree oy(oy(** 0, 5(0y) **-)) with the string

t g
Fi1c. 1. A labeled tree.
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0,05 *** 0p_30, , and hence Ts with 2+ and tree languages over 2 with (A-free) string
languages over 2. Whenever it does not give rise to confusion, we will identify £ with
& ={L — {A} |L €8} for each class of languages 2. It is easy to see that a class of
string languages is closed under finite-state relabelings (when viewed as a class of monadic
tree languages) iff it is closed under sequential machine mappings. Similarly, a A-free
string language is recognizable (as a monadic tree language) iff it is regular; thus we
identify REG with the monadic recognizable tree languages (modulo A).

We close this section with the definition of a particular operation on tree languages
called insertion of regular languages. Intuitively it generalizes to trees a kind of regular
substitution: above each node of the tree a regular (monadic) tree language is substituted.
The formal definition is as follows. Let 4 be an alphabet and X' a ranked alphabet. Let
XU 4 be the ranked alphabet such that (XU d), =2, U 4 and (ZU 4), = 2, for
n #% 1. For w = §,8, -- 8, € A* and ¢ € T, we denote by w(¢) the tree 8,(8,(--- 8,(2) -*))
over U A. Let for each o€ X, (n > 0) a regular language f, C 4* be specified. The
mapping f from tree languages over X' to tree languages over Z'U 4 is defined by

(i) for aeZy, f(o) = {w(o) |wef};
(i) foroeZ, (n>=1), flolty - 1) = {w(o(t, - .)) | wef, and £ € f(t)};
(i) for LC Ty, f(L) = {f(t) | teL}.

The mapping f is called the insertion of the regular languages f,. If  is a class of
tree languages such that if L €  then f(L) € £ for each such mapping f, then £ is said
to be closed under insertion of regular languages. It is easy to prove that REC is closed
under insertion of regular languages. For monadic tree languages, insertion of regular
languages is a special case of A-free regular substitution. Thus we can say that REG and
CF are closed under insertion of regular languages.

3. ETOL SystEms AND TorP-DowN TREE TRANSDUCERS

In this section we study parallel rewriting systems, in particular the ETOL systems of
[49] and the top-down tree transducers of [48, 56, 9, 18]. Of particular interest to us are
the ET0L languages and the top-down tree transformation languages defined, respectively,
by these two devices. It is well known that the latter class, when restricted to monadic
input tree languages, is equal to the class.of ETOL languages [6, 20]. In the same way
deterministic ETOL systems (or EDTOL systems) correspond to deterministic top-down
tree transducers. o

We will be concerned with putting bounds on the derivations of ETOL systems and
top-down tree transducers. Fhtuitively, these bounds will restrict the copying facility (i.e.,
the number of translations that is made of a subtree) of tree transducers, and correspon-
dingly the amount of parallelism (i.e., the number of “‘simultaneously active’ symbols
during derivations) of ETOL systems. In particular, ETOL systems of finite index
(introduced in [50, 62]) correspond to top-down tree transducers with bounded copying
(discussed in [4]), and metalinear ETOL systems (introduced in [62, 51]) correspond to



TREES, L AND TWO-WAY 155

“metalinear’’ top-down transducers, i.e., transducers that are allowed to copy only in the
first step of their computation. It should be clear that the number of states of a top-
down tree transducer (the number of “active’’ symbols of an ETQL system) is directly
related to its “copying power.”” We will show that restricting the number of states gives
rise to a proper hierarchy of tree transformation languages, with very simple counter-
examples (viz., metalinear ETOL languages). This proves in one stroke that all the
bounded classes which we consider are proper hierarchies with respect to their bounds.
We then show that the properties of determinism, bounded copying, and metalinearity
are increasingly restrictive for tree transformation languages and (independently) ET0L
languages. In particular we state rather general resdlts showing that deterministic tree
transformation languages are not closed under inverse homomorphism, bounded-
copying tree transformation languages have semilinear Parikh sets, and metalinear tree
transformation languages are not closed under Kleene star. As a byproduct we obtain
the fact that £-controlled EDTOL systems (for suitable £, not containing CF) cannot
generate all context-free languages, cf. [14].

This section is divided into three parts. The first part introduces the main notions to
be used in the rest of this section as well as in the rest of this paper. Several already
existing concepts are reformulated here in an attempt to bring forth the similarities
between them. The second part contains the main results of this section whereas the
last part is intended as a bridge between the first two sections,

3.1. Terminology and Definitions

A (nondeterministic) generalized sequential machine can be described by a rewriting
system (a la [42]) with rules of the form g(ox) — wq'(x), where ¢ and ¢’ are states, ¢ is an
input symbol, and w is an output string. Sentential forms of a derivation are of the form
wq(v), where w is the output, ¢ the state, and v the rest of the input at this moment of
time. An application of the above rule consists of replacing g(ox) by wq'(#) (in a sentential
form to which this rule is applied). The translation realized by the gsm consists of all
pairs (v, w)> such that gy(v) % wq,(}), for an initial state g, and some final state g; .
Another way of looking at the rules is by interpreting them as recursive equations; thus
the rule g(ox) — wq'(x) says that the g-translation of a string with first symbol o is equal
to w followed by the g'-translation of the rest of the string. From both points of view
a very natural generalization of the gsm is obtained by allowing any number of translations
(i.e., elements of the form ¢'(x)) to appear in the right-hand side of rules, mixed with
output symbols. For example, a translation of the string 80™r into a"b"fc"d" may be
described by the following rules:

9o(8%) — q1(*) faa(x),
q1(0x) — aqy(x)b, ql(ﬂ:x) — A,
0:(0%) —> cqux)d, gu(r) — N

Such a device, called an ETOL system, is defined formally as follows.

(3.1.1) DerFintTiON. An ETOL system is a construct M = (Q, 2, 4, g, R), where Q
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is a finite set of states, Z is the input alphabet, 4 is the output alphabet, g, € Q is the
initial state, and R is a finite set of rules of the form

q(ox) — wiq1(*) wyGa() *** Wgn(¥)Wppy

withn 2 0;¢,¢1 ., ¢, € Q; o€ X and w, ..., w,q € 4. M is deterministic (an EDTOL
system) if different rules in R have different left-hand sides.

A sentential form of M is a string in (4 U Q(Z*))*, i.e., a string of the form
U Pl('vl) U Pz(‘vz) Uy Pm(vm)um+l with m = 0) Pi € Q’ U e 4* and v € 2*. An ap-
plication of the above rule to a sentential form s, consists of replacing an occurrence of a
substring ¢(ov) in s; (for some v € Z*) by w,q,(v)w, *** Wpq, ()W, , resulting in a new
sentential form s,; this direct derivation step between s, and s, is denoted by s, = s, .
A sequence of direct derivation steps s, = s, = '+ = s, is called a derivation and is
denoted by s, & s, .

If in a sentential form s, = w;, p;(v1)¥y *** Uy, Pl V)b all pi(v;) are rewritten simul-
taneously, by application of a rule to each of them, resulting in a new sentential form s, ,
then we have a parallel derivation step, denoted by s; =, s, . Parallel derivation is denoted
by & .

The translation realized by M is {(v, w) € Z* X 4* | g)(v) % w} and the language
generated by M, denoted by L(M), is the range of this translation, i.e., L(M) = {w e 4* |
go(v) & w for some ve 2*}. ||

We denote by ETOL and EDTOL the classes of languages generated by ETOL and
EDTOL systems, respectively.

One should observe that parallel derivation is equivalent to the ordinary one, i.e.,
¢o(v) &, w iff go(v) & w. Parallel derivation has the advantage that each sentential form
obtained by it has the form ; py(v) w, pa(v) *** Wy Pr(¥)Wy4q , indicating precisely the
output corresponding to an initial piece of input processed so far and the states with
which the rest of the input, 7, is to be translated. Thus in a parallel derivation one can
keep track of the rest of the input separately. This also shows the equivalence of the above
definition of ETOQL system with the original one [49, 50]: the elements of Q are usually
called active symbols (or nonterminals), elements of 2 are the tables, those of 4 are the
nonactive symbols (or terminals), g, is the axiom {or initial nonterminal), and the elements
of R determine the rules in the tables of the ETOL system; to the rule displayed in
Definition 3.1.1 corresponds the production g — w,¢,%,Gs *** W,g,@Ws4, in table o (and
moreover, each table contains rules a — a for all ae 4). A more formal proof of the
equivalence of the above definition to the usual one is left to the reader (cf. Theorem 1
of [507).

In ETOL systems additional generative power can be gained by controlling the deriva-
tions of the system by a control language out of some class of languages, see [29, 7]. In
our version of ETOL systems this amounts to considering the image of a class of languages
under ETQL translations.

(3.1.2) DeFiNiTION. Let € be a class of languages. An Q-controlled ETOL system (or
L-preset ETOL system) is a pair (M, L), where M = (0, 2, 4, ¢,, R) is an ETOL
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system, L C2*, and Le & (L is the control language). (M, L) is deterministic (an 2-
controlled EDTOQL system) if M is deterministic. The language generated by (M, L) is
M(L) = {we 4% | g(v) & w for some vel}. |

ETOL(L) and EDTOL(R) denote, respectively, the classes of languages generated by
L-controlled ETOL and EDTOL systems.

Note that, due to the form of the rules of an ETOL system, the control string A never
produces a derivation. Hence M(L) = M(L — {A}) and ETOL(2) = ETOL(L’), where
& ={L-{}|Leg}

We now define a number of restrictions on (controlled) ETOL systems, obtained by
putting bounds on the derivations in these systems.

(3.1.3) DeFiniTION. Let L€ 8 be a (control) language, (3,L) an L-controlled
ETOL system, M = (Q, 2,4, ¢y, R), and £ > 1 an integer. Consider a parallel

derivation

. - — *
D,,.qo('v)-—‘wlf‘wg?wsf ?wnmwed.

D, has state-bound k if for every ¢ (1 <C ¢ < n) the number of different states that occur
in w; is at most k. Thus when computing the state-bound of a derivation we do not
count multiple occurrences of the same state in a sentential form. Note that every deriva-
tion in M has state-bound #(Q) trivially. The parallel derivation D, is of index k (or,
has copying-bound k) if each w; contains at most k occurrences of states. Thus in the case
of copying-bound all occurrences of states in a sentential form are taken into account.

(M, L) has state-bound % {is of index &} if for every w € M(L) there exist veL and a
parallel derivation go(v) %, w with state-bound & {of index k}. (M, L) is finite index (or
finite copying) if (M, L) is of index k for some k. The same terminology holds for M if it
is true of (M, Z*); note that M(2*) = L(M).

M is k-metalinear if (1) g, does not appear in the right-hand sides of rules of M and (2)
for each rule g(ox) — wyqy (%), -+ Wgn(X)w, 41 if ¢ = gy then n < k and if ¢ 5~ ¢, then
n < 1. (M, L) is k-metalinear if M is; M and (M, L) are metalinear if M is k-metalinear
for some k. ||

The classes of languages defined by the systems in the previous definition are given
the same names. “Finite index’’ and “‘metalinear’’ are denoted by the subscripts “FIN"’
and “m!”’ respectively. Bounds are indicated by the subscript “(k).”” Thus the classes of
L-controlled state-bound k%, index %, finite index, k-metalinear, and metalinear ETOL
languages are denoted by ETOL (L), ETOL (), ETOLgN(L), ETOLm1y(£), and
ETOL (L), respectively. The uncontrolled classes are obtained by dropping (£) and in
the deterministic case “D’’ is inserted between “E’’ and “T” in the above names. Note
that ETOLml(k)(Q) C ETOLFIN(,C)(Q) C ETOL(,C)(Q).

The notions of index and metalinearity for ETOL systems were introduced in [50, 51,
62]. It can be shown easily that the absolutely parallel grammars of [45] are equivalent to
ETOL systems of finite index, cf. [62]. The equal matrix grammars of [54] are a special
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case of metalinear ETOL systems (see also [37]). The notion of state-bound is introduced
in this paper. Its naturalness is apparent in particular for EDTOL systems: state-bound
k means that of each suffix of the input string at most % different translations are made
(which may each occur more than once in the output string).

We note that under very weak conditions on £, the 2-controlled ETOL systems defined
here are equivalent to those in the literature [29, 7]; it is sufficient to require closure under
right-marking (i.e., if L €  and b is a new symbol, then Lb € ) to account for a “final
table’’ (see the proof of Theorem 1 in [50]) or preferably closure under (nondeterministic)
sequential machine mappings, to change the last symbol into a new one (so that it can act
as a “final table™).

(3.1.4) ExampLes. (i) The rules mentioned just before Definition 3.1.1 define a
2-metalinear ETOL system.

(it) Consider the ETOL system M = (0,2, 4, ¢,, R) with O ={g,, ¢, ¢=}
2 ={a, 1,8}, 4 ={a,b, ¢, #} and R consisting of the rules

Go(0x) — qy(x) g5(%), go(0%) — A,
¢(7x) — agy(x)b, g(ox) — A, q,(8x) — A,
ga(7%) = cq5(x),  galow) —> H@(x) ¢a(x),  9(Sx) > #.

M translates o7™Mar™ **+ o7™3 INto @™bMc™ H atebacts ff o H a™rbc™ J#; for instance

qo(o77078) = gy(77078) gy(T70OTS)
= agy(7078) begy(ro7d)
= a%q,(078) bicgy(o7d)
= a®bc*#q\(8) gy(78)
a*b%c%#aq,(8) begy(3)

= a*bc*fabc#.

4

It is easy to see that M is an EDTOLyn() system generating the language L(M) =
{ambne™ # | n > 0)*.

(iif) 'The language {we{a, b}* | | w| = 2" for some n > 0} is generated by the
ETOL system M = ({g,}, {o, 7}, {a, b}, q,, R) with rules gy(ox) — go(x) go(%), go(7x) — a
and gy(rx) — b. M has state-bound 1 and is, therefore, and ETOL ,, system.

The language {we{a, b}* | | w | = 22* for some n > O} U{we{c, d}* | |w| = 22»1
for some n > 0} is generated by the ETOL,, system with the following rules.

go(0x) = g(%) qu(x), go(7%) — a, qo(r%) —> b,
g(ox) = %) golx),  @(mx) >, gylrx) > d.
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The language {w € {a, b}* | | w | = 2*" for some 7 > 0} is generated by the EDTOL-
controlled ETOL system (M, L), where M was defined above and L = {o®'r | n > 0}. |

We now consider tree transducers. The top-down tree transducer may be viewed as a
generalization of the gsm to trees [56], and in fact, it can be defined even as a generalization
of the intermediate concept of ETOL system, cf. [20, 18). In this paper we will be in-
terested mainly in transductions of trees into strings, thus making the similarity to
ETOL systems even stronger.

(3.1.5) DEeFINITION. A top-down tree-to-string transducer (abbreviated as “yT trans-
ducer”’) is a construct M = (Q, 2, 4, ¢, , R), where Q is a finite set of states, 2 is the
ranked input alphabet, 4 is the output alphabet, g, € Q is the initial state, and R is a finite
set of rules of the form

q(o(xy -+ x)) — wﬂl(‘"'il) wzﬂz(xiz) wn%(xi,,) Wpt1

withn, 2 > 0;¢,¢,,.., g€ Qs 06X 0y sy Wy €4%,and 1 <4, < hkforl <m<n
(if £ = O then the left-hand side is g(c)). M is deterministic if different rules in R have
different left-hand sides. M is linear if, for each rule in R, no x; occurs more than once
in its right-hand side. M is A-free if A is not the right-hand side of any rule in R.

A sentential form of M is an element of (Q(Ty) U 4)*, i.e., a string of the
form u, py(t,) 4y pofts) " Uim Pm(tmYbmyy With m =0, p,€ O, u;e 4* and t;e Ty . For
sentential forms s, and s, we write s; = s, if 5, is obtained from s, by replacing a substring

g(o(t, -+ ), for certain #; ,..., t; € T, by wygi(2;) wags(ts) *** Wagn(t; )Wnyy , using the
rule above. As usual, % is used to denote derivations. The (tree-to-string) translation

realized by M, also denote by M, is defined by M = {(t, wd € Ty x 4* | qo(t) & w}. ||

In this paper we will be interested in the ranges of yT transducers and, more generally,
the images of a class of tree languages under these transducers. The practical motivation
of this approach is the syntax-directed translation of context-free languages (or other
languages), see [48, 4].

(3.1.6) DeFintTION.  Let £ be a class of tree languages. A top-down L-tree transformation
system (or an Q-preset yT transducer) is a pair (M, L), where M == (Q, 2, 4, ¢, R) is a
T transducer, L C T and L € &. (M, L) is deterministic {linear} if M is. The language
generated by (M,L) is M(L) = {we 4* | g,(t) & w for some teL}. M(L) is called a
top-down Q-tree transformation language. If L is clear from the context, then we drop £
in this terminology. In (M, L), L is called the input language. |

The class of {deterministic} top-down tree-to-string transducers, and the class of
translations they realize will both be denoted by yT {yDT}. The class of {deterministic}
top-down {-tree transformation languages will be denoted by yT(8) {yDT(8)}. The
reason for the “y’’ is that the £-tree transformation languages are usually defined by
taking the yield of the tree languages which are images of £-tree languages under con-
ventional top-down tree transducers [48].
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(3.1.7) DEFINITION. A top-down tree transducer is a top-down yT transducer M =
(0,2, 49U{(, )} g, R) such that 4 is a ranked alphabet and if g(o(x; - x3)) —> v isin
R, then v € TJQ(X,)]. M is a (top-down) finite-state relabeling if all rules in R are of the
form g(o(x, - x)) — (qu(%y) " g{x)) for o€ X and 7€4d,. M is a (top-down)
finite tree automaton if ¥ = A and all rules in R have the above form with = = ¢. The
deterministic and linear cases are defined as in (3.1.5).

A finite-state relabeling is said to be deterministic bottom-up if, for given ¢, ,..., g, € O
and ¢ € X, , there is at most one rule of the above form in R (and moreover the transducer
is allowed to have more than one initial state). ||

Note that REC is the class of all domains of finite tree automata. It is known that REC
is closed under linear tree transducers [56, 21].

By dropping “‘y”’ from the name of a class of top-down tree transformation languages
we obtain the name of the corresponding class of tree languages. Thus DT(£) denotes the
class of images of L-tree languages under deterministic top-down tree transducers. It
should be clear that this is a class of tree languages. It is straightforward to show that
for each A-free M € yT there is an M’ € T such that M = {<¢, , yield(#,)) | {t; , t,p e M'},
and vice versa. The same holds for yDT and DT. Moreover, if £ is closed under finite-
state relabelings, then yT(L) = yield(7(L)) and yDT(L) = yield(DT(L)) [19 (Corollary
4.5)].

There is a close relationship between yDT(REC) and the generalized syntax-directed
translations (GSDT) of [4, 5]. Suppose that the recognizable input tree language of
a top-down tree transformation system consists of derivation trees of a context-free
grammar, such that the nodes of a derivation tree are labeled with the rules of the gram-
mar, see [4]. Let o denote the context-free rule 4 — ©v,B,9,B, -~ v, B0, , where
A, B, ..., By are nonterminals and v, ,..., v, terminal strings. A rule g(o(x, - %)) —
wyy(%;,) *** WnGn(®; }wnyy of the yT transducer corresponds then to the semantic rule
To(A) = wyro (By) *** wyty (By Ywnyy associated with the rule o (for notation see [4]).

Using the fact that each recognizable tree language is a projection of the set of derivation
trees of a context-free grammar [58] it is easy to show that the class of (string-to-string)
GSDT is equal to the class of all translations {(yield(z,), ;> | (¢, , w,> € M and t, €L},
where L € REC and (M, L) is a deterministic top-down tree transformation system.
Hence yDT(REC) is the class of ranges of GSDT. Also, yT may be viewed as the ap-
propriate nondeterministic version of GSDT.

We now want to introduce bounds on the derivations of yT transducers, as was done
in the case of ETOL systems. In order to do so we need the concept of state-sequence of
a derivation at a node of the input tree. Intuitively, it is the sequence of states in which the
transducer starts to translate (the left-to-right sequence of copies of) the subtree which
has the given node as root. Another way of looking at this concept (before formally
defining it) is the following. Consider a derivation gy(t) % w of M € T and a node d in
the input tree t. Take #, € Ts[{x}], with a single occurrence of x, and £, € T’ such that
t = ,[t,] and d is the root of £,; see Fig. 2 (recall that #,[#,] is the result of substituting #,
for x in ;). Now delete from the original derivation all the derivation steps which operate
on t,. The new derivation, keeping #, untouched leads to go(t) & w,q,(t)ws" * Wnqn(t2) W1 »
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)

F1c. 2. Tree with subtree.

such that if g,(t,) % v, by those derivation steps which were deleted, we have w =
WD, Woly *** WyUpWy,yq - Lhe state-sequence of the original derivation at the node d is
then<q, , 45 5-.., g,>. Thus v, ,..., v, are the translations made by M of the given subtree,
and the ¢, indicates what kind of translation v; is. We shall also need the rule-sequence of
the derivation at d. It is the sequence <{r, ,..., r,,>, where r; is the first rule applied in the
derivation g,(#,) & v;. A more precise formal definition follows.

(3.1.8) DerFINITION. Let M = (Q, Z, 4, g, , R) be in y7, let o: g(t) % w be a deriva-
tion of M withge Q, t € Ty, and w € 4*. Let d be a node of t. The state-sequence of o at d
is a sequence {¢; ,..., ¢, of states of M (m > 0) defined recursively as follows.

(i) Ift = o€ Z,and dis the unique node labeled by ¢, then the state-sequence of «
at d is {g}.

(i) Assume ¢t = o(t, *** t;), €2y, k > 1. If d is the root of ¢ then the state-
sequence of « at d is {¢>. Now let d be a node of ¢; for some 7, 1 < ¢ < k. Consider the
first step of the derivation a: q(a(t; *** #)) = 7[t; yo-e 1] & w, where g(o(x; =+ x;)) — 7
is in R. If »; does not occur in r, then the state-sequence of « at d is empty. Assume now
that x; occurs in 7 and let » = wu,q,(x;) sq5(%;) *~ %G, (X )pyy With 2 2> 1 and u; €
(4 U O(X;,, — {x3))*. It should be clear that there are unique derivations o;: ¢,(;) % v;
(1 <j < n) which are a “part” of the derivation rt, ,..., ;] & w. Let 5; be the state-
sequence of «; at d. Then their “concatenation’ ss, *** s, is the state-sequence of « at d.

If {gy ,.-» gmy is the state-sequence of « at node d, then {g, ,..., ¢,,} is called the state-set
of xatd.

The notion of the rule-sequence of the derivation « (above) at node d is defined similarly.
In fact, in case (i) above, and in the “‘root-case’ of (ii), the rule-sequence consists of
the first rule applied in the derivation. If the state-sequence of « at d is empty then so is
the rule-sequence. In the nontrivial case let 7; be the rule-sequence of o; at d. Then, as in
the case of state-sequence, the rule-sequence of x at disryry - 7, . |

In this definition we have used the obvious fact that if w,q,(¢,)w, *** gu(tn)Wnsa = w
(for some w, w; € 4%, ¢;€ Q and t; € T) then there are unique derivations g,(t;) % v;
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such that w = wyv,w, - v,w, , and the latter derivations are “part’’ of the original one
in the sense that some reordering of them is precisely the original derivation.

We note that if the rule-sequence of a derivation « at node d labeled o is known to be
Py s T peey Ty With 7; = gi(o{x, -** %)) — #; , then the state-sequence of the 7th son
of din ais {Py .., Py if po(x;), Po(#,),..., P(¥;) occur in this order in wu, - u, , and
there are no other occurrences of x; . The possible rule-sequences at the ith son are then
all {ry, 7;,..., 7,,> such that r; is a rule for p; . It should be realized that in special cases
the rule-sequences (and state-sequences) can be computed by a top-down finite tree
automaton.

We are now ready to define the restrictions on y7" transducers.

(3.1.9) DerintTION. Let M = (Q, 2, 4, g5, R) be in yT, and let £ > 1 be an integer.
A derivation a: g(t) & w has state-bound k if, for each node d of t, the cardinality of the
state-set of o at d is at most &; o has copying-bound k if, for each node d of ¢, the length of
its state-sequence at d is at most k.

Let L be a tree language. (M, L) has state-bound % {copying-bound £} if for each
w € M(L) there exist ¢ € L and a derivation g,(¢) £ w with state-bound % {copying-bound
k}. Note that (M, L) has state-bound #(Q) trivially. (M, L) is finite copying if it has
copying-bound % for some k. The same terminology holds for M if it is true of (M, T¥).

M is k-metalinear if (1) g, does not appear in the right-hand sides of rules of R and (2)
for each rule g(a(x, -~ x;)) — #in R, if ¢ = ¢, then, for each 7, the number of occurrences
of x; in u is at most %, and if ¢ 5% ¢, then this number is 0 or 1. M is metalinear if it is
k-metalinear for some k. (M, L) is (k-) metalinear if M is. ||

Finite copying and metalinearity are denoted by subscripts “fc’’ and “ml’’ respectively.
Bounds are indicated by subscripts “(k).”” Thus the classes of state-bound %, copying-
bound %, finite copying, k-metalinear, and metalinear top-down L-tree transformation
languages are denoted by yT,)(2), ¥T1ew(L), ¥T1e(L), ¥ Tm1) (L), and yTmi(L), respec-
tively. Observe that yTmiy(L) C y¥Trem(8) C¥Tw)(L). Also note that yTyeq) (L) =
¥Tm1y(L) is the set of images of L-tree languages under linear yT transducers. Finally
it can easily be shown that if £ is closed under finite-state relabeling then yDTq)(€) =
yHOM(R), where HOM is the class of tree homomorphisms [18].

The notion of finite copying was first investigated in [4]; yD Ty, corresponds to those
GSDT for which S; is in I'®, in the terminology of [4]. Metalinear top-down tree
transducers are an obvious extension of linear top-down tree transducers; they are
the simplest kind of copying device of this type (compare with the metalinear extension
of linear context-free grammars [52]). The notion of state-bound is (as in the ETOL
case) most natural for deterministic transducers: state-bound % means that at most k&
different translations are made of each subtree of the input tree. Note also, that in the
deterministic case any node in the input tree has a unique state-set, state-sequence, and
rule-sequence associated with it.

(3.1.10) ExampLEs. (i) Let G be a context-free grammar and let L = {$() | ¢ is a
derivation tree of G}; then L € REC. Consider the top-down yT transducer M = ({g, , ¢,}
2, 4, gy, R), where X is the ranked alphabet from which the derivation trees of G are
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constructed, together with the new symbol $ of rank 1, 4 is the set of terminals of G
together with the new symbol #, and R consists of the rules

2o($(=)) — qu(*) # 9u(%),
Qo+ %n)) = qu(®) = (%) forallo #§,
¢(0) —> o foralloe ;.

Then M is a deterministic, 2-metalinear y T transducer, and M(L) = {w # w | w e L(G)}.
By identifying ¢, and ¢, we obtain M’ e yDTy, with M'(L) = M(L).
(ii) Consider the yT transducer M = ({¢,, ¢ » 92}, {0, 7, 8}, {a, b, ¢, d}, g5, R) such
that o, 7 and § have ranks 2, 1, and 0, respectively; R consists of the rules

go(o(xy)) — @1(*) 90(¥) 9o(%), 90(8) — A,
@(m(*)) > aqu(x)b,  @:(8) > A,
ga(7(%)) — cgo(x)d, 2(8) — A.

M translates a tree of the form o(7™1(8) o(7"3(8) *-* o(7"*(8) 8) *+-)) into the string a™b™am2b"
oo guehricnide <o chad™c™md™. The state-sequence at each node labeled o and at the
rightmost 6 is {g,; at each node labeled r and all other nodes labeled § the state-sequence
is (g, , go>- Thus, if L consists of the above trees, then (M, L) has copying-bound 2 and
M(L) € yD T REC).

3.2. Results

We show first that recognizable input tree languages are not needed, meaning that in
the case £ = REC we may consider ranges of transducers in y7, rather than y T(REC).
The reason that we keep considering recognizable input languages, apart from the
motivation of syntax-directed translation, is that their presence facilitates proofs.

(3.2.1) TuEOREM. For each top-down tree transformation system (M, L) with L € REC,
there exists a top-down yT transducer M’ such that M(L) = M'(Ty), where X is the input
alphabet of M'. The construction involved preserves determinism, state-bound, copying-bound,
metalinear bound, and monadicness of the input alphabet.

Proof. We note first that it may be assumed that L is the domain of a deterministic
top-down finite tree automaton. Indeed, by standard arguments it can be shown that each
recognizable tree language is the projection of the domain of such an automaton; the
projection can then be incorporated into the transducer M while preserving all the
mentioned properties.

Let M = (Q,2,4, ¢y, R),and let A = (P, 2, 2, p,, R,) be a deterministic top-down
finite tree automaton with domain L. We may assume that for each p € P there exists
t € Ty such that p(t) % ¢ by A4 (if not, we just delete from R, all rules which involve p).
We now construct M’ = (Q X P, 2, 4,{qy, po), R') as follows:

571/20/3-4
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(i) if glo(x, -+ %)) —> wigs(*s) " Wngn(*; J0nsa is in R and plo(x, - %)) —
o pulxr) =+ prlxr)) is in R, , then (g, pX(o(x; ** &) = wi{qy , Ps D(%:) =" @nldn» pi ) X
(%; Jwy isin R'.

(i) if g(c) — wis in R and p(¢) — o isin R, then {g, p)(¢) — wis in R'.

M’ simulates M and simultaneously checks whether the input tree is in L. It may happen
that M does not visit a subtree ¢ of the input tree. In such a case the checking of # cannot
be done by M'. However, we know that A4 arrives at the root of £ in a certain state p.
Replacing ¢ by ' such that p(¢') % ¢’ in A, gives an input tree in L with the same com-
putation as that of M on the original input tree. It is left to the reader to prove formally
that M'(Ts) = M(L).

Because A is deterministic (nondeleting and noncopying), determinism and all the
mentioned bounds are preserved. The latter follows from the observation that if {(¢,,...,¢,>
is the state-sequence of some derivation of M at a certain node, and if A arrives at this
node in state p, then the corresponding state-sequence of M is {{g; , p>s., {qn, o> 1

We show now that £-controlled ETOL systems are the “monadic case’’ of the top-
down L-tree transformation systems (as already shown in {6, 20] for the uncontrolled
and unbounded classes).

(3.2.2) TuEOREM. If € is a class of languages closed under sequential machine mappings,
then yT'(L) = ETOL(R). Also, ETOL = ETOL{(REG) = yT(REG). The constructions
preserve determinism, state-bound, copying-bound (= index), and metalinear-bound.

Proof. To be precise, the theorem should say that yT(2') = ETOL(2) = ETOL(®),
where € = {L — {A} | L € 2}. In what follows we assume that the languages in € are
A-free. To show yT(2) C ETOL(R) let L € £ be a language over the monadic alphabet »
and let M = (Q, 2, 4, q,, R) be in yT. Since £ is closed under sequential machine
mappings we may assume that X, N 2, = . Construct an £-controlled ETOL system
(M, Lywith M" = (Q, Z, 4, g5, R") with R’ defined as follows. If ¢(a(x)) — 7 or g(c) — 1
are in R then g(ox) — 7 is in R'. Then M'(L) = M(L).

For the special case & = REG, it follows from Theorem 3.2.1 that we may assume that
L = Ty (recall that for monadic L, L € REG iff L € REC). Hence M(L) = M'(Z}Z). It
is easy to see that M'(Z}2) = M’'(Z*) = L(M’), and hence M(L) € ETOL. This shows
that yT(REG) C ETOL.

To show ETOL(L) C yT(L) let (M, L) be an L-controlled ETOL system with M =
(0,2, 4, ¢y, R). Construct M" = (0, 2, 4, gy, R') in yT such that 2, = 2, = %, if
g(ox) — r is in R then ¢(o(x)) — r is in R, and if g(ox) — w is in R with @ & 4* then
g(o) — wis in R'. Then M'(L) = M(L).

It should be clear that both constructions preserve all the properties mentioned in the
theorem. In particular, the sequences of states in the sentential forms of a parallel deriva-
tion in an ETOL system are precisely the state-sequences at the corresponding nodes of
the input. Therefore, state-bound and copying-bound (= index) are preserved. ||

We note that Theorem 3.2.1 is a generalization of the well-known fact [7, 29] that
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regular control does not increase the generative power of ETOL systems (in the monadic
case the recognizable input languages correspond to regular control).

Another observation is that yDT(REG), i.e., EDTOL by Theorem 3.2.2, is equal to
the class of ranges of those GSDT whose underlying CF grammar is linear. In fact, the
derivation trees of linear CF grammars (in the way derivation trees are defined in [4]) are
monadic. Thus ETOL may be viewed as the class of languages which may be obtained
from linear CF grammars by nondeterministic GSDT.

The next theorem shows that the language generating power of finite copying and
metalinear transducers is not affected by nondeterminism. This is a generalization of
Lemma 2 of [50]. Informally, the idea is that the nondeterminism of the tree transducer
can be transferred to the input tree language by means of a (top-down) finite-state
relabeling; the reason that this can be done is (precisely) the property of finite copying.

(3.2.3) LeMMA. Let R be a class of tree languages closed under finite-siate relabelings.
Then for every k = 1 yTteq(£) = yDTre(n(2) and yTmw(L) = YD Tmia(L)-

Proof. Follows from Theorem 4.9 and (to avoid repetition) is not presented here.
We only remark here that the proof for the monadic case (Lemma 2 of [50]) can easily
be generalized. ||

We note here that it may even be assumed that all derivations of a bounded (i.e.,
either finite copying or metalinear) deterministic y7" transducer M are bounded. In fact,
it is easy to modify M so that its state keeps track of M’s state-sequence at the node of
the input tree at which it arrives (see remarks following Definition 3.1.8) and rejects the
input tree if there is a state-sequence longer than the given bound. In the monadic case
this corresponds to Theorem 2 of [50].

From Lemma 3.2.3 it follows that under appropriate conditions on £, yTm)(2) C
YThe(L) C yDT (L) C yT)(L). The diagram of Fig. 3 shows the classes of languages
discussed so far (written without the bound) for £ = REC and £ = REG. The same
diagram holds for all £ > 2 (just add subscript (%)). It is left to the reader to imagine the

YT (REC)
¥DIT (REC)
/
YT g (REC) ETOL
YT, (REC) /E"“’L
\ 2N

F1c. 3. Classes of tree transformation languages.



166 ENGELFRIET, ROZENBERG, AND ‘SLUTZKI

full “3-dimensional’’ diagram in which the k-bounded classes appear on the Ath “level”
with their “limit classes’’ above.

In [4] Aho and Ullman investigate a hierarchy of top-down tree transformation systems
between yTio(REC) and yDT(REC). They consider the length of the state-sequence at
a node d as a function of the distance, #, of d to the root of the input tree, and they show
that this function is either a polynomial in #, i.e., a function of the form & - n™ (for some
k > 1, m > 0), or an exponential, that is 2" (for some % >> 2). They conclude that if,
for a tree transformation system (M, L), there exists a linear relationship between the
number of nodes of the input tree and the length of the output string, then there is an
equivalent tree transformation system (M’, L') such that M’ is finite copying. Since their
definitions and proofs preserve monadicness, the same remarks can be made concerning
ETOLg,y and EDTOL. In fact there is a close connection between the above hierarchy
and the recently investigated ETOL systems “with rank’’ [16].

We shall now busy ourselves with proving the correctness of the 3-dimensional version
of the diagram of Fig. 3.

We start by showing that all the discussed bounds give rise to proper hierarchies in
all the classes appearing in the diagram. This will be made possible by an appropriate
refinement of the intercalation lemma for yDT(REC) of [44], cf. also Lemmas 4.2 and 5.6
of [4].

(3.2.4) THEOREM. Let & > 1 be an integer. For each L € yDT(REC) there exists
an integer p such that for all 2 ¢ L with | z | = p there are strings 2, ,..., 2, and Xy ..., X,y
(s = 1) such that = = x,2,%,2, *** 23X, and the following conditions are satisfied.

iy O<|z|<pforalli,l <i<s;
() #l=11<i<$) <k
(iii) for every integer N there exist strings v, , Uy ,..., U, such that

Jor v = %, 0,050, - XU X,
(a) vel,
(b) 2| =N,
(c) alph(;) = alph{z,) for 1 <1 <,
(d) iof 2, = z;thenv;, = v; for | <4,j
(iv) if moreover L € yDT1c)(REC), then s

55

<
< &

Proof. The proof is a slight modification of the proof of the intercalation lemma of
[44]. The basic idea is the following. If the input tree is sufficiently large, then it has two
nodes (on one path) with the same state-set and the same label. Consequently the part of
the input tree between these two nodes, together with the associated computations of
the transducer, can be repeated indefinitely. In order to be sure that the length of the
output string will then grow, we need several assumptions about the transducer and its
input language (see [65]).

LetL = M(L') with L' € REC and M € yDT, . First we may assume (modulo 2) that
M is Mfree. In fact, we can put the information whether ¢(f) & A by M, at the father
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node of the root of each subtree ¢ of the input tree (for each state g). Since for Ne yT
the tree language N-1(A) is recognizable (cf. [43, 19]), this results in a new recognizable
input language. Using the extra information we can remove ¢(x;) from the right-hand
side of a rule of M whenever g translates the ith subtree into A. Now (the new) M just
skips those subtrees which would otherwise be translated into A. The construction
clearly preserves determinism, state-bound and copying-bound.

Second, we may assume that A/ visits each node-of an input tree in L', i.e., that the
state-set at each node is nonempty. In fact, applying a top-down finite-state relabeling,
the state-set at each node may be added to the label of the node (again, see the remarks
following Definition 3.1.8). Then a linear deterministic bottom—up tree transducer [18]
can be used to delete all nodes with empty state-set from the trees of L’ (and to put
information at the father node which of its sons was deleted). It is easy to adapt M to
this new (recognizable) input tree language. Clearly (the new) M visits all nodes of the
(new) input trees. The construction presetves determinism, state-bound, copying-bound,
and A-freedom.

Third, we may assume that there are no .‘“‘useless monadic nodes’’ in the input trees
(anode d of atree t €L, labeled by a symbol ¢ of rank 1, is called useless if for each state ¢
in the state-set of d the applied rule is g(a(x)) — ¢'(x) for some state g').

In the input tree we replace each sequence 4, ,d,,..., d, , d,,; of nodes in which
d, , dy ,..., d, are useless monadic nodes but d,,,, is not (and d;., is the son of d;), by the
single node 4, ,; of which the label r is replaced by {r, f>, where f is the state-transforma-
tion function obtained in an obvious way from the rules g(o(x)) — ¢'(x) of the useless
nodes d, ,..., d, . This change results in a new recognizable input tree language (as it
can be realized by a linear top-down tree transducer). Now M is changed such that it has
a rule g(¢r, f)(+++)) — 7 if it originally had a rule f(g)(=(:*)) — r. Note that d,,, has the
same state-sequence as d; had. The construction preserves determinism, state-bound,
copying-bound, A-freedom, and the nonemptiness of state-sets.

Finally we may assume that all computations of M are k-bounded (cf. the remark
following Lemma 3.2.3) and that L’ = T, where Z'is the input alphabet of the (final) M,
the latter following from Theorem 3.2.1 the proof of which clearly preserves all the
mentioned properties.

Let M = (Q, Z, 4, gy, R), let b = #(Z) - 2¥* (or more precisely, because of multiple
ranks, b = Y _o #(Z,) - 2¢") and let p be an integer larger than the length of each w € 4*
such that ¢(¢) % w for some ge Q and te T of height < k. We show now that the
theorem holds with this p. Consider z €L with | 2| > p. Then g,(t) % = for some # of
height > A. Consider a subtree £, of ¢ of height 4 and a longest path = from the root 4,
of £, to a leaf. Let the state-set at d;, be {q, ..., ¢}, m << k. For each node d on the path =
we can consider, first its label, and second the sequence {Q; ,..., Q,,> of subsets of O such
that U {Q; | 1 <7 <C m} is the state-set at d, and Q; is the state-set at d obtained from
the derivation that starts with g,(z,).

Since k = #(X)(2%)*, there exist two nodes d; and d, on = with the same label (of the
same rank) and the same sequence {Q, ,..., O,.>. Let t, be the subtree of ¢ with root d,
and let ¢, € Ty[{x}] have exactly one occurrence of x such that #,[,] is the subtree of ¢
rooted at d; . The situation is displayed in Fig. 4.
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Fic. 4. Tree t with subtrees £, , £,[t;], and £, .

It is now possible to repeat ¢, in the input tree an arbitrary number of times (i.e.,
t,[t,] is replaced by #,[£,{t,]], #,[t:[t,[2]]]), etc.). Let the state-sequence at dybe {p;, Py ...,
ps>. Then z = x;23,%,2, *** 2%, with p(t;) & z;. Since #, has height &, | z;| < p;
since M is A-free, | 2, | > 0; since M visits all nodes, s 2> 1; and since M is deterministic,
#({z:11 <i <s}) =m <k If M has copying-bound %, then s < k. Repetition of
the tree ¢, results in a derivation of M in which 2, ,..., 2, are changed, but such that the
alphs of the new pieces are precisely identical to the alphs of the corresponding 2,’s.
This is due to the fact that the state-sets at d; and d, are the same for each derivation
pite) & =;. Also, if 2; = 2; then the corresponding “pumped’ pieces are equal. It
remains to show that repetition of #, results in arbitrary long output strings. Let Q) =
U {0; |1 < ¢ < m} be the state-set at 4, and d,, and let Q) = {r, ,..., r,,}. Consider all
subderivations 7,(2,) % w; of gy(f) % 2, with w, € (4 U Q(x))*. If at least one w, contains
an element of 4, then clearly each repetition of ¢, produces at least one more output
symbol. Now suppose that all w; are in Q(x)*. It at least one w; contains more than one
element of Q(x), then repetition of #, will lead to arbitrary long sequences in Q(x)* at
the level of d, and hence to arbitrary long output strings. Now suppose that all w; are
in Q(x). Then (since M visits all nodes of t) ¢, is a monadic tree. This, however, implies
that d, is a useless monadic node, which contradicts our assumption on M. |

We now use this intercalation theorem to prove the properness of the hierarchies of
Fig. 3.

(3.2.5) 'THEOREM. All classes of the diagram of Fig.3 are proper hierarchies with
respect to state-bound or copying-bound (as appropriate). In particular, the language L, =
{a;"a," - agy, | n = 0} is in ETO0Lmig but not in yT,_1(REC), for k = 2.

Proof. 'To see that L, € ETOLmi) consider the EDTOL system with rules
qo(a%) = u() ga(%) ** q(),
4i(bx) — @gi19i(%)ay; for 1 <i<k
gicx) — A for 1 <<i<k
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Clearly the system is k-metalinear and it generatesL;, . Assume now thatL; € yT_;)(REC).
In [24] it is shown that if L € yT(REC) and L has property (P2), defined there, then
L € yDT(REC). It can easily be checked that the construction presented in [24] preserves
the state-bound; and since L, has property (P2), it follows that L, € yDT,_;(REC). Now
Theorem 3.2.4 can be applied. Let 2 = ,%a,? -~ af, €L, . Then 2 = x,2,:,2, =+ x,2,%,,,
with | 2; | <C p. Since there are at most k — 1 different 2; and | 2; | < p, it follows that
at most 2k — 2 different a; occur in 2y ,..., 2, . Hence there is some a; that does not occur
in any of the z;. Thus, when “intercalating,”’ the a;? stays as it is and no new g; is in-
troduced (by the fact that the alphs remain the same). It follows that the number of g,
in the stfing remains p, which is a contradiction. ||

Note that the theorem holds also for {@,® -*- a3;_, | # > 0} instead of L, . Note also
that if we take ab*c as the input language to the EDTOL system of the above proof, then
g can be identified with, say ¢, . Consequently, L, can be defined by a top-down tree
transformation system with exactly & states. If we call (M, L) with M = (Q, Z, 4, ¢, , R)
and #(Q) < k an “s(R) system,” then Theorem 3.2.5 shows that yT';(REC) and
yDT ;)(REC) are proper hierarchies (as are ETOL ;) and EDTOL,, if we allow regular
control; alternatively we could allow all gy() g5(%) -+ ¢i(%) as initial sentential forms).

The hierarchy theorem for ETOL gy was proved in [50] using the same counterexamples
(see also [62]). It was also proved in [35] using a machine approach, see also the next
section. For ETOLy (characterized differently) it was shown in [30]; see Section 3.

We can use Theorem 3.2.4 to show that the language {(a™ba™c)* | n, m > 1} is not in
yT1(REC); compare similar statements concerning ETOLgyy in [50, 35, 17]. In the next
theorem we give another way of obtaining languages not in yTt(REC); for the monadic
case of ETOLyyy see [50, 35, 45, 41, 30].

Let Par(L) denote the set of Parikh vectors of strings in L, and Par(8) = {Par(L) | L € 8}
for a class £ of languages.

(3.2.6) Tueorem. Let & be a class of tree languages. Then Par(yTi(R)) =
Par(yTteq)(2)).

Proof. Let (M, L) be a top-down L-tree transformation system with copying-bound
k> 1landlet M = (Q, Z, 4, g5, R). By rearranging the right-hand sides of rules of R
we can put the (at most k) translations of each subtree together, and thus obtain a linear
transducer which simulates M on L modulo a permutation of the output string.

Formally we construct M’ = (Q', 2, 4, {gy), R") such that Q' ={{g,,..., ¢ |
I < n < kand g€ Q} and R is obtained as follows. If, for each i, 1 <i < m,
g{o{xy --- %)) = r; is in R, then the rule (g, ,..., g o(o{x; - * %)) = wsy(®y) s5(x5) =
Sm(%y) is in R’, where w € 4* is the string obtained from r,7, - r, by erasing all elements
of O(X), and s, is the sequence of all occurrences of states ¢ in 7,7, *** r, that occur in the
context g(x;), it being understood that s,(x;) is actually A if this sequence is empty. It
should be clear from the construction that the state of M’ at a node of the input tree is
the state-sequence of M at that node, and that the output string produced by M’ is a
permutation of that M. Hence Par(M’(L)) = Par(M(L)), and since M’ is linear, M'(L)e

ITrea(2). K



170 ENGELFRIET, ROZENBERG, AND SLUTZKI

. (3.2.7) CoroLLARY. If & is a class of tree languages closed under linear top-down tree
transducers, then Par(yTy(8)) = Par(y®). Thus in particular, Par(yTi(REC)) =
Par(REG).

Proof. Follows from Theorem 3.2.6, from the fact that REC is closed under linear
tree transducers and from the known result Par(y REC) = Par(CF) = Par(REG). ||

(3.2.8) CoroLLARY. {a*" |7 > 0} € EDTOL() — yTt(REC).

It follows from Corollary 3.2.7 that Par(ETOLgy) = Par(REG), cf. [50]. A similar
result for L-controlled ETOLgy systems follows from Theorem 3.2.6 (see [35)).

(3.2.9) CoroLLArY. If 8 is a class of languages closed under gsm mappings, then
Par(ETOLgn(R)) = Par(2).

Proof. 1t follows from Theorems 3.2.6 and 3.2.2 that Par(ETOL g1n(2)) = Par(y T1e(L))
= Par(yTte)(L)) = Par(ETOLgnq)(8)). The proof of Theorem 3.2.6 even shows that
all rules of the ETOLgrn() system are of the form ¢,(ox) — wgy(x) or ¢;(ox) — w. Since
this is clearly a gsm mapping and £ is closed under gsm mappings, Par(ETOLgqn)(8)) =
Par(®). |

The next theorem provides a method to obtain languages not in y Tm(REC). It shows
that yTm(REC) behaves badly with respect to Kleene closure.

(3.2.10) TueoreM. If 8 is a class of tree languages such that yTy,1)(R) is a full sem:-
AFL, and (L#)* € yTmi(8), then L € yT1y14)(R). If L is a class of monadic tree languages
and (L#)* € yTmi(R), then L is in the smallest full semi-AFL containing 2.

Proof. Let (L#f)* = M(L") for M =(0Q,2,4,49,,R) in Ty and L' e 8. We
distinguish two cases (of which the second actually never happens).

Case 1. For each y € L there exists a derivation of the form go(o(2, *** ¢,)) = u,q(t)us
Lo #y o e dsuchg(t) B w #y #w,, and uy B uy, u, 5 4y, oty - tyel,
g0, 1 <i<nwuanduin (4 VU Q(Ts)*

For each 0 € X, (n = 1), g€ O and x; € X,, such that g(x;) occurs in the right-hand
side of a rule with left-hand side gy(o(x; - x,)), let N(o, ¢, ;) = {we 4* | ¢(t;) & w for
some o(t; - t,) €L’}. The language N(o, g, x;) can be produced by the linear top-down
f-tree transformation system (M’,L’), where M’ is obtained from M by replacing all
rules of M with g, in their left-hand side by the single rule gy(o(x; *** x,)) — ¢(x;). Hence
the language N which is the union of all N(o, g, x,) is in yT;)(8). Let 4 be the non-
deterministic gsm mapping {{w, y> [ye(d — {#})* and w = w, #y # w, for some
w; , wy € 4%}, It follows from the assumption of this case and from y7T1)(L) being a
full semi-AFL that L = A(N) € yThm)(L).

Assume now that € is monadic. In this case we first modify M as follows, cf. Theorem 4
of [51]. For each state g € Q we introduce a new state ¢'. In the right-hand side of each
rule for g, we replace every occurrence of ¢(x;) by g(x;) ¢'(x;). For each ¢, # g, a rule
q1(o(x)) —> w,g(x)w, is replaced by the two rules g;(a(x)) — wg5(x) and gy(o(x)) —
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g3(x)ws , and a rule g,(¢) — w by the two rules ¢(¢) — w and gj(¢) — A (and similarly
for a rule ¢,(o(x)) — w). The new M clearly is in ¥ Ty er) - Moreover, it should be clear
that by applying the previous construction each M’ is in fact a gsm. Hence each N(o, g, ;)
and also their union N is in the smallest full semi-AFL containing £. The same holds
for L = A(N).

Case 2. Suppose that the assumption of Case 1 is false. Take y, €L such that y, ¢
A(N), and consider the string ( yo#)" in M(L') for some large n. Let go(t) % (y,#)" and
consider the rule applied initially. Due to the assumption of this case, the output produced
by each ¢(¢;) in the resulting sentential form contains at most one #. Hence the number

of #’s in the output string of this derivation is bounded. This contradicts the choice
ofn. ||

For the next corollary, cf. [34, Theorem 6.11; 35, Theorem 3.4].

(3.2.11) CoroLLarY. If & is a full semi-AFL and (L#)* € ETOLmi(8), then L € £.
Proof. By Theorem 3.2.2. ||

(3.2.12) CoroLLARY. If (L#)* € yTmu(REC), then L & CF. If (L#)* € ETOLm1 then
LeREG.

Proof. REC is closed under linear transducers and yREC = CF is a full semi-AFL.
Also REG is a full semi-AFL. |

It follows that {a"b"# | n > 1}* is not in ET0Lpy , see also [51]. For yTm(REC) we
obtain the following result.

(3.2.13) COROLLARY. {a"b"c"# | n > 0}* € ETOLgpnm — ¥ Tmi(REC).

Proof. Example 3.1.4 (ii) provides an ETOLgpy () system for this language, whereas
Corollary 3.2.12 shows that it is not in yTmi(REC). [

The next, very useful, theorem provides a method to obtain languages not in yDT(Q).
It shows that regular substitution (or inverse homomorphism) cannot be handled by a
deterministic y7 transducer, unless its copying power is not fully used (i.e., it is finite
copying). Similar theorems in the literature, concerning € = REC and 2 = REG
[15, 441, have used languages with strings of exponential length to force the transducer to
use its full copying power. In [63] the result was obtained independently for € = REG.

(3.2.14) THEOREM. Let L be a language over alphabet L2 and let b ¢ S2. Let rub(bish) be
the regular substitution defined by rub(a) = b*ab* for all ac Q. Let & be a class of tree
languages closed under finite-state relabelings. Then rub(L) € yDT (L) implies L € yTio(R).
More precisely, for all k > 1, rub(L) € yDT (L) implies L € y Ty (L).

Proof. The idea of the proof is borrowed from Fischer’s proof [28] that the language
rub({@®" | n > 0}) is not an IO macro language. Let rub(L) = M(K) with K€ £ and
M=(0,2,4,q,R)inyDT with 4 = QU {b} and Q = {p, ..., pm}. A string of the
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form a,b™a,b™ -+ ab™a, ., € rub(l) with a,€Q and a4, - a,,, €L will be called a
8-string if the n; are all different. Consider a derivation

qo(t) & w1q:(t) waga(t)) *** weg(t)Ws.a
L wvw,w, WO = W

of M with te K, {q, ,..., ¢,» the state-sequence at the root of ¢, , ¢,(#;) & v, by M, and
w € 4* a §-string. If ¢, = ¢, then v; (which, due to determinism, is equal to v;) contains
at most one occurrence of a symbol of 2 (because w is a 8-string). Thus if a state occurs
more than once in a state-sequence at some node of ¢, then the corresponding translation
does not contain two occurrences of symbols of £2. We can get rid of the multiple occur-
rences of states in state-sequences by producing a single occurrence of an £2-symbol (or A)
in a translation of a subtree directly, instead of doing the translation. By the previous
remarks, we will still be able to recover L (by simply disregarding the &’s).

The formal construction is as follows. Each node d labeled o € X, of an input tree
t € K is relabeled by (o, D) € 2, , where D = (d,;) is an m X n matrix defined as follows.
Let the subtree of ¢ with root d be o(f; --- #,). Then, for 1 </ < mand 1 <j < n,

d;=2A if p(t;) & w for some w € b*,
=a if p,(t;) & w for some w € b*ab*, ac Q,

= pi(x;)  otherwise.

Thus the matrix D contains the information about the sons of 4 whether they are translated
into 0, 1, or >>2 symbols of 2 (and in case it is 1, which one). Let ¢’ be the resulting
labeled tree and K’ = {t' | t € K}. It is left to the reader to show that the D-matrices can
be put on the trees by a finite-state relabeling and hence K’ € £ (note that if N e yT and
L, e REG, then N-Y(L,) € REC; cf. [43, 19]).

We now construct M’ = (Q, 2, 4, q,, R’), where Z’ is the ranked alphabet of all
{0, D} as described above, and if ¢(o(x, -** x,)) — ris arulein R, then ¢({o, D)(x, *** x,))
— r'isin R’, where ' is obtained from r by replacing each occurrence of p,(x;) by d,; and
each occurrence of b by A. Thus M’ does not produce b, and produces directly those
translations that contain 0 or 1 £2-symbols. It is obvious that M'(K’) = L. More precisely,
it can be shown that if g,(t) % w in M, then g,(t') % v in M’, where v is the result of
erasing the b’s of w, such that at each node of ¢’ the state-sequence of M’ is obtained from
that of M (at the corresponding node of t) by erasing all states which will produce at
most one Q-symbol in g,(t) % w. In particular, if w is a 8-string, then all multiple
occurrences are erased from the state-sequences. Hence if (M, K) has state-bound &,
then (M’, K’) has copying-bound % and so L = M'(K") € yTie(2). |

Several corollaries can be obtained from this theorem.
(3.2.15) CoroLLARY. If 8 is a class of languages closed under sequential machine

mappings, then rub(L)e EDTOL(L) implies L € ETOLp(R). In particular, rub(L) e
EDTOL implies L € ETOLgyy . (rub s the regular substitution defined in Theorem 3.2.14).
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Proof. Immediate from Theorems 3.2.2 and 3.2.14. ||

(3.2.16) CoroLLARY. The language {w € {a, b}* | the number of occurrences of a in w
is 2™ for some n = 0} is in ETOL ) but not in yDT(REC).

Proof. The language is generated by the ETOL;, system with rules

q(ox) — g(x) g(x),
g(rx) — bg(x),  q(rx) — q(x)b,  q(rx) — q(x),
q(8x) — a.

If the language would be in yDT(REC), then, by Theorem 3.2.14, the language {a®" |
n = 0} would be in yTy(REC). This contradicts Corollary 3.2.8. |}

We now state a result which can be proved using Theorem 3.2.14 and a result of [35].
It says that, for any full semi-AFL g, 2-controlled EDTOL systems cannot generate all
context-free languages, unless of course CF C £. It thus improves the result of [14] that
CF € EDTOL. Our result even holds for an arbitrary full principal substitution-closed
AFL instead of CF.

(3.2.17) THEOREM. Let € be a Jull semi-AFL and &, a full principal substitution-
closed AFL. If 8, C EDTOL(8), then 2, C £.

Proof. Greibach [35] has shown that the theorem is true for ETOLgn(8) (which is
denoted as FINITEVISIT(8) in [35]; cf. Corollary 4.10) instead of EDTOL(L). Assume
now that &, C EDTOL(L) and let L € £, . Then clearly rub(L) € £, and hence rub(L) e
EDTOL(®). It now follows from Corollary 3.2.15 that L € ETOLg(8). Consequently
£, CETOLgn(L) and hence £, C 2 by Greibach’s result. [

(3.2.18) CoroLLARY. Let & be a full semi-AFL.

(i) If CFCEDTOL(Q), then CF C 2.
(i) If ETOL C EDTOL(®), then ETOL C €.

Proof. Both CF and ETOL are full-principal substitution-closed AFL. [

See [63] for essentially the same proof of (i) for & = REG.

Note that if EDTOL(L) does not contain CF, then in particular it does not contain
the Dyck set over two letters. In fact, EDTOL(Q) is closed under deterministic gsm
mappings (cf. Section 5) and each context-free language is the image of the Dyck set
over two letters by some deterministic gsm mapping (cf. [63]).

The proof of Theorem 3.2.17 is essentially different from that in [14]. In fact it employs
the usual language-theoretic techniques to show that certain classes of languages are
not closed under certain operations [31, 33, 28, 24, 62].

To complete the proof of the correctness of the diagram of Fig.3 we show that
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YTmie(REC) — ETOL = . In fact, let L, = {o(t) | t €L} such that yield(L,) e CF —
EDTOL and o is a new symbol. Let M be the yT transducer with rules

Go(o(x)) — qu(%) # q1(x),
Q{2 %0)) = qu(%1)  @y(%n) for 7 # o,
@) —> 7 for 7 +#o.

Clearly MeyThn1e and M(Ly)) = {w # w | w € yield(L,)}. But M(L,) € ETOL would
imply that M(L,) € EDTOL and hence yield(L,) € ED'TOL (see [24]) contrary to the
choice of L, . Thus M(Ly) € y T REC) — ETOL.

The correctness of the diagram of Fig. 3 is now proved for £ > 2. For 2 == 1 we have
that yTyeq)(REC) = yTin)(REC) = CF (because REC is closed under linear trans-
ducers), and ETOLgin¢q) = ETOLpq) = LIN as can easily be proved. We note that
the above language M(L,) is also in yDTq)(REC). Together with Corollary 3.2.8 this
almost shows the correctness of the diagram of Fig. 3 with the & = 1 case added. The
open question is whether CF C ETOL ;) for some % (of course CF C ETOL).

3.3. Two Extensions

We end this section by introducing two generalizations of the top-down tree-to-string
transducer which will be useful in the next sections. The first generalization consists of
allowing rules with right-hand sides which are regular languages (for the monadic case
these are the iteration grammars discussed in {60, 53, 7]). The second generalization
consists of allowing the transducer to have an infinite (but recognizable) look-ahead on
its input subtrees (see [19]). For both generalizations we show that they do not extend
the classes of tree transformation languages.

(3.3.1) DEFINITION. A regularly extended top-down tree-to-string transducer (notation
yRT)is defined as in Definition 3.1.5, except that the set of rules R may be infinite. It is
required, however, that for given ¢ € O and o € 2, the set of all » such that g(o(x, - ,)))
— 7 is in R is a regular language over 4 U Q(X,). The definition of derivation is as in
Definition 3.1.5. |

Since the translations in yT clearly have the finite-image property (i.e., each input tree
is translated into a finite number of output strings), yRT is a larger class of translations.
It can be shown that yT is equal to the class of all finite-image yRT translations. We now
show that the corresponding £-tree transformation classes are equal.

(3.3.2) Lemma. Let  be a class of tree languages closed under insertion of regular
languages. Then yRT(8) = yT(R) and, for each k = 1, yRT1o(R) = yT1e(L) and
YRTm1)(8) = ¥ Tmiw(L)-

Proof. Let us first show that yRT(£) C yT(L). Let M = (Q, 2, 4, ¢, , R) be in yRT
and L € REC. For each g€ Q and o€ Z, denote by R(g, o) the set of all » such that
g(o(xy - x,)) —risin R. Let 2’ = {6’ | 0 € 2} be a set of new symbols of rank 1. The
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tree language L' € £ is obtained from L by inserting arbitrary long sequences of symbols
¢’ above each node labeled o. We now construct M’ = (@', 2”, 4, ¢,, R') in yT such that
M'(L"y = M(L). Let G(g, o) be a right-linear grammar for R(g, o), with terminal alphabet
4 U Q(X), and let N be the set of all nonterminals so obtained. Let Q' = Q U (Q X N)v
(Q x{1,..., m}), where m is the maximal rank in 2. Let 2" = 2 U 2", let g, = ¢, and
let the rules in R’ be defined as follows. If .S is the initial nonterminal of G(g, o), then
q(o'(x)) — {g, SY(x) isin R". If A — aB with a € 4 is a rule in G(g, o), then {g, AX(¢'(x))
— a{q, B)(x)isin R'.If A — p(x,)B is arule of G(g, o), then (g, AX(o'(x)) — { p, )(x)
{q, BX(x)is in R'. If 4 — A is a rule of G(g, o), then {g, A>(¢'(x)) — A is in R’. Finally,
all rules g, )(c’(x)) — <q, ©>(x) and <{q, ©{o(x, -** x,,)) — q(x;) are in R’. It is left to the
reader to prove that M'(L") = M(L).

Assume now that M is in yRTye(,) . This implies that each R(g, o) is a finite union of
languages of the form Rygy(x; ) Rygs(x;) ~** Rngu(%; )Rny1, where the R; are regular
languages over 4. Let 8 be a new symbol of rank 1. We now construct L’ € € by inserting
arbitrary sequences of symbols ¢’ above each node labeled o, as before, but also inserting
arbitrary long sequences of symbols § below o (for each of its branches). M’ is now
constructed such that it first outputs a string of R, (using the sequence of symbols ¢’
to simulate a grammar for R, , as before), then (arriving at the node labeled o) applies a
rule with right-hand side ¢,(x; ) gx(%;,) ** gn(x; ), and then uses the §’s to simulate (left-
linear) grammars for R,, R, ,..., R, ., . A formal construction is left to the reader. It
should be clear that the number of copies made of each new monadic node is equal to
that of the first old node beneath it. Hence M(L) = M'(L’) € yTtey(L)-

The metalinear case can be proved by a slight variation of this method, and is left to
the reader. ||

Next we define regular look-ahead.

(3.3.3) DEFINITION. A top-down tree-to-string transducer with regular look-ahead
(notation yT®) is the same as in Definition 3.1.5 except that with each rule g(o(x; - x,))
— 7 of R a mapping D: X,, — REC is associated. The mapping D restricts the application
of the rule by requiring that, in a sentential form, a substring g(o(t, **- £,,)) can be replaced
by r[t, ,..., t,] only if t; € D(x;) foralls, | <7 < n.

A transducer in yTR is deterministic (notation yDTR®) if for any pair of different rules
q(o(x, - x,)) — r; and g(o(x; - x,)) — 7, (with the same left-hand side) there exists ,
1 <7 < n,such that D (x;) N Dy(x;) = &, where D, and D, are the mappings associated
with these rules. ||

All previous definitions in this section can be generalized in an obvious way to the
case of regular look-ahead.

The next lemma shows that regular look-ahead does not extend the class of £-tree
transformation languages.

(3.3.4) LemMA. Let £ be a class of tree languages closed under finite-state relabelings.
Then yTR(Q) = yT(R) and THR) = T(L), and the constructions involved preserve deter-
minism, state-bound, copying-bound and metalinear-bound.
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Proof. The inclusions y7'(8) C yT®(L) and T(L) C TR(L) are trivial by providing the
rules with look-ahead Tz, where Z is the input alphabet. The inclusion T*(L) C T(£)
is proved in Theorems 2.6 and 4.2 of [19]. It is easy to see that the same proof applies to
T transducers, giving yTR(8) C yT(2), and that the construction preserves determinism
and bounds. [

4. Two-Way TRANSDUCERS AND ONE-WAY CHECKING MACHINES

The devices studied in the previous section can be viewed in two different ways. First,
they can be considered as parallel rewriting systems that generate languages. This is
true in particular of ETOL systems, but it should be clear that the top-down tree trans-
formation system can also be formulated with parallel rewriting rather than unrestricted
rewriting (see the discussion following Definition 3.1.1). In fact, subcases of the GSDT
have actually been formulated in such a way [1].

Alternatively, as argued in Section 3, these devices can be viewed as transducers, the
ranges of which are of special interest. These transducers are a generalization of the usual
transducers in automata theory in that they operate in a highly parallel fashion.

In this section we investigate automata of the usual sequential type which correspond
to the parallel devices studied in the previous section. The feature of parallelism is
simulated by a two-way (sequential) motion on the tree or string (up and down, or left
and right, respectively). Analogous to the above discussion, such an automaton can be
viewed in two ways which we discuss now in the opposite order. First, it can be viewed
as a tree-to-string (or string-to-string) transducer which moves two-way on the input
tree (or string). As such it is a sequential implementation of the parallel transducer, and
we will be interested mainly in its range. Second, it can be considered as an acceptor by
viewing the output string of the transducer as (one-way) input string and the input tree
(or string) of the transducer as part of its (two-way) memory. Since this memory can
first be filled nondeterministically with any tree (or string), such an acceptor is a generaliza-
tion of the checking stack automaton of [31]; we will therefore call it a one-way checking
machine (its memory will also contain a kind of pushdown store, as discussed later). As
such the automaton is an acceptor of the languages generated by parallel rewriting
systems.

Several examples of this correspondence between parallel and sequential transducers
are known from the literature. We mention some of them. In [4] it is shown that finite
copying GSDT can be realized by a sequential deterministic tree-to-string transducer
(with the derivation trees of a context-free grammar as input language); from this it
follows that yTto(REC) equals the class of images of REC under these transducers. The
monadic case of this result is proved in [45]. In fact, it is shown there that absolutely
parallel grammars (which are equivalent to ETOLyy systems) generate precisely all the
ranges of two-way deterministic finite-state string transducers. This result is generalized
to arbitrary input (control) languages in [35], where also bounds are taken into account.
Earlier it was shown in [55] that the equal matrix grammars (which are special ETOL
systems) generate the class of languages accepted by finite-turn checking automata. In
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[45] it was observed that the two-way (nondeterministic) finite-state string transducer is
equivalent to the checking stack automaton of [31] and this fact was generalized to
arbitrary classes of input languages in [41]. For the unbounded case, it was proved in
[61] that the class of ETOL languages is accepted by the cs—pd (checking stack — pushdown)
automaton, whose memory consists of both a checking stack and a pushdown store,
synchronized in such a way that a move up (or down) the stack is always accompanied by
a pop {or push, respectively) on the pushdown. From the transducer point of view this
machine is therefore a two-way pushdown transducer in which the movements (left or
right) on the input string are synchronized with the operations (pop or push, respectively)
on the pushdown. It was shown in [26] that the class of ranges of the deterministic
version of this transducer is EDTOL. In [26] the cs—pd machine was generalized to the
s—pd machine (with a stack rather than a checking stack) in order to characterize certain
classes of languages generated by macro grammars. In this section we generalize both the
cs—pd automaton and the tree transducer of [4] to a two-way tree-to-string pushdown
transducer of which the movements up and down the tree are synchronized with the
pops and pushes on the pushdown (respectively). Viewed as an acceptor this machine
has a checking tree rather than a checking stack in its memory. In order to keep the
flavor of both views we will call this new device a ct—pd (checking tree — pushdown)
transducer. We will show that the class of images of REC under ct-pd transducers is
equal to yT(REC), and similarly for arbitrary classes of input tree languages (satisfying
some weak conditions). We then show that this result can be restricted to the deterministic,
bounded, and monadic cases, thereby proving most of the results mentioned above.
In particular a connection will be shown between finite copying and finite crossing, where
“finite crossing’’ means that there is a bound on the number of times an arc of the input
tree may be crossed (in either direction) by the ct—pd transducer. For the monadic case
this issue was investigated in [46], and systematically in [35]. Similarly, the metalinear
restriction corresponds to finite-pass transducers, where “finite-pass’’ means that the
transducer can make only a bounded number of passes over the input tree. This was
investigated in the monadic case in [55], and systematically in [35]. At the end of the
section we exhibit an inclusion diagram for all the classes of machines considered (in-
cluding those of [26]) and prove the correctness of this diagram.

The formal definition of the ct-pd transducer is as follows.

(4.1) DErFINITION. A checking tree — pushdown transducer (abbreviated by ct-pd
transducer) is a construct M = (Q, 2, I, 4, §, g, , F), where O is a finite set of states, 2
is the ranked input alphabet, I" is the pushdown alphabet, 4 is the output alphabet,
go € Q is the initial state, F C Q is the set of final states, and 8 is a mapping from Q x 2 x I
into the finite subsets of Q X D x 4*, where D = {up} U {stay(y) | y € I'} U {down(, y)|
y € I',i = 1}. A ct—pd transducer is deterministic (notation: dct—pd) if § is a partial function
from Q X Z x I'into Q x D x 4*. ||

The words up, stay, and down are just identifiers used to facilitate the reading of the
specifications of 8. We note that, to be precise, we should have defined & to have the
domain Q X (£ x N) x I', where for 0 € Zand 7 € N, <o, i) indicates a symbol of rank 7
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(that is, M “knows’’ the rank of the input symbol). To avoid complicated notation, the
rank of ¢ should always be clear from the context.

Intuitively, a configuration of a ct-pd transducer M consists of (see Fig. 5) an input
tree (or checking tree), a pushdown tape, an output tape, and a finite control with three
pointers: one to a node of the checking tree (the input pointer), one to the end of the
output tape and one to the top of the pushdown. Suppose that the node 4 of the input
tree pointed at is labeled o € 2, , that y is the symbol on the top of the pushdown, and
that the transducer is in state g. If 8(g, o, ¥) contains (¢’, e, @), then the transducer can
go into state ¢', add w to the output, and act as follows depending on the value of e: if
e == up, then M moves the input pointer to the father of 4 and pops the pushdown;
if ¢ = stay(y’), then M changes y into y’ and does not move its input pointer; if ¢ =
down(z, ') and 1 < i < », then M moves its input pointer to the ith son of d and pushes
y" on the pushdown.

Given some input tree, } starts in the initial state, its input pointer at the root of the
tree, the pushdown filled with one pushdown element and empty output. The com-
putation of M ends successfully when 3 “falls off’’ the tree (by moving up from its root),
empties its pushdown, and goes into a final state. It follows from this description that the
number of symbols on the pushdown is always equal to the number of nodes on the path
from the root to the node pointed at. In fact a good way to view the pushdown is to
assume that each node of the input tree has an associated square on which a pushdown
symbol can be printed, and to let the pushdown consist of the squares on the above-
mentioned path (this is the reason we have drawn the pushdown upside-down in Fig. 5;
but note that trees are in fact also drawn upside down!).

At the end of their paper [4], Aho and Ullman discuss pebble automata, walking on
trees, which keep the pebbles between a node and the root of the tree. Such a pebble
automaton is in fact a restricted ct—pd transducer: a k-pebble automaton is a ct—pd
transducer M = (Q, 2, I, 4, §, g, , F) such that I = {0, 1} and during computation at
most k& squares of the pushdown may contain 1, i.e., a pebble.

pushdown

(bottom)
(root)

(top)

v

-

1]
control

output: tape

Fic. 5. The checking tree pushdown transducer.
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(4.2) DerFintioN. Let M = (Q, 2, I, 4,8, ¢,,F) be a ct-pd transducer. A con-
figuration of M is a sequence (g, $(t), d, §, w) with ge Q, te Ty, d is a node of $(t),
pel™* and we d* ($is a “new” symbol of rank 1). The “move-relation’ — between
configurations is defined as follows. Let ¢,q' € Q; t€ Ts; d a node of $(¢) labeled with
oe2, (n=>0); yeI'*; y,y'el; and ved*. Let C, = g, §(t), d, Yy, w) and let
(g, o, y) contain (¢, ¢, v). Then C, — C,, such that

(i) if e = up, then C, = (¢, $(2), ', ¢, wv), where d’ is the father of d;
(i) if e = stay(y"), then C, = <{¢’, §(t), d, Jy', wov); and

(iii) if e = down(z, ¥) and 1 < ¢ < n, then C, = {¢', $(t), &', Yyy’, wv), where d’
is the ith son of d.

As usual, —* is used to denote computations of M (i.e., sequences of — moves).
The translation realized by M, denoted also by M, is M = {{t, w) € Ty x 4% |{q,, $(t),
dy, v, > —* {q, §(t), ds , A, w) for some y eI’ and g F}, where d, denotes the root
of ¢t and d,, the root of §(t). ||

The class of translations realized by ct—pd transducers {dct-pd transducers} is denoted
by CT-PD{DCT-PD}. The class of images of tree languages from a class £ under ct-pd
transducers will be denoted by CT-PD(8).

Let M =(Q,2,T1,4,38,4,,F) be a ct-pd transducer. M is called a checking tree
transducer (ct transducer) if I' is a singleton. In that case the pushdown is useless. For ct
transducers we omit all reference to I, thus M = (Q, Z, 4, §, ¢, , F) and § is a multivalued
function from Q X X into Q X D X 4%, where D = {up, stay} U {down(s) | { > 1}.
The deterministic checking tree transducer (dct transducer) is the tree automaton of [4).
M is a checking stack — pushdown transducer (cs—pd transducer) if X' is monadic, and M is a
checking stack transducer (cs transducer) if 2 is monadic and I' is a singleton. In the
monadic case we shall sometimes write “left’” and “right(y)”’ rather than “up” and
“down(l, y).”’ It is easy to show that (with respect to ranges) the cs—pd transducer is
equivalent to the cs—pd machine of [61], and that the cs transducer is equivalent to both
the checking stack automaton of [31] and the 2-way gsm of [3, 17, 41, 45].

The classes of translations corresponding to the above transducers will be indicated
by capitals. Thus CT and DCS-PD denote the class of translations realized by ct and
des—pd transducers, respectively.

Next we define restrictions on the ct—pd transducer corresponding to the finite copying
and metalinear restrictions of the previous section (there seems to be no clear concept
corresponding to state-bound).

(4.3) DeriNtTION. Let M = (Q, 2, I, 4, 8, q¢ , F) be a ct-pd transducer. A move of
of type (i) or (iii), as in Definition 4.2, is called a crossing of the arc between d and d’
(upward or downward, respectively). For k >> 1 a computation of M is k-crossing if
each arc of # is crossed at most 2k times (in either direction) in that computation.

Let L be a tree language. For k > 1, the pair (M, L) is k-crossing if for each w e M(L)
there exist L and a successful k-crossing computation of M on ¢ with output w.
(M, L) is finite crossing if it is k-crossing for some k.

571/20[2-5
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A pass of M on a subtree t; of an input tree ¢ = o(¢f, *** t,)) is a computation of M on #
which consists of a move from the root of ¢ down to the root of #;, followed by a 1-
crossing computation on f; , followed by a move from the root of £; up to the root of ¢
A computation of M on ¢ = oft, **- t,,) is k-pass if it consists of consecutive passes on
the ¢;’s (ending by a move up to d,), such that each #, is passed at most & times. (J, L)
is k-pass if there is a succesful k-pass computation for each we M(L), and (M, L) is
Sinite pass if it is k-pass for some £ 2> 1. The above terminology also applies to M if it
is true of (M, Tx). |

“Finite crossing’’ is denoted by a subscript ““fc,”” finite pass’’ by a subscript “fp,”” and
bounds, as usual, by subscripts “(k).”” Thus CT-PDy.;)(REC) denotes the class of all
languages M(L) with M € CT-PD and L € REC, such that (M, L) is k-crossing.

Intuitively, a ct-pd transducer is k-crossing if it makes at most % translations of each
subtree s of the input tree. In fact, each subcomputation which starts by crossing down-
ward the arc to the root of s from its father and ends by crossing it upward may be viewed
as one translation of s.

We first show that each dct transducer is finite crossing.

(4.4) Lemma. For every class £ of tree languages, DCT(R) = DCTe() and DCS(L)
= DCS¢e(8).

Proof. Consider a successful computation of a dct transducer M = (0, 2, 4, §, ¢, , F)
on an input tree £. Suppose that this computation is not k-crossing, where & = (#(Q))%.
Then there exists an arc of ¢ which is twice crossed downward going from the same
state ¢, into the same state g, . This would mean that M is in an endless computation. [|

We will show later that even CT-PDye(8) = CTie(8) = DCT(L) and similarly for
CS-PD (see the remarks following Theorem 4.9).

A deep investigation into the properties of the ranges of finite-crossing and finite-pass
checking stack transducers (with arbitrary class of input languages) was made in [35].
It is shown there [35 (Theorem 2.2)] that finite-crossing cs transducers are equivalent
(with respect to ranges) to “finite-visit’’ cs transducers (meaning that the transducer
visits each “node’’ of the input string 2 bounded number of times), with the same bound.
The same fact can easily be shown for ct—pd (and ct) transducers, however due to non-
monadicness the bounds do not correspond. The finite-pass cs transducers are called
“finite reversal’’ in [35], and the definition of finite reversal is somewhat less restrictive
than that of finite pass. It can however easily be shown that both definitions are equivalent.
The connection between the notation of [35] and ours is that FINITEVISIT(R) =
DCS(L), FINITEREVERSAL(L) = DCSgp(L), DCStey(8) == 2k-VISIT(L), and
DCSqypy(£) = 2k-REVERSAL(®), where £ is a full semi~-AFL (cf. Corollary 4.10).

In the first theorem of this section we show the precise relationship between ct-pd
translations and top-down tree-to-string translations.

(4.5) Tueorem. CT-PD = yRT, and the constructions involved preserve crossing
(= copying) bound and pass (= metalinear) bound.
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Proof. To prove that CT-PD CyRT, let M =(Q,2, I, 4,38, ¢,,F) be a ct—pd
transducer and assume first that M uses no stay instructions. The proof will be similar
to that of Lemma 7.5 in [4], where the DCT case is treated. Construct the top-down
tree-to-string transducer with regular right-hand sides (see Definition 3.3.3) M’ =
(O XTI xQ,2% 4,{¢ X I X F, R). Note that M’ has a set {g,} X I' X F of initial
states; this can easily be taken care of. We shall construct the set of rules R of M’ in
such a way that

g1, 7 @>(t) % win M’ if and only if (g1, $(¢), dy, v, 1> ¥ <gs, $(1), dw, A, w) in M,
(*)

i.e., M walks on a subtree ¢ starting in state ¢, at its root with pushdown symbol y “‘at this
root,”” and ““falls off”’ the subtree in state g, , producing output w. It is clear that this
statement implies that M’ = M. The rules of R now easily follow.

(1) LetoeZy.If 5(q,, o, y) contains (g, , up, w), then {g; , y, go)(0) —> wisin R.

(2.) LetoeZ, withn > 1. The rule (g, , ¥, gs)(a(; *** %)) = w Py, 11 » Prp X
(x:) wal Do s va» P)(%:) ** Wi Pr » ¥x » Pi)(¥i)0ppa is in R if and only if 8¢y, 0, %)
contains ( p, , down(i, , y,), w)), & Py, 0,y) contains (p,, down(i, , vm), wn) for
2 < m < k,and &(p;, , o, ¥) contains (g, , up, ;).

This ends the construction of M'. For fixed ¢, , y, g5, and o, the set of possible right-
hand sides is clearly regular (it is determined by the finite control § of M). It is easy to
prove the above statement (*) that links M and M, by induction. It can be proved
simultaneously, using Definition 3.1.8, that the derivation of M’ has copying-bound %
if and only if the corresponding computation of M is k-crossing, for any k. After replacing
the initial states of M’ by one new initial state ¢,, and adding the appropriate rules, it
should be clear that M’ is k-metalinear if M is k-pass.

It is left to the reader to prove the case that A uses stay instructions (it complicates the
definition of R only slightly, because y can be changed by the stay instructions).

To show that yRT C CT-PD, let M = (Q, Z, 4, g,, R) be in yRT. For g Q and
g€ X, (n = 0), let G(q, o) be a right-linear grammar generating the set of all right-hand
sides of rules with left-hand side g(o(x, ‘- x,,)). We assume that the corresponding sets
N(g, o) of nonterminals of these grammars are mutually disjoint, and we assume also that
the rules of G(q, o) are of the form A — wB, A — w, or A — p(x,)B with 4, B e N(g, o),
wed*, peQ,and 1 <7 <<n Let N = (J{N(q,0) | g€ Q,0€2}. Let ¢ and # be new
symbols. Construct the ct—pd transducer M’ = (Q’, X, I, 4, 8, g, , F) such that Q' =
F = {#} v 0V (0 x{l,..,m}), where m is the maximal rank of a symbol in Z,
I' = {¢} U N, and & is defined as follows.

(i) (g, o, ¢) = (#, stay(S), A), where S is the initial nonterminal of G(g, o).

(ii) 8(#, o, A) contains (#, stay(B), w) if A — wB is a rule, (#, up, w) if A — w
is a rule, and (g, £), stay(B), A) if A — ¢(x;)B is a rule.

(iii) 8(<gq,7>, o, 4) = (g, down(i, ¢), A).



182 ENGELFRIET, ROZENBERG, AND SLUTZKI

This ends the construction of M’. Its & is constructed in such a way that the non-
terminal in the pushdown square “‘associated with’’ a node remembers which part of the
right-hand side of the rule applied at this node has already been simulated and which
part should still be treated. Formally it can be shown that ¢(¢) % w in M if and only if
{q, 8(), dy, ¢, X> = (#, $(), d,,, A, w) in M’ and that the derivation of M has copying-
bound % if and only if the computation of M’ is k-crossing, for any k. After extending the
definition of § such that &g, , o, S) = 8(#, o, S), where S is the initial nonterminal of
G(q, , 0), it is clear that M’ is k-pass if M is k-metalinear. This proves the theorem. |

Note that it follows from Theorem 4.5 that the domain of a ct-pd transducer is
recognizable. In fact, it is easy to associate with each yRT transducer a yT transducer
with the same domain; yT transducers have recognizable domains [48].

Note also that yT equals the class of finite image ct~pd translations (by the remark
following Definition 3.3.1).

(4.6) CoroLLARY. If 2 is a class of tree languages closed under insertion of regular
languages, then CT-PD(R) = yT(8). If L is a class of languages closed under A-free regular
substitution and sequential machine mappings, then CS-PD() = ETOL(R). In particular,
CT-PD(REC) = yT(REC) and CS-PD(REG) = ETOL; moreover, in this case, we may
assume that the input language is always T, , where X' is the input alphabet.

Proof. The equalities follow from the previous theorem and Theorems 3.3.2 and
3.2.2. The rest of the statement follows by observing that Theorem 3.2.1 can easily be
generalized to regular right-hand sides. Hence CT-PD(REC) = yRT(REC) = yRT({Tx |
2 ranked alphabet}) = CT-PD({T; | 2 ranked alphabet}) and similarly for CS-PD. |

The characterization of ETQL by cs—pd machines was shown in [61].
The next theorem provides a precise characterization of the deterministic ct-pd
translations.

(4.7) Tueorem. DCT-PD = yDTR, and the construction involved to prove DCT-PD
C yDTR preserves crossing (= copying) bound and pass (= metalinear) bound.

Proof. To prove that DCT-PD C yDT® we turn the transducer M’ in the first
half of the proof of Theorem 4.5 into a deterministic one, using regular look-ahead (see
Definition 3.3.3) and the fact that M is deterministic (for notation we refer to the proof
of Theorem 4.5). It follows from the remark following Theorem 4.5 that the domain
of a ct-pd transducer is recognizable; hence, for given ¢, ¢, € Q and y € I', the set of
all t € Ty such that <g; , $(), dy , v, > =~ (g5, $(2), dwo , A, w) in M for some we 4* is
recognizable; let us denote this set by D(g, , y, ¢;). Moreover, since M is deterministic,
¢» is determined uniquely by ¢; and y. We now associate with the rule mentioned under (2)
in the proof of Theorem 4.5 the regular look-ahead mapping D such that, for 1 <{j < n,
D(x;) is the intersection of all D( P , ¥ » Pr) Such that x; = x;. By the previous ob-
servations this change turns M’ into a deterministic top-down tree-to-string transducer
with regular look-ahead. The case that A uses stay rules is entirely similar. It should be
clear that bounds are still preserved.
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Let us now show that yDT® C DCT-PD. It is easy to see from the second half of the
proof of Theorem 4.5 that if M € yDT, then M’ € DCT-PD (since the G(g, o) generate
singletons, we may assume that each nonterminal of G(g, o) is the left-hand side of
exactly one of its rules). It remains to prove that the dct—pd transducer can handle regular
look-ahead. For each recognizable tree language L we can find a dct-pd transducer
which has L as its domain. In fact, if 4 is a (nondeterministic) top-down finite tree
automaton recognizing L, then a dct-pd transducer A’ can simulate 4 by back-tracking.
On the pd-square associated with a node, A" puts a possible state-transition of 4 and
then simulates the behavior of A on the succesive subtrees of the node; if this does not
lead to acceptance, A’ puts the next possible state-transition of 4 on the pd-square, etc.

Now, if MeyDTR, then we can construct a dct—-pd transducer M’ which, when
arriving at a node, first checks the regular look-ahead of the immediate subtrees of the
node (using back-tracking as described above, and marking the pd-square of the node
in order to find it back), and then picks the unique rule to be applied, continuing the
simulation as in the second half of the proof of Theorem 4.5. |}

It was shown in [19] that DTZ® has nicer closure properties than DT. The above theorem
is another reason to prefer DTX to DT.

(4.8) CoroLLaARY. If 8 is a class of tree languages closed under finite-state relabelings,
then DCT-PD(Q) = yDT(Q). If 8 is a class of languages closed under sequential machine
mappings, then DCS-PD(L) = EDTOL(L). Ir particular, DCT-PD(REC) = yDT(REC)
and DCS-PD(REG) = EDTOL; moreover, in this case, we may assume that the input
language is always T , where X is the input alphabet.

Proof. - Similar to the proof of Corollary 4.6, using Lemma 3.3.4 and the generalization
of Theorem 3.2.1 to regular look-ahead. §

The characterization of EDTOL by dcs—pd transducers was also shown in [26].
We now turn to the deterministic checking tree transducer (without pd-facility) and
show that it is closely connected to the finite-copying top-down tree-to-string transducer

[4].

(4.9) TreEOREM. Let 8 be a class of tree languages closed under finite-state relabelings.
For each k > 1, DCTew(L) = yT1ca(L), and DCTipu(L) = yTmia(L)- Hence
DCT(2) = yT1c(L) and DCTp(L) = yTmi(L).

Proof. Tt follows from Theorem 4.7 that DCTyp)(£) € DCT-PDyo)(L) C
yDTE »(2), and hence by Lemma 3.3.4 DCTye)(L) € yDTye)(R); and similarly for
fp and ml. Thus to prove the theorem (and Lemma 3.2.3!), it suffices to show that
Y Tie(2) € DCTye)(L), and similarly for ml and fp (cf. Lemma 4.4).

The simultation is similar to the one given in the second half of the proof of Theorem
4.5. Due to the finite-copying property of the top-down transducer we do not need the
pd-facility; instead, the information concerning the (bounded number of) rules applied
at each node can be printed on that node in advance. The proof is entirely similar to that
of Theorem 7.2 of [4].
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Let M =(0,2,4,q,,R) be in yTy() and L e 8. We first construct a new input
language L’ by relabeling each node of an input tree by <{r,...,7,, 7>, s < k, where
{ty ..., 75y is the rule-sequence at the node corresponding to some derivation of M, and »
indicates that this node is the nth son of its father. By the remarks following Definition
3.1.8 this relabeling can be realized by a nondeterministic top-down finite-state relabeling,
and hence L’ € £. To simplify notation we assume that instead of rules only their right-
hand sides are printed, in which, moreover, each occurrence of a g(x,) is replaced by x, .
Thus each 7, is actually an element of (4 U X)*. We now construct a dct transducer M’
which simulates a derivation of M on input tree ¢ by traversing the relabeled ¢ as indicated
by the rule-sequences of the derivation; thus M’(L") = M(L).

Let M' = (Q', 2", 4,8, g5, F), where X' is the set of all {r,,.., 7, n) such that
0 < s < &, 7, is the right-hand side of a rule in R with states and parentheses deleted
and 1 < » <{ max (where max is the maximal rank of an element of X); Q' =F =
{[down,{] |1 <i <R YU{up,i,j]|1 <i <k 1 <j < max}, and g; = [down, 1]; §
will be constructed later.

The strings “‘down’’ and ‘““up’” are just identifiers to facilitate the specification of 8.
Intuitively, if M’ is in state [down, 7] at some node, it will start the simulation of the sth
translation of the subtree at that node; if M’ is in state [up, ¢, f] at some node, it has just
finished the simulation of the sth translation of the subtree at the jth son of that node.
Due to the presence of the rule-sequences and the clear relationship between the rule-
sequence of a father and those of its sons, M’ can always see in which state it has to be.
We now specify § formally. ‘

(1) Let g = [down,{] and o = {7y .., 75, 0.

(ta) If r; = wyx,w, for some w, € 4%, m = 1, w,e(d U X)*, and if this x,, is
the jth occurrence of x,, in 7,7, == r, (i.e., %, occurs f — I times in r; -> r,_;), then
8(g, o) = ([down, ], down(m), w,).

(1b) If r, e A%, then 8(q, o) = ([up, ¢, #], up, r;).

(2) Letgq = [up,i,m] and o = {ry,...,7,, #). Let the ith occurrence of x,, inr; - r,
occur in 7, , i.e., 7, = wx,w, with w;, w,e (4 U X)* and x,, occurs 7 — 1 times in
Fifs " Ty g -

(2a) If w, = v,x,v; for some v, 4* p > 1 and vy € (4 U X)*, and if this x,, is
the jth occurrence of x, in 7, --* 7, (i.e., &, occurs § — 1 times in 7, --* r,_,w,x,,), then
8(g, o) = ([down, j], down( p), ).

(2b) If w, € 4%, then &g, 6) = ([up, «, ], up, w,).

This ends the construction of M’. It should be clear that M’ faithfully obeys the
indications of the rule-sequences at the nodes of the input tree. Also, if x,, occurs »
times in a sequence 7, ,..., 7 at some node, then M’ crosses # times the arc from that node
to its mth son (and back). Hence M’ is k-crossing. It should also be clear that M’ is k-pass
if M is k-metalinear. Formal proofs of these facts are left to the reader. ||

As indicated in the proof of this theorem, we have simultaneously obtained a proof
of Lemma 3.2.3.
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We note that if € is a class of tree languages closed under finite-state relabelings and
insertion of regular languages, then CT-PDgo(8) = DCTyey(L) and hence CT-
PD;o(8) = DCT(L). In fact, by Theorem 4.5 and Theorem 3.3.2, CT-PD; () =
YRTp1)(8) = yTee)(L) and the above equality follows from Theorem 4.9, Similarly,
CT-PDyp(£) = DCTyp(L). These equalities are in particular true for € = REC
and £ = REG (and hence for cs—pd transducers). In [46, 35] it is shown that the same
class is obtained even when arbitrary printing is allowed on the checking stack, but the
machine is still restricted to be finite crossing (or finite pass).

By considering the monadic case of Theorem 4.9 we obtain the following corollary
(see Theorem 3.2.2).

(4.10) CoroLLARY. Let £ be a class of languages closed under sequential machine
mappings. Then DCS(L) = ETOLg (L) and DCSep(LQ) = ETOLmi(R) and similarly for
the corresponding bounded classes.

For the recognizable and regular languages the result looks as follows.

(4.11) CoROLLARY. (i) yTto(REC) = DCT(REC) and ETOLg = DCS(REG),
(i) yTm(REC) = DCTp(REC) and ETOLy = DCSep(REG).

Similar equalities hold for the corresponding bounded classes.

It is not clear whether, in this corollary, the input language of the dct transducer
may be restricted to T’ as in the previous theorems. For the monadic case this can easily
be proved [35, Lemmas 2.1 and 2.2].

The first equality of Corollary 4.11(i) was shown in Section 6 of [4] and the second in
[45], both without bounds. The first equality of Corollary 4.10 was shown (with bounds)
in [35]. It was also shown there that DCSgy(8) can be obtained by iteration of control on
linear context-free grammars. As mentioned already in Section 3, several of the results
proved for the ETOL classes in Section 3 (or in [50, 51, 62]) can also be found in the
literature for the corresponding DCS classes (see [35, 41, 17, 34, 40]).

We have found sequential machines corresponding to all the classes of top-down tree-
to-string transducers and ETOL systems in the diagram of Fig. 3. The corresponding
machine diagram is given in Fig. 6, where the indications (REC) and (REG) and the
bounds have been left out for reasons of readability.

To this diagram we add the classes CS(REG) and CT(REC) of checking stack and
checking tree languages, respectively, for which no corresponding top-down tree-to-
string transducers have been found. We also add the diagram of s-pd machines, stack
machines and nonerasing stack machines considered in [26], which is contained in the
class of macro grammars, recognized by the nested stack machine. This gives the diagram
of Fig. 7 which represents the relationships between various classes of s—pd and ct-pd
machines that recognize macro languages or tree transformation languages. (To improve
readability lowercase letters are used rather than capitals. An ascending line denotes
inclusion.)

An s—pd (stack-pushdown) machine is the same as a cs~pd machine, except that it has



186 ENGELFRIET, ROZENBERG, AND SLUTZKI

CT-PD

DCT-PD CS-PD

ct-pd
i nested s
[
]
1
1
I
G
c dc{-pd £d ~pd
F AR

VAN !

s \, 1

’ AN ‘

/7 X . (3
i nes :
de f cs Mg ] e = o ~Jds—pd
l)éé's—pd '
s
l”
dctfp 7
dnes ds

CS

&
csfp

Fic. 7. Classes of tree transformation languages and macro languages.

a usual stack rather than a checking stack. Thus Fig. 7 shows that quite a number of
well-known classes of tree transformation and macro (indexed) languages can be obtained
by simple variations of one type of machine model.

To prove the correctness of this diagram it suffices (because the correctness of the
diagram of Fig. 6 and that of the diagram of [26] are known) to prove the existence of a
language L, in CS(REG) but not in DCT-PD(REC), and a language L, in DNES but
not in CT(REC). An example of L, is the language {w € {a, b}* | the number of &’s in w
is not prime}, which can easily be shown to be in CS(REG) (see [31]), but is not in
DCT-PD(REC) = yDT(REC) by Theorem 3.2.14 and Corollary 3.2.7. (Actually, we
found Theorem 3.2.14 when trying to find L,). To obtain a language L, we generalize a
result concerning checking stack languages [41, 35] to trees.
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(4.12) LeMMA. Let 8 be a class of tree languages closed under finite-state relabelings
and insertion of regular languages. Let L be a language which contains no infinite regular
language. If L € CT(8), then L € DCT(Q).

Proof. LetL = M(L') with M € CT and L' € £. Since L does not contain an infinite
regular language, (M, L') must be finite crossing. In fact, if (M, L) is not finite crossing
then a computation of M can be found that crosses twice the same arc of an input tree
from L', in the same direction and in the same states. Consequently, the piece of the
computation between these two crossings may be repeated an arbitrary number of times.
By originally restricting our attention to shortest computations (of an output string) we
may assume that the output produced between the two crossings is nonempty. Hence the
above repetition gives rise to output strings of the form w,w,"w, with w, 52 Aand n > 1:
i.e., an infinite regular subset of L. Consequently L € CTyo(2). By the remark following
Theorem 4.9, CT(2) = DCT(R) and the lemma is proved. ||

Let L, = {a"" | n > 1} and assume that this DNES language is in CT(REC). Since L,
contains no infinite regular subset, Lemma 4.12 implies that L, € DCT(REC). However,
because DCT(REC) = yT1.(REC) by Corollary 4.11 and the languages of yT1.(REC)
are Parikh by Corollary 3.2.7, this leads to a contradiction. This shows the correctness
of the diagram of Fig. 7.

Recall the pebble automaton of [4] as discussed before Definition 4.2. It is noted in [4]
(without proof) that on monadic trees (i.e., derivation trees of linear context-free gram-
mars) the k-pebble automata are equivalent to EDTOL systems (i.e., GSDT) for which
the length of the state-sequence at a node d is ¢ - #¥, where # is the distance of d to the
root; cf. the remarks on such systems before Theorem 3.2.4. Whether this relation also
holds in general is still open. In [4] it is also suggested that stack-languages could be
characterized by pebble automata on trees. It follows from the diagram of Fig. 7 that
this is not possible in general (for the pebble automata of [4]). It can, however, easily be
shown that the nonerasing stack (nes) languages can be produced by 1-pebble cs—pd
transducers (see [26]).

5. CLOSURE PROPERTIES

The classes of languages discussed in the previous two sections have nice closure
properties. They are closed under most of the usual AFL operations on languages. In
the monadic case closure properties have been studied extensively, and in various degrees
of generality, in the literature on checking stack automata [31, 35, 55], two-way finite-
state transducers [3, 11, 17, 41, 45], ETOL systems [49, 50, 51, 62] and AFL theory [30,
33]. Operations on tree languages and the closely related topic of composition of tree
transducers were studied in [48, 56, 9, 18, 19].

In this section we first consider AFL operations. In particular we show that ¥ Ty, »(REC)
is a full substitution-closed AFL and that yT(REC) is not a hyper-AFL. Then we focus
attention on closure under dcs (and cs) translations, i.e., 2-way gsm mappings. It is well
known [41, 35] that the application of DCS on a class of languages is idempotent (in fact
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dcs translations are closed under composition [11]), implying that DCS(REG) is closed
under dcs translations. We generalize this by showing that deterministic top-down
L-tree transformation languages (in particular yDT(REC) and EDTOL) are closed under
dcs translations. The result is obtained by a straightforward simulation of a 2-way string
(dcs) transducer working on the yield of a tree, by a 2-way tree-to-string (dct) transducer
walking on the tree itself, and using the fact that DTR tree translations are closed under
composition [19].

We shall consider the AFL closure properties of all the classes in the diagram of
Fig. 3, including the bounded ones. It is left to the interested reader to see how the
results can be generalized to an arbitrary class of input languages (cf. [41, 35, 9]). It is
easy to see that all these classes are closed under union and homomorphisms. Also, they
are all closed under intersection with a regular language; in fact, for a top-down tree
transformation system (M, L) and any regular language R, M(L) N R = M(L n M-Y(R))
and, since M~Y(R) is recognizable {43], L N M~I(R) is a new recognizable input language
to the same transducer M. The nonmonadic classes are easily seen to be closed under
concatenation and, except for the metalinear ones, under Kleene star (by applying
respectively the operations o(L,L,) and o(Lo(L *-- o(LL) ---)) for some new ¢ of rank 2
to the input languages).

The classes yT(REC) and ETOL are known to be substitution-closed full AFL’s
[9, 49]. ETOL is even a full hyper-AFL [10, 53], i.e., closed under iterated substitution
[7], but yT(REC) is not, as will be shown in Theorem 5.2 and Corollary 5.3 (using
insertion of regular languages it is easy to see that we may allow the yT transducer to
have ETOL right-hand sides, but any class larger than ETOL is beyond the power of
yT(REC)). ETOL is a full-principal AFL (cf. [12]) and the same is true for yT(REC). In
fact the ct—pd machine viewed as-an acceptor for yT(REC) languages (Corollary 4.6) can
easily be formulated as a finitely encoded AFA (note that all languages in yT(REC) can be
produced by transducers with the fixed input alphabet 2 = {0, 1} = %, = 2, = X, by
a straightforward coding argument).

As note above the classes yDT(REC), EDTOL, yT»(REC), ET0L, , yDT ¢(REC),
and EDTOL,, are closed under all AFL operations except inverse homomorphism;
yDT(REC) and EDTOL are also closed under deterministic gsm mappings (even 2-way,
as will be shown later). It follows from Theorem 3.2.14 that yDT(REC) and EDTOL
are not closed under inverse homomorphism. The above-mentioned bounded classes are
not closed under deterministic gsm mappings (and hence not under inverse homomor-
phism); in fact, for each % the language {(a"b)?** | n == 0} is generated by an EDTOL,
system with rules go(ox) — (g,(x)0)%, ¢;(cx) — agy(x), ¢:(x) — A and this language can
be transformed by a deterministic gsm into the language L, = {a,"a," - a3, | n > 0}
which is not in yT,_;)(REC) by Theorem 3.2.5.

We now state the closure properties of the finite-copying and metalinear classes.

(5.1) Tueorem. Let k > 1.

(i) yTiew(REC) and yTio(REC) are substitution-closed full AFL’s; the latter is
not full principal.
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(1) yTmi@(REC) and yTm\(REC) are concatenation-closed full semi-AFL’s; the
latter is not full principal.

(iii) ETOLgpng) and ETOLmyg are full semi-AFL’s; ETOLgyy s a substitution-
closed full AFL and ETOLm fs a concatenation-closed full semi-AFL, both not full principal.

Proof. For a proof of (iii) the reader is referred to the “monadic’ literature 35, 45,
50, 62]. To prove (i) and (ii) it suffices (by the discussion preceding this theorem) to
show that these classes are closed under regular substitution (this follows directly from
Lemma 3.3.2) and that yTy.,)(REC) is substitution closed. Note that nonprincipality
follows from the hierarchy result of Theorem 3.2.5.

We argue now that yTye(REC) is closed under substitution. Let (M, L) be a deter-
ministic top-down tree transformation system of copying-bound & with M = (Q, Z, 4,
9y, R) and L e REC. Let, for each ae 4, M,(L,) be a language in yT4y(REC). To
obtain a top-down tree transformation system (M’, L') with copying-bound %, which
generates the substitution of the L, for a in L, we first change L into L’ as follows. Let
4 ={a, ,..., a,} and assume (without loss of generality) that a right-hand side of a rule
in R contains at most one occurrence of each symbol of 4. L’ is obtained from L by
adding nk additional subtrees at each node of a tree ¢t € L, such that the ith k-tuple of
new subtrees consists of trees in L, ; correspondingly the ranks of the elements of 2 are
increased by nk. Clearly L' is recoénizable. The new transducer M’ simulates A and,
whenever M outputs some symbol a € 4, it simulates the corresponding M, on one of
the additional trees of L, . More precisely, suppose that M’ arrives at the jth copy of a
node of (the modified) ¢, 1 < j < &, and that M would output g; at this step; then we
want M’ to operate as M, on the jth element of the ith k-tuple of the additional subtrees.
In order to know at which copy of the node M’ arrives, M’ keeps track of the state-
sequence of M at the nodes of the input tree and also its position in this state-sequence
(which can easily be done due to the determinism of M). In this way the nodes in the
additional subtrees are copied at most % times, and thus M’ will have copying-bound
konL'. |

Note that AFA formulations of all these classes can easily be derived from the corre-
sponding machines in Section 4 (cf. [41] for the monadic case).

Note also that, due to these closure properties, the counterexamples of Theorem 3.2.5
can now be changed into languages over a two-letter alphabet; thus {(¢”b)* | n = 0} is
in ETOLpy ¢y but not in yTye._p)(REC).

It follows from Theorem 5.1 and Theorem 3.2.14 that y T3(REC) is the largest full AFL
(even the largest class closed under inverse homomorphism) inside yDT(REC), and that
ETOLgy is the largest full AFL inside EDTOL.. Similarly it follows from Corollary 3.2.12
that CF is the largest full AFL inside yT1n(REC) and REG the largest in ETOLy; .
The results on ETOL ;) and ETOLgyn() are also optimal: they are not closed under
concatenation [62].

The difference between (i) and (iii) of Theorem 5.1 shows the power of unbounded
rank of the input symbols (as used in the proof of Theorem 5.1). On the other hand, it
is known that ETOLynq) and ETOL,y () are full principal for each & [35, 50, 62], but
in the tree case this is an open question. We do not know whether there exists a fixed
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input alphabet X such that all languages in ¥T.)(REC) can be obtained from trans-
formation systems with this input alphabet (this would give principality by finite encoding
of the corresponding dct transducers). The trick that can be used in the case of y T(REC)
to replace each node of rank # by # — 1 nodes of rank 2, increases the copying-bound of
the transformation system. If the above question could be answered positively then we
could even find (by a refinement of the proof of Theorem 4.9) one transducer M € yTyoqy
such that yT;.q)(REC) = {M(L) | L € REC}; see Section 7 of [50] for the monadic case
of this result. An alternative solution would of course be to restrict all trees to have
maximal rank 2. By the trick mentioned it follows that this restriction does not influence
the union families. One can show straightforwardly that y T, (REC,) is a full-principal
AFL (where the subscript 2 denotes the restriction) and that a single transducer can be
found which generates it by varying the input language. It is not clear any more whether
this rank-restricted class is substitution closed. Note finally that in the terminology of
GSDT this discussion amounts to the question whether, for GSDT with copying-bound
k, the underlying context-free grammar can always be taken in Chomsky normal form
(cf. [2D).

By methods similar to those in the proof of Theorem 5.1(i) it can be shown that
Y T1e0)(REC), ¥T1o(REC), and yT(REC) are even super-AFL’s [32], i.e., closed under
nested iterated substitution. In the next theorem we show that the nesting is essential,
i.e., that these classes are not hyper-AFL’s.

(5.2) THeOREM. Let L be a language over alphabet A, b a letter not in A, and let f(L)
denote the language {a,wa,w - a,w | a;€ 4, qja, - a, €L, we b*}. If f(L) e yT(REC),
then L € ETOL.

Proof. Let f(L) = M(K) with Ke REC and M = (0, 2, 4, ¢y, R) in yT. A sketch
of the proof is as follows. We note first that, since yT(REC) and ETOL are both closed
under gsm mappings, we may assume that no string of L contains two consecutive
occurrences of the same symbol.

Suppose now that a rule of the form g(o(x, - x,)) — - py(x;) - pal;) -~ with
1 = j is used in a derivation of a string a,wa,w -+ a,w for some very long w, such that
p(t) & - awa,,, -+ and ¢; is very high (where ¢, , 1, ,..., ¢,, are the direct subtrees of
the node to which the rule is applied). We will argue that such a situation cannot happen.
Let us first change all subderivations which operate on #;, in such a way that the same
rule is applied when M arrives in the same state at different copies of the same node of ¢;,
i.e., all derivations on t; are made “deterministic’’ (‘“uniform’’ in the terminology of [44]).
This also changes the generated string @, -+ a,w, however, since the derivation on ¢,
is kept fixed, the new string still “has the same w.”’ It should be clear that to such
(sub)derivations the pumping Theorem 3.2.4 is applicable (see [44]). Hence, since ¢; is
high, we can pump the substrings generated by the derivations on t;, and moreover
(because w is long and the substrings are short, and because of the first assumption of
our proof) it follows from the preservation of the alphs that only the w’s are pumped.
This contradicts the fact that the w is kept fixed by the derivation on ¢, . Hence such
a rule is not needed.
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By putting the appropriate information on the nodes of the input tree by a finite-state
relabeling and directly “‘substituting’’ derivations that produce at most one element of 4
and derivations on small subtrees, we can thergfore obtain the language L as M'(K’),
where M’ contains only rules of the form g(o(x; *** x,)) = v or g(o(x, - x,)) —
oy p(x;)v, With ©, v, , v, € 4%, It is straightforward to turn such a yT transducer into
an ETOL system. [|

(5.3) CoroLLarY. yT(REC) is not a hyper-AFL. ETOL is the only hyper-AFL
tncluded in yT(REC).

Proof. Let & CyT(REC) be a hyper-AFL, i.e., closed under iterated substitution.
We shall show that £ C ETOL (and hence = ETOL and the corollary is proved). Let
L € 8. Let & be the homomorphism such that A(a) = ab for all e € 4 and k(b) = b, where
4 is the alphabet of L. Then | )54 A%(L), i.e., the iterated application of & to L, is equal
to f(L), as defined in Theorem 5.2. Hence, since £ is a hyper-AFL, f(L) € £. It now
follows from Theorem 5.2 that L € ETOL. Hence £ CETOL. |

We note that this property distinguishes yT(REC) rather sharply from the class of
indexed languages. The latter is a full hyper-AFL containing a proper hierarchy of full
hyper-AFL’s [22, 27].

We also note that it can be shown in a similar way that yDT(REC) is not closed under
“deterministic substitution’” [8] and that EDTOL is the largest class inside yDT(REC)
closed under that operation.

In the rest of this section we shall consider closure under dcs (and cs) transducers, i.e.,
closure under 2-way gsm mappings. We shall make an essential use of the following
composition result on top-down tree transducers with regular look-ahead.

(5.4) Tueorem. DTR, DT and DTX, are closed under composition. In particular, for
k,n > 1, DTy, o DTRny C DTt and similarly for ml.

Proof. Closure of DT under composition is proved in [19]. Unfortunately the proof
does not preserve finite copying. It is, however, straightforward to prove this result
directly by the standard method of applying a transducer M, to the right-hand sides of
the rules of a transducer M, . The regular look-ahead of M, and M, can easily be com-
bined (using the fact that M~Y(L) is recognizable if L is), and the eventual problem that M,
deletes subtrees to be checked by M, can be handled by an additional regular look-ahead.
Clearly, if M, copies a node & times and M, copies each of these copies # times, then the
newly constructed transducer will copy the original node kn times. It is easy to see that
metalinearity is preserved. A formal proof is left to the reader. ||

Together with Lemma 3.2.3, Theorem 5.4 shows that if € is a class of tree languages
closed under finite-state relabelings (in particular if = REC), then T3o(2) and Tmi(2)
are closed under Ty, and Ty tree translations, respectively. This result can be viewed
(and we will show this later) as a generalization of the monadic case [41, 35, 11]: if  is,
say, a full semi-AFL, then DCS(£) is closed under dcs translations and DCS,(L) under
dcsyp translations (Corollary 5.8).
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The essential construction in the proof of the closure of tree transformation languages
under dcs transducers is the simulation of a dcs transducer on the yield of a tree by a
dct transducer on that tree, as given in the next theorem.

(5.5) TueoreM. If & is a class of tree languages closed under deterministic top-down
finite-state relabelings, then DCS(y8) C yDTE(L) and DCSip(yL) C yDTE(R), and in
particular, for k > 1, DCSyeay(yL) C yDTH, 01y (8), and similarly for fp and ml. If R is
closed under arbitrary finite-state velabelings, then DCS(y2) C yT1¢(8) and DCSpy(y8) C
YT m1(L) and bounds are doubled as before. If  is closed moreover under insertion of regular
languages, then CS(yQ) C yT(2).

Proof. Let L e R be a tree language over 2 and let M = (Q, 2, 4, 8, ¢, , F) be a cs
transducer with input alphabet %;. We first change L into L' by the (deterministic
top-down) finite-state relabeling IV that relabels ¢ by {o, #) if the corresponding node is
the ith son of its father (or, arbitrary, ¢ = 1 if it is the root). Since M works on strings
we let § be a function from Q X Z, into the finite subsets of Q x {left, stay, right} x 4*.
The simulation of M be a ct transducer M’ proceeds as follows. If M is at a leaf of the
tree, then M’ is at the same leaf (and stays there if M does). If M moves one leaf to the
right, then M’ moves so to, say, a little bit to the right of the leaf (see Fig. 8) and moves
up keeping the arcs of the tree at its left hand; after some time it will move down again,
still keeping the arcs at his left hand, until it arrives at a leaf (where M is already waiting!).
Similarly, if M moves left, then M’ moves a little bit left and then moves up and down
again, keeping the arcs at his right hand this time. Clearly if M is deterministic, then
so is M’. For a fixed arc of the input tree ¢ with subtree ¢, hanging down from that arc, if
yield(#) = w; yield(t;)w, and M crosses the boundary between w; and yield(z,) », times
and the one between yield(#,) and w, n, times, then the arc is crossed n, + 2, times.

';i<‘_—~— —

M goes right

M goes right

F1c. 8. Simulation of a cs transducer by a ct transducer.
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Hence if M is k-crossing, then M’ is 2k-crossing. In the finite-pass case the construction
should be slightly changed so that M’ will move up to the root and down again whenever
it is at the leftmost or rightmost leaf of the tree (we leave this to the reader).

The formal construction of a ct transducer M’ such that M'(L") = M(L) is as follows.
Let M’ = (Q', 2 x {1, 2,..., max}, 4, &, ¢q;,F), where max is the maximal rank of a
symbol in X, Q' = QU (Q X {1,..., max} x {left, right} x {up, down}), g5 = <{go, -,
right, down) (‘“~> denotes an arbitrary element of {1,..., max}) and &' is defined by the
following requirements.

If 8(qy , o) contains (g, left, ), then §(q,, {0,5)) contains ({g,, j, left, up), up, ).

If 8(q, , o) contains (g, , stay, ), then 8(q, , (o, 7)) contains (g, , stay, w).

If &q, , o) contains (g, , right, @), then §'(¢; , (o, j>) contains ({g,, §, right, up), up, w).

Moreover,

8'(<g, 1, left, up), <o, ;)
= ({g, j, left, up), up, A) if 1=1,
= (<g, -, left, down), down(i — 1), A) if 1>1,
8'({g, -, left, down), {a,j>)
= ({g, -, left, down), down(n), ) if oeZ,,n>1,

and = (g, stay, A) if o€y,
8’(<q’ i l‘ight, UP>, <0',j>)
= (<q’j’ right) UP>) UP, A) lf LA 2,, and i = n,

= ({g, - right, down}, down(i 4 1), A) if ce2,,i<<n,
&'({g, —, right, down), {a,>)

= ({g, -, right, down}, down(1), A) if o2, ,n>=1,

= (g, stay, A) if ocel,.

Note that, when going up, M’ knows from which son it came. It should be clear now
that M'(L") = M(L). The first part of the theorem follows now from Theorem 4.7, the
second part from Lemma 3.3.4 and the third part from Corollary 4.6. |

By taking & = REC it follows that the images of the context-free languages under
2-way gsm mappings are contained in the top-down tree transformation languages.

(5.6) COROLLARY.

ETOLg G DCSp(CF) C 3 T(REC).
ETOLgp G DCS(CF) C yTre(REC).
CS(REG) ¢ CS(CF) C yT(REC).

Proof. The inclusions follow from Corollary 4.11 and the second part of the previous
theorem. Proper inclusions follow from the existence of a context-free language not

in EDTOL. ||
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We conjecture that the remaining inclusions of this corollary are also proper.

In [35] it is shown that, for any full semi-AFL £, DCS¢p(£) can be obtained by iterating
the process of putting control on linear context-free grammars, starting with control
from £, such that the Ath iteration corresponds to 25! passes, i.e.,, DCS¢p(8) =
Un DCSPp1y(8) or ETOLmi(8) = Uy ETOLR1)(£). Consequently DCSp(CF) is equal
to the hierarchy (J £, considered in [39], and in particular 8, = DCSypa—1)(CF).
Hence by the previous theorem and its corollary, £; C 37T (REC). Several results in
[39] can be understood in this light, in particular the examples to prove the hierarchy
proper, which are essentially the Lyx of Theorem 3.2.5.

It is shown in [35, 62] that DCSy(8) is the closure of & under homomorphic replica-
tions [30, 33]. This implies that DCS;p(CF) contains the simple matrix languages of [37]
and the controlled pushdown automata languages of [38]. In [38] it is shown that
DCS4y(CF) is a proper hierarchy, using the counterexamples of Theorem 3.2.5.

In the next theorem we state the main result of this section.

(5.7) TreoreM. If R is a class of tree languages closed under finite-state relabelings,
then yDT(L) and yT1c(8) are closed under dcs transducers, and yTw (L) is closed under
finite-pass dcs transducers. In particular, for k, m 2> 1, DCSyo(m)( ¥ T1et(2)) € ¥ Ticmn(L)
and similarly for fp and ml.

Proof. Recall that yTte(8) = yDT(L) be Lemma 3.2.3, and similarly for ml. Since
L is closed under finite-state relabelings, the classes DT(8), DTyc)(L) and DTy1(L)
are closed under deterministic top-down finite-state relabelings (which are in DTy, 1))
by Theorem 5.4 and Lemma 3.3.4. Hence the first part of Theorem 5.5 is applicable.
Thus DCS(yDT(L)) C yDTR(DT(R)) C yDT(L) by Theorem 5.4 and Lemma 3.3.4.
Similarly, DCStotm(¥DT1(2)) € YD T am(DT1e0(2)) C 3D Trctoms(®), and analo-
gously for fp and ml. ]

Note that yTrmi(REC) is not closed under des transducers by Corollary 3.2.13.
The monadic case of the above theorem is stated next.

(5.8) CoroLLarY, If £ 1is a class of languages closed under sequential machine mappings,
then EDTOL(L) and ETOLg (L) are closed under dcs transducers, and ETOLpy) (L) s
closed under finite-pass dcs transducers.

From ETOLg(2) = DCS(L) we obtain that DCSpe (D CSeetm)(L)) C DCStearm)(L),
and similarly for DCSyy, (as proved in [35], see also [41]). The results on ETOL can also
be understood by saying that ETOLg,y and ETOLm; are “closed under control,” ie.,
ETOLg(ETOLgy) = ETOLgy and ETOLmi(ETOLyy) = ETOLyy; .

Thus yDT(REC), yTtc(REC), EDTOL and ETOLgy are all closed under determi-
nistic 2-way gsm mappings and ETOLgyy is the smallest such class containing the regular
languages. Similarly yTmi(REC), DCS¢y(CF) and ETOLm; are closed under finite-pass
dcs transducers, and ETOLy; is the smallest such class containing REG.

We finally note that similar results cannot be obtained for CS-PD or DCS-PD. For



TREES, L AND TWO-WAY 195

CS-PD, it follows directly from the copying theorems in [24] that ETOL (and yT(REC))
is not closed under dcs transducers. It is known that the language {(a"6)*" | n > 0} is in
DCS-PD(LIN)[7], but not in EDTOL. Consequently, DCS-PD(REG), which is closed
under dcs transducers by Corollary 5.8, is not closed under dcs—pd transducers, and
thus dcs-pd transducers are not closed under composition, or equivalently EDTOL
is not closed under control.

6. Macro GRAMMARS

A rule g(ox) — wyq,(%) wago(%) *** w,q,(¥)w,,, of an ETOL system can be interpreted
in two ways: as a rewriting rule (as we did until now), but also as part of a fixed point
equation saying that if v, is the g,-translation of x then wyv,wv, *** w,v,w,,, is the
g-translation of ox. The same holds for top-down tree transducers. Macro grammars [28]
are an appropriate tool to compute the fixed point of an ETOL system, in a stepwise
fashion. In [13] is was shown that the linear basic macro grammars compute precisely
all EDTOL fixed points, whereas the extended version of these grammars compute the
ETOL fixed points (we note that, dually, EDTOL systems may be viewed as computing
the fixed point of linear basic macro grammars, cf. [25]). Thus, as can also be seen from
the diagram of Fig. 7, ETOL systems are a particular case of both tree transformation
systems and macro grammars (the monadic and the linear case, respectively).

The reason that we include a discussion of macro grammars in this paper is that they
can be generalized in a straightforward way such that they are able to generate the top-
down tree transformation languages. Actually, the generalized model is a particular type
of bottom-up tree transducer (of which the linear basic macro grammar is the monadic
case). Note that the fixed-point computation of an EDTOL language may be viewed as
a bottom-up process; in [5, Vol. II] the working of a GSDT is actually defined by a
bottom-up algorithm.

Thus, both macro grammars and 2-way automata can be considered (after appropriate
generalization) as a general framework for the classes of Fig. 7.

In this section we relate the bounds on ETOL systems, as studied in Section 3, to
natural bounds on macro grammars. We show that the state-bound (and copying-bound)
of an ETOL system corresponds to the maximal number of arguments of the non-
terminals in a macro grammar. For each k there exists an OI macro language that can be
generated with nonterminals of & arguments but not less. In fact the linear basic language
L, of Theorem 3.2.5 is such a language. Hence the number of arguments of the macro
grammar gives rise to a proper hierarchy in the class of OI macro languages (see [47]). It
turns out that ETOLg;y systems correspond to noncopying linear basic macro grammars,
whereas to obtain ETOLy1 no nonterminal of the macro grammar should “combine’’
some of its arguments into one argument of another nonterminal (by the application of
a rule). This shows that the bounds on ETOL systems considered in the previous sections
are also natural from the macro point of view.

We shall treat ED'TOL and its correspondence to the linear basic macro grammars,
and leave the case of ETOL to the reader.

571/20[2-6
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(6.1) DeFINITION. A linear basic macro grammar is a 4-tuple G = (N, 4, S, R),
where N is a ranked alphabet of nonterminals, 4 is the terminal alphabet, S € N is the
initial nonterminal (of rank 0), and R is a finite set of rules of one of the following forms.

(@) A(xy ey X)) — woB(wy .o, W)W,y with n,m >0, AeN,,, BeN,, and
Wy » Wy yeeey Wopq € (X U Y.
(b) Ay s, xp) > wwithm >0, Ae N, , and w e (X, U 4)*.

Sentential forms of G are of the form v, 4(v, ,..., Up)Upyy With A€ N,, and v, v, ...,
Uiy € 4%, Application of a rule A(x, ,..., x,,) — £, denoted by =, to this sentential form
results in the new sentential form vgt[v; ,..., ¥]¥,ny, - Derivations are denoted by %-. The
language generated by G is L(G) = {ve 4* | S* & ¢}, |

The class of languages generated by linear basic macro grammars is denoted by LB.
We now define the relevant restrictions on these grammars.

(6.2) DeFINITION. Let G = (N, 4, S, R) be a linear basic macro grammar. For
k = 0, G is k-argument if all its nonterminals are of rank at most k. G is iterative if in
all its rules of type (a), see Definition 6.1, wy = w,; = A. G is double linear if each x;
occurs at most once in the right-hand side of a given rule. G is triple linear if it is double
linear and in each rule of type (a) each w; (1 < ¢ < ) contains at most one element of
X, ,and wy, w,,ed* |

“k-argument’’ will be denoted by subscript (&), “iterative’’ by I and ‘“‘double’’ and
“triple linear” by L? and L3, respectively. Thus IL2B(;) denotes the class of languages
generated by iterative k-argument double linear basic macro grammars.

We note that ILB = LB, IL2B = LB and IL3B == L3B. (Provide each nonterminal
with two new arguments x, and x., and change a rule of type (a) into A(x, , % ,..., X, , X)
— B(xg20y , Wy 5.0y Wy, , Wyy3¥e) and a rule of type (b) into A(xy , %y ..., Xy , X} —> XWX
This is not true for the k-argument classes.

The correspondence between the bounds on EDTOL systems and those on linear
basic macro grammars is stated in the next theorem.

(6.3) Tueorem. (i) For k > 1, EDTOLqy = ILBy , ETOLpngy = IL?*Bg) and
ETOLmy = IL?Bg, .

(i) EDTOL = LB, ETOLyn = L?B and ETOLy = L3B.

Proof. 1t suffices to show (i). We shall use refinements of the ideas of [13].

To prove that EDTOL) CILBy), let M = (0,2, 4,q,, R) be an EDTOL,
system. To simulate M by an ILB grammar we shall use the state-sets of M as nonterminals
and for each state in the state-set we will keep a string derivable from this state in an
argument of the nonterminal. Thus the grammar will be k-argument. Assume that the
elements of Q are ordered in some fixed way; we shall always write the elements of a
subset of Q in that order. Construct the ILB grammar G = (N, 4, S, R;), where N is
the set of all subsets of Q with cardinality at most % (the rank of a subset is its cardinality),
S = @ and R; contains the rule {g; ,..., ¢, }#; ..., %,) = { P1 1o0s P}y 5., W;) iff there
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exists 6 € 2 and u; ,..., #,€ (4 U {gy(%),..., ¢(x)})* such that, for 1 << i <, pi(ox) — #;
is in R and w; is the result of replacing each g;(x) by x; in #; (for 1 <j < 7), i.e, 4, =
w;[qy(x),..., g,(x)]; moreover R contains the rule {g}(x) — x.

It can be proved by induction that @ % {g,,..., ¢,}(v; ,..., v,) in G (with v, € 4%) if
and only if there exists v & Z* such that ¢,(v) & v, (for 1 < i < 7) and the derivation
¢,(v) - ¢{v) & v, - v, has state-bound k. This shows that L(G) = L(M).

The proof that EDTOL gy C IL?Byy is entirely similar. This time the nonterminals
are the state-sequences of the ED'TOL system, and in the above construction the set-
notation {g, ,..., ¢,} should be replaced by the sequence-notation (g, ,..., ¢,>. The only
other change is that in the condition for a rule to be in R the requirement wu, - u, €
A*q(x) Ad*gy(x) --- A*q,(x)4* should be added. The same statement as above can now
be proved with respect to copying-bound k. To show that ETOLm1(,) C IL3B,, one has
to delete the rule {g>(x) — » and replace each right-hand side of the form {g,>(w) by =.

We now show that ILB() C EDTOL ) . Let G = (NN, 4, S, R) be an ILB ;) grammar.
By viewing the variables x; as new terminal symbols it should be clear that each non-
terminal 4 € N,, generates a languages L ,(G) = {we (4 U X,,))* | A(x ,..., x,) & w}; cf.
[28]. We shall construct a regular controlled EDTOL system M that generates strings
of L (G) for all A € N. The variables x; will be used as states of M (and consequently M
has state-bound %) and an application of a rule A(x, ,..., x,) — B(w, ,..., w,) will be
simulated using the fact that if B(x, ,..., x,) % w, then A(x, ..., x,,) = B(w, ,..., w,) %
w[wy ,..., w,]. The correct order of application of these rules will be ensured by a regular
control language. Formally we construct M = (Q, 2, 4, q,, Ry) such that QO =
{90 > 41 »---» 93} (Where g, ,..., g, simulate x; ..., &, , and g, is new), 2 = R and the elements
of R, are obtained as follows.

If o is the rule A(x, ,..., x,) = B(wy ,..., w,,), then the rule g,(ox) — w,[g;(x),..., ¢ (*)]
is in Ry for each 7, 1 < 7 < n. If o is the rule A(x, ,..., x,,) — w, then the rule g,(ox) —
w[gy(%),..., gm(®)] is in Ry, .

It can easily be proved by induction that A(x, ,..., x,,) %, w if and only if g, (v®V) %,
w[gy(A),..., ¢m(A)], where v denotes the sequence of rules applied in the derivation
Ay ooy 2,,) & w, and o™ its reverse. Hence L(G) = M(L), where L is the (obviously
regular) language of all v € Z* such that S %, w for some w € 4*. Hence, by Theorem
3.2.2, L(G) e EDTOL, . If G is double linear and A(x, ,..., x,,) & w, then w contains
each x; at most once; hence, by the above statement, each ¢; occurs at most once in each
(parallel) sentential form of M; consequently M has index k. If G is triple linear, then M
is metalinear. J

The definition of an extended LB grammar (ELB grammar) is obtained from Definition
6.1 by allowing w, ,..., w, in rules of type (a) to be finite subsets of (X,, U 4)*. It was
shown in [13] that ELB = ETOL. The proof of Theorem 6.3 can be extended to show
that, for £ > 1, ETOL(k) = IELB(k) .

Another obvious way to extend LB grammars is by allowing control. It should be clear
from the proof of Theorem 6.3 that this theorem can easily be extended to control
languages.

We now discuss the link between macro grammars and top-down tree transducers.
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An iterative linear basic macro grammar can also be viewed as a particular kind of bottom-
up tree-to-string transducer (with monadic input tree): if o denotes the rule A(x, ,..., x,,)
— B(w, ,..., w,), then the corresponding rule for the bottom-up transducer would look
like o(A(%y 5.y %)) — B(wy ..., w,), where 4 and B are states of the transducer and ¢
is a unary input symbol. Generalizing to arbitrary input trees we obtain a type of bottom-
up tree transducer with rules of the form o(4y(xy,1 yes X1m )seess Ar(Fre1 sees X, )) =
B(w, ,..., w,), where ¢ is an input symbol of rank &, symbols 4, ,..., 4, , B are states of
the transducer, and w, ,..., w, are strings of terminals and variables x; ; . Intuitively, the
transducer arrives at the top of the ith subtree of ¢ in state 4;, holding m; translations
of that subtree, and then moves up to o in state B, computing the » translations of the
tree in terms of those of the subtree (using the ;). Thus it computes several translations
of each subtree simultaneously, instead of just one (as in the case of the classical bottom-
up tree transducer [18]). Such bottom-up tree transducers were investigated recently in
[64]. Their relationship to the top-down tree-to-string transducer should be clear. It is
left to the reader to prove the analogue of Theorem 6.3.

Theorem 6.3 and 3.2.5 show that ILB is a proper hierarchy with respect to the number
of arguments. In the rest of this section we shiow that the class OI of arbitrary Ol macro
languages (see [28] for a definition) is also a hierarchy with respect to the number of
arguments, with the same counterexamples as those in Theorem 3.2.5; see [47]. We start
with LB. Let L, = {a," -~ a3, |n = 0}.

(6.4) LEMMA. For k = 2, Ly is in LB,y but not in LB, ) .
Proof. 'To see that L; is in LBy,_,) consider the grammar with rules

S — A(A,..., A),
A%y youry X y) = @y A(agxia;, @425a5 ..., Q5% 18031 )oy,
ARy yoony Xy_y) = Xy -t Xy

Note that this grammar is even triple linear.

To prove that L, ¢ LB(;_, we shall' prove that if L, € LB, then L,_, e ILB(, . This
shows that if L, € LB(;_, then L, ; € ILB(_, which is false by Theorems 6.3 and
3.2.5.

Assume that L; € LBy, for some s >> O and-let G = (&, 4, S, R) be an LB, grammar
generating L, . We first change G in such a way that for each sentential form
VAT yorey U )Umiq it knows alph(z;) for 0 << i << m 4 1. It should be clear that this
information can be “added’’ to the nonterminal 4 (by creating a new nonterminal 4,
for each possible piece of information d, where d is, say, a mapping from {x, , x, ,..., Xy, 1}
into the subsets of 4). Suppose that the new G contains a rule Ag(x, ,..., x,) —
weB (% ..., Wy)Wnyy such that e informs us.that the string to the left of B contains a
symbol different from a, (i.e., e(x,) € {a;}). This means that, when this rule is used in a
derivation of a string a,7a,? -** a, , the substring 4,? has already been generated and,
therefore, the rest of the string is completely determined. We can therefore change the
above rule into Ay(x, ,..., x,,) = wew[wy ,..., W,]Wpy , where w e (4 U X,)* is any string
such that B,(x, ,..., x,) & w. A similar reasoning applies to the right context of B,(-*-)
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and a,; . Hence, after these changes, all rules of type (a) are of the form Ay(x, ,..., ¥,,) —
WoB (W1 yerry Wo)Wpyy With wy € af and w, ., € afi . By replacing each @, and each a,;, in
the rules by A, we obtain an ILB(, grammar for the language {a,"a," *** ag;_; | n > 0}
and hence, by renumbering the a;, for L,_, . This shows the lemma. [

Let OI) denote the class of all OI macro languages that can be generated by OI
macro grammars for which the nonterminals have at most rank k. The next theorem
shows that {OI;)} is a proper hierarchy.

(6.5) TueoreM. For k = 2, L, is in LB,y but not in Ol_,) .

Proof. It was shown in the previous lemma that L, € LB ;) . It should be clear
that L, ¢ Ol , because Ol = CF. For & > 3 we shall show that if L, € Ol _,) , then
L, € LB(,_, which is false by the previous lemma.

As mentioned in [24] it was shown in [28] that if an OI macro language has “property
P1,” then it is in LB. A language L over alphabet 4 has property P1 if the following
holds: if xuy, xu'y, x'uy’, and x'«’y’ are in L, then 4 = u’ or {x,y) = {x,y"). The
construction involved in the proof of the above fact (see Lemma 4.3.6 of [28]) changes
each rule A(x, ,..., ®,) — w into all possible rules A(x, ,..., x,,}) — @', where @' is ob-
tained from w by substituting for each occurrence of a nonterminal, except one, a string
generated by that nonterminal (cf. the proof of Lemma 6.4). Clearly this construction
preserves the number of arguments (actually in [28] a normal form theorem is applied
which preserves the number of arguments » only if n > 2; it is however easy to provide
a similar proof for the case # = 1). This shows that for » > 1 if L € OI, and L has
property P1, then L € LB, . It is quite easy to see that, for 2 > 3, L;, has property P1.
Hence, for k > 3, if L, € OI,_,) , then L, € LBy, . This proves the theorem. ||

It can be proved by similar methods that L, cannot be generated by an 10 macro
grammar with less than 2 — 1 arguments.

CONCLUSION

A survey has been given of the relationship between the top-down tree transducer
and the ct—pd transducer, and several of their varieties obtained by determinism, monadic
input alphabet (ETOL systems), copying-bound and metalinearity. Using results of [26]
it was shown that many classes of tree transformation languages and indexed languages
can be obtained by simple variations in the machine model, showing the similarities
and differences between these two kinds of languages, which are related via the ETOL
languages.

For each of the transducers considered in this paper one may investigate closure under
composition and, in case of a negative answer, whether their iteration gives rise to a
proper hierarchy of classes of languages. Using the results of this paper (and in particular
the concept of finite copying) it is shown in [23] that a proper hierarchy is obtained for
the top-down tree transducer, the cs—pd transducer (= ETOL mapping) and the cs
transducer (= 2-way gsm).
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We mention the following areas of further research, apart from problems discussed
in the paper such as restriction of rank (see after Theorem 5.1) and the properness of
the inclusions in Corollary 5.6.

(1) Polynomial copying. As mentioned before, a polynomial bound on the copying
power of deterministic top-down tree transducers was investigated in [4], and, for the
monadic case, in [6]. It is worthwhile to investigate the corresponding classes of languages
more deeply and to find a (pebble) machine model for them.

(2) Extensions to both the ct—pd transducer and the s—pd machine. A generalization
of both these machines might lead to a formal model of the syntax-directed translation
of non-context-free languages. One possibility is to generalize the pushdown of the ct—pd
transducer to be a stack or even an s—pd (still synchronized with the input pointer, of
course).
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