
1

Design techniques for low power systems

Paul J.M. Havinga, Gerard J.M. Smit

University of Twente, department of Computer Science
P.O. Box 217, 7500 AE Enschede, the Netherlands

e-mail: {havinga, smit}@cs.utwente.nl

Abstract

Portable products are being used increasingly. Because these systems are battery powered,
reducing power consumption is vital. In this report we give the properties of low power
design and techniques to exploit them on the architecture of the system. We focus on: min-
imizing capacitance, avoiding unnecessary and wasteful activity, and reducing voltage
and frequency. We review energy reduction techniques in the architecture and design of a
hand-held computer and the wireless communication system, including error control, sys-
tem decomposition, communication and MAC protocols, and low power short range net-
works.

Keywords: low power, system architecture, mobile computing, wireless communication.

1 Introduction
The requirement of portability of hand-held computers and portable devices places severe
restrictions on size and power consumption. Even though battery technology is improving
continuously and processors and displays are rapidly improving in terms of power consump-
tion, battery life and battery weight are issues that will have a marked influence on how
hand-held computers can be used. These devices often require real-time processing capabili-
ties, and thus demand high throughput. Power consumption is becoming the limiting factor in the
amount of functionality that can be placed in these devices. More extensive and continuous
use of network services will only aggravate this problem since communication consumes rel-
atively much energy. Research is needed to provide intelligent policies for careful manage-
ment of the power consumption while still providing the appearance of continuous
connections to system services and applications.

The advance of technology

Over the past two decades the semiconductor technology has been continuously improved
and has lead to ever smaller dimensions of transistors, higher packaging density, faster cir-
cuits, and lower power dissipation. The trend is expected to continue beyond the year 2000.
Over the past five years, feature sizes have dropped from about f=0.8µ to about f=0.35µ. Sem-
iconductor Industry Associates (SIA) have developed a road map for the next few years (see
figure 1). It is expected that a feature size of f=0.1µ will be reached in 2007 within the context
of our current CMOS technology. Such advances provide an effective area increase of about
an order of magnitude. To avoid the effect of high electric fields which would be present in
very small devices, and to avoid the overheating of the devices, power supply must be scaled
down. The power supply voltage is expected to be as low as 1.2 V in 2007.

This rapid advance in technology can be used for several goals. It can be used to increase per-
formance, to add functionality, but also to reduce energy consumption. The current trend is to
focus on high performance processors as this is the area in which a semiconductor vendor can
enhance its status [5]. Therefore, the architecture of a general purpose processor is most

2

widely studied, and optimizations for processor performance is the main goal. The advance in
technology has lead to a number of processor improvements like superscalar technology,
reduction in cycle time, large on-chip caches, etc.

However, another environment that will rapidly become more important in the near future is
that of application specific or embedded processors. The goal of these processors is to opti-
mize the overall cost-performance of the system, and not performance alone. The modern appli-
cation specific processors can use the same technology to increase functionality to provide
services such as compression and decompression, network access, and security functions. For
example, instead of the compromise of including ‘main memory’ on the chip, one could
explicitly include dedicated memory space for the functional units. This memory can be used
locally for network buffers, video buffers, etc. In this way the data flow in the system is
reduced and a bottleneck (access to main memory) is avoided. This is also a good example of
how area space can be used to decrease energy consumption as by exploiting this locality of ref-
erence, the energy consumption of the system is reduced as well. In fact, many energy reduc-
tion techniques will show to have the trade-off between chip area and energy consumption.

Background

Several researchers have studied the power consumption pattern of mobile computers. How-
ever, because they studied different platforms, their results are not always in line, and some-
times even conflicting. Lorch reported that the energy use of a typical laptop computer is
dominated by the backlight of the display, the disk and the processor [12]. Stemm et al. con-
cluded that the network interface consumes at least the same amount of energy as the rest of
the system (i.e. a Newton PDA) [25]. If the computer is able to receive messages from the net-
work even when it is ‘off’, the energy consumption increases dramatically. Ikeda et al.
observed that the contribution of the CPU and memory to power consumption has been on
the rise the last few years [6]. Laptops use several techniques to reduce this energy consump-
tion, primarily by turning them off after a period of no use, or by lowering the clock fre-
quency. Some researchers proposed to replace the hard disk by a flash RAM.

Note that there is an inherent trade-off between energy consumption and performance, since
low-power techniques have associated disadvantages. For instance, decreasing the CPU fre-

1980 201020001990

103

109

107

105

1011

30 MHz

1 GHz

600 MHz

300 MHz

60 MHz

150 MHz
16 K

16 G

1 G

64 M

4 M

256 K

transistors
per chip

memory

logic

Figure 1: 1994 SIA road map summary

3

quency can raise response time, and spinning down the disk causes a subsequent disk access
to have a high latency.

Outline of the paper

With the increasing integration levels, energy consumption has become one of the critical
design parameters. Consequently, much effort has to be put in achieving lower dissipation at
all levels of the design process. It was found that, in spite of the progress in the field of low-
power computing, most of that progress is in components research: better batteries with more
power per unit weight and volume; low power CPUs; very low power radio transceivers; low
power displays. But there is very little systems research on low power systems. While low-
power components and subsystems are essential building blocks for portable systems, we
concentrate on dedicated low-power hardware and software architectures. A system wide
architecture is beneficial because there are dependencies between subsystems, e.g. optimiza-
tion of one subsystem may have consequences for the energy consumption of other modules.

There is a vital relationship between hardware architecture, operating system and applica-
tions, where each benefits from the others. Therefore, energy reduction techniques have to be
applied in all design levels of the system. First of all, we have to use components that use the
latest developments in low power technology. Furthermore, as the most effective design deci-
sions derive from the architectural and system level, a cautious design at these levels can
reduce the power consumption considerable. However, it is not just a problem of the power-
conscious hardware designer, but also involves careful design of the operating system and
application programs. Furthermore, because the applications have direct knowledge of how
the user is using the system, this knowledge must be penetrated into the power management
of the system.

In this paper we will discuss a variety of energy reduction approaches that can be used for
building an energy efficient system. We first explore sources of energy consumption and show
the basic techniques used to reduce the power dissipation. Then we give an overview of
energy saving mechanisms at the system and architectural level. Finally, we will show as an
example techniques used in the Moby Dick project to reduce energy consumption at the archi-
tectural and system level.

2 Properties of low power design
Throughout this paper, we discuss ‘power consumption’ and methods for reducing it.
Although they may not explicitly say so, most designers are actually concerned with reducing
energy consumption. This is because batteries have a finite supply of energy (as opposed to
power, although batteries also put limits on peak power consumption as well). Energy is the
time integral of power; if power consumption is a constant, energy consumption is simply
power multiplied by the time during which it is consumed. Reducing power consumption
only saves energy if the time required to accomplish the task does not increase too much. A
processor that consumes more power than a competitor may or may not consume more
energy for a certain program. For example, even if processor A’s power consumption is twice
that of processor B, A’s energy consumption could actually be less if it can execute the same
program more than twice as quickly as B.

2.1 Design flow

The design flow of a system constitutes of various levels of abstraction. When a system is
designed with the emphasis on power optimization as a performance goal, then the design
must embody optimization at all levels of the design flow. In general there are three levels on
which energy reduction can be incorporated. The system level, the architecture level, and the

4

technological level. For example, at the system level inactive modules may be turned of to save
power. At the architectural level, parallel hardware may be used to reduce global interconnect
and allow a reduction in supply voltage without degrading system throughput. At the tech-
nological level several optimisations can be applied at the gate level.

The system and architecture have to be designed targeted to the possible reduction of energy
consumption at the gate level. An important aspect of the design flow is the relation and feed-
back between the levels. Figure 2 shows the general design flow of a system with some exam-
ples of where or how energy reduction can be obtained.

Given a design specification, a designer is faced with several different choices on different lev-
els of abstraction. The designer has to select a particular algorithm, design or use an architec-
ture that can be used for it, and determines various parameters such as supply voltage and
clock frequency. This multi-dimensional design space offers a large range of possible trade-
offs. The most influence on the properties of a design is obtainable at the highest levels. There-
fore the most effective design decisions derive from choosing and optimizing architectures
and algorithms at the highest levels. It has been demonstrated by several researchers [24] that
system and architecture level design decisions can have dramatic impact on power consump-
tion. However, when designing a system it is a problem to predict the consequences and effec-
tiveness of design decisions because implementation details can only be accurately modelled
or estimated at the technological level and not at the higher levels of abstraction.

2.2 CMOS component model

Most components are fabricated using CMOS technology. The sources of energy consumption
on a CMOS chip can be classified as static and dynamic power dissipation. Static energy con-
sumption is caused by short circuit currents (Psc), bias (Pb) and leakage currents (Pl). Dynamic
energy consumption (Pd) is caused by the actual effort of the circuit to switch.

P = Pd + Psc + Pb + Pl (1)

system

architecture

technological

scheduling

communication error control

medium access protocols

compression method

hierarchical memories

system partitioning

energy manager

compiler

reducing voltage

clock frequency control

asynchronous design

reduce on-chip routing

abstraction level examples

Figure 2: General design flow and related examples for energy reduction

parallel hardware

5

The contributions of this static consumption are mostly determined at the circuit level. During
the transition on the input of a CMOS gate both p and n channel devices may conduct simul-
taneously, briefly establishing a short from the supply voltage to ground. This effect causes a
power dissipation of approx. 10 to 15%. Also, lower operating voltages as being used nowa-
days, tend to reduce the short circuit component. While statically-biased gates are usually
found in a few specialized circuits such as PLAs, their use has been dramatically reduced in
CMOS design [3]. Leakage currents also dissipate static energy, but are also insignificant in
most designs (less than 1%).

In general we can say that careful design of gates generally makes their power dissipation
typically a small fraction of the dynamic power dissipation, and hence will be omitted in fur-
ther analysis.

The dominant component of energy consumption (85 to 90%) is CMOS is therefore dynamic. A
first order approximation of the dynamic power consumption of CMOS circuitry is given by
the formula:

Pd = Ceff V2 f (2)

where Pd is the power in Watts, Ceff is the effective switch capacitance in Farads, V is the sup-
ply voltage in Volts, and f is the frequency of operations in Hertz [9]. The power dissipation
arises from the charging and discharging of the circuit node capacitances found on the output
of every logic gate. Every low-to-high logic transition in a digital circuit incurs a voltage
change ∆V, drawing energy from the power supply. Ceff combines two factors C, the capaci-
tance being charged/discharged, and the activity weighting α, which is the corresponding
probability that a transition occurs.

Ceff = α C (3)

A designer at the technological and architectural level can try to minimize the variables in
these equations to minimize the overall energy consumption. However, as will be shown in
the next sections, power minimization is often a subtle process of adjusting parameters in var-
ious trade-offs.

2.3 Battery model

A significant amount of work on the development of new batteries has been done in recent
years. Batteries have become smaller and they have more capacity. The capacity of the battery
is strongly influenced by the available relaxation time between current pulses. By taking into
consideration the dynamic charge recovery, it is possible for most types of batteries to get
more out of a given battery. In [30] the authors studied cylindrical alkaline cells subject to a
periodically pulsed current discharge, and found that the cell capacity increases as the duty
cycle decreases and the frequency increases. When the system has knowledge of these battery
characteristics, the behaviour and energy demands of the system can be adapted such that it
tries to discharge the battery only when completely recovered from the previous discharge.

3 Reducing power at the technological level
The equations 2 and 3 suggest that there are essentially four ways to reduce power:

• reduce the capacitive load Ceff,

• reduce the supply voltage V,

• reduce the switching frequency f,

• reduce the activity α.

6

3.1 Minimize capacitance

Energy consumption in CMOS circuitry is proportional to capacitance. Therefore a path that
can be followed to reduce energy consumption is to minimize the capacitance. This can not only
be reached at the technological level, but much profit can be gained by an architecture that
exploits locality of reference and regularity. Connections to external components typically have
much greater capacitance than connections to on-chip resources. Therefore, in order to save
energy, use few external outputs, and have them switch as infrequently as possible. For exam-
ple, accessing external memory consumes much energy. So, a way to reduce capacitance is to
reduce external accesses and optimize the system by using on-chip resources like caches and
registers.

Routing capacitance is the main cause of the limitation in clock frequency. Circuits that are able
to run faster can do so because of a lower routing capacitance. Consequently, they dissipate
less power at a given clock frequency. So, energy reduction can be reached by optimizing the
clock frequency of the design even if the resulting performance is far in excess of the require-
ments [28].

Another way to reduce capacitance is to reduce chip area. However, note that a sole reduction
in chip area could lead to an energy-inefficient design. For example, a energy efficient archi-
tecture that occupies a larger area can reduce the overall energy consumption, e.g. by exploit-
ing locality in a parallel implementation.

3.2 Reduce voltage and frequency

One of the most effective ways of energy reduction of a circuit at the technological level is to
reduce the supply voltage, because the energy consumption drops quadratically with the sup-
ply voltage. For example, reducing a supply voltage from 5.0 to 3.3 volts (a 44% reduction)
reduces power consumption by about 56%. As a result, most processor vendors now have low
voltage versions. The problem that then arises is that lower supply voltages will cause a
reduction in performance. In some cases, low voltage versions are actually five volt parts that
happen to run at the lower voltage. In such cases the system clock must typically be reduced
to ensure correct operation. Therefore any such voltage reduction must be balanced against
any performance drop. To compensate and maintain the same throughput, extra hardware
can be added. This is successful up to the point where the extra control, clocking and routing
circuitry adds too much overhead [21]. In other cases, vendors have introduced ‘true’ low
voltage versions of their processors that run at the same speed as their five volt counterparts.

The variables voltage and frequency have a trade-off between delay and energy consumption.
Reducing clock frequency f alone does not reduce energy, since to do the same work the sys-
tem must run longer. As the voltage is reduced, the delay increases. A common approach to
power reduction is to first increase the performance of the module - for example by adding
parallel hardware -, and then reduce the voltage as much as possible so that the required per-
formance is still reached (figure 3). Therefore, a major theme in many power optimization
techniques is to optimize the speed and lower the critical path, so that the voltage can be
reduced. However, these techniques often translate in larger area requirements, hence there is
a new trade-off between area and power.

Weiser et al. [27] have proposed a system in which the clock frequency and operating voltage
is varied dynamically under control of the operating system while still allowing the processor
to meet its task completion deadlines. They point out that in order to operate properly at a
lower voltage, the clock rate must be simultaneously reduced.

7

3.3 Avoid unnecessary activity

The activity weighting α of equation 3 can be minimized by avoiding unnecessary and wasteful
activity. There are several techniques to achieve this.

Clock control

Because CMOS power consumption is proportional to the clock frequency, dynamically turn-
ing off the clock to unused logic or peripherals is an obvious way to reduce power consump-
tion [7, 10]. Control can be done at the hardware level or it can be managed by the operating
system or the application. Some processors and hardware devices have sleep or idle modes.
Typically they turn off the clock to all but certain sections to reduce power consumption.
While asleep, the device does no work. A wake-up event wakes the device from the sleep
mode. Devices may require different amounts of time to wake up from different sleep modes.
For example, many ‘deep sleep’ modes shut down on-chip oscillators used for clock genera-
tion. A problem is that these oscillators may require microseconds or sometimes even milli-
seconds to stabilize after being enabled. So, it is only profitable to go into deep sleep mode
when the device is expected to sleep for a relatively long time.

The technique of dynamically turning off the clock can also be applied to the design of syn-
chronous finite state machines (FSM). For example Koegst et al. [8] use gated clocks in FSM
designs to disable the state transition of so called self-loops.

Minimizing transitions

Energy consumption is proportional to the frequency at which signals change state from 0 to 1
or vice-versa and to the capacitance on the signal line. This is true for every signal path in a
system, whether it is a clock signal, a data pin, or an address line. This implies that power
consumption can be reduced by carefully minimizing the number of transitions. In this con-
text we can state that a correct choice of the number representation can have a large impact on
the switching activity. For example, program counters in processors generally use a binary
code. On average, two bits are changed for each state transition. Using a Gray code, which
will typically result in single bit changes, can give interesting energy savings. However, a
Gray code incrementer requires more transistors to implement than a ripple carry incre-
menter [20]. Therefore a combination can be used in which only the most frequently changing
LSB bits use a Gray code.

Asynchronous design

performance

total power
consumption

constant voltage

voltage

Figure 3: Impact of voltage scaling and performance to total power consumption

reduction

required
performance

8

Another way to avoid unnecessary activity is by applying an asynchronous design methodology.
CMOS is a good technology for low power as gates only dissipate energy when they are
switching. Normally this should correspond to the gate doing useful work, but unfortunately
in a synchronous circuit this is not always the case. Many gates switch because they are con-
nected to the clock, not because they have new inputs to process. The biggest gate of all is the
clock driver that must distribute a clock signal evenly to all parts of a circuit, and it must
switch all the time to provide the timing reference even if only a small part of the chip has
something useful to do. A synchronous circuit therefore wastes power when particular blocks
of logic are not utilized, for example, to a floating point unit when integer arithmetic is being
performed.

Asynchronous circuits though are inherently data driven and are only active when perform-
ing useful work. Parts of an asynchronous circuit that receives less data will automatically
operate at a lower average frequency. Unfortunately, extra logic is required for synchroniza-
tion, so asynchronous circuits are larger than synchronous circuits.

Reversible logic

Reversible logic [17] or adiabatic logic tries to reduce energy consumption by not erasing infor-
mation. Today’s computers erase a bit of information every time they perform a logic opera-
tion. These logic operations are therefore called ‘irreversible’. We can improve the efficiency of
erasing information with conventional methods, such as used in large cache systems. An
alternative is to use logic operations that do not erase information. These are called reversible
logic operations, and in principle they can dissipate arbitrarily little heat. To achieve a com-
pletely reversible system (which erases no bits at all) is very difficult.

4 Low power system level design
In the previous section we have explored sources of energy consumption and showed the low
level design techniques used to reduce the power dissipation. In this section we will concen-
trate on these techniques at system level and the relevance for low power system design.

The two main themes that can be used for energy reduction at system level are:

• avoid unnecessary activity, and

• exploit locality of reference.

4.1 Hardware system architecture

The implementation dependent part of the power consumption of a system is strongly related
to a number of properties that a given system or algorithm may have [22]. The component
that contributes a significant amount of the total energy consumption is the interconnect.
Experiments have demonstrated that in designs, about 10 to 40% of the total power may be
dissipated in buses, multiplexers and drivers. This amount can increase dramatically for sys-
tems with multiple chips due to large off-chip bus capacitance. The power consumption of the
interconnect is highly dependent on algorithm and architecture-level design decisions. Two
properties of algorithms are important for reducing interconnect power consumption: locality
and regularity.

Locality relates to the degree to which a system or algorithm has natural isolated clusters of
operation or storage with a few interconnections between them. Partitioning the system or
algorithm into spatially local clusters ensures that the majority of the data transfers take place
within the clusters and relatively few between clusters. The result is that the local buses are
shorter and more frequently used than the longer highly capacitive global buses. Locality of

9

reference can be used to partition memories. Current high level synthesis tools are targeted to
area minimization. For power reduction, however, it is better to minimize the number of
accesses to long global buses and have the local buses be accessed more frequently. In a direct
implementation targeted at area optimization, hardware sharing between operations might
occur, destroying the locality of computation. An architecture and implementation should
preserve the locality and partition and implement it such that hardware sharing is limited.
The increase in the number of functional units does not necessarily translate into a corre-
sponding increase in the overall area and energy consumption since (1) localization of inter-
connect allows a more compact layout and (2) fewer (access to) multiplexers and buffers are
needed.

Regularity in an algorithm refers to the repeated occurrence of computational patterns. Com-
mon patterns enable the design of less complex architecture and therefore simpler intercon-
nect structure (buses, multiplexers, buffers) and less control hardware. These techniques have
been exploited by several researchers (e.g. Mehra [16] and Rabaey [22]), but mainly in the DSP
domain where a large set of applications inherently have a high degree of regularity.

We will now show two mechanisms that exploit locality of reference to reduce energy con-
sumption.

A. Application specific modules

Localization reduces the communication overhead in processors and allows the use of mini-
mum sized transistors, which results in drastic reductions of capacitance. Pipelining and
caching are examples of localization. Another way to reduce data traffic is to integrate a proc-
essor in the memory, as for example proposed by Patterson in intelligent RAM [19, 15].

At system level locality can be applied to divide the functionality of the system into dedicated
modules [1]. When the system is decomposed out of application-specific coprocessors the
data traffic can be reduced, because unnecessary data copies are removed. For example, in a
system where a stream of video data is to be displayed on a screen, the data can be copied
directly to the screen memory, without going through the main processor.

Furthermore, processors often have to perform tasks for which they are not ideally suited.
Although they can perform such tasks, they may still take considerably longer, and might be
more energy demanding, than a custom hardware implementation. Application-specific inte-
grated circuits (ASICs) or dedicated processors placed around a standard processor can offer
an alternative approach. A system designer can use the processor for portions of algorithms
for which it is well suited, and craft an application-specific coprocessor (e.g. custom hard-
ware) for other tasks. This is a good example of the difference between power and energy:
although the application-specific coprocessor may actually consume more power than the
processor, it may be able to accomplish the same task in far less time, resulting in a net energy
savings.

By careful repartitioning a system, not only the power consumption can be reduced but the
performance is actually improved as well [14].

B. Hierarchical memory systems

Hierarchical memory systems can be used in a processor system to reduce energy consump-
tion. The basic idea is to store a frequently executed piece of code or frequently used data in a
small memory close to or in the processor (a cache). As most of the time only a small memory
is read, the energy consumption is reduced.

Memory considerations must also be taken into account in the design of any system. By
employing an on-chip cache significant power reductions together with a performance

10

increase can be gained.

Apart from caching data and instructions at the hardware level, caching is also applied in the
filesystem of an operating system. The larger the cache, the better performance. Energy con-
sumption is reduced because data is kept locally, and thus requires less data traffic. Further-
more, the energy consumption is reduced because less disk and network activity is required.

The compiler can have impact on power consumption by reducing the number of instructions
with memory operands. The most energy can be saved by a proper utilization of registers
[26]. It was also noted that writes consumes more energy, because a processor with a write-
through cache (like the Intel 486) always causes an off-chip memory operation.

When the memory is divided into several small blocks that individually can be powered
down, then the memory allocation strategy and garbage collector of the operating system can
take benefit of this by allocating the memory being used in clustered memory blocks, such
that memory that is not used is not spread around all memory banks.

4.2 Energy reduction in communication

The wireless network interface of a mobile computer consumes a significant fraction of the
total power [25]. Measurements show that on typical applications like a web-browser or e-
mail, the energy consumed when the interface is on and idle is more than the cost of receiving
packets. This is because the interface is generally longer idle than actually receiving packets.
Furthermore, switching between states (i.e. off, idle, receiving, transmitting) consumes time
and energy.

The concept of Quality of Service will be an important issue for the management of multime-
dia traffic in which delay, jitter, latency, packet loss, etc. are important parameters. When
energy constraints are taken into account, then classic network protocols might perform
badly.

There are a number of energy reduction techniques possible in the architecture of a wireless
communication system. A careful design of all network layers is required. There are several
ways to achieve a reduction in energy consumption here: e.g. by applying dedicated wireless
error control, by system decomposition, by using hybrid networking with low power short
range networks, and by applying power aware MAC protocols.

A. Error control

Wireless networks have a much higher error rate than the normal wired networks. The errors
that occur on the physical channel are caused by phenomena like multipath, fading and user
mobility. The most relevant errors that occur are related to block errors that have a bursty
nature. Packet switching communication schemes will likely be the basis for most currently
designed wireless systems. Therefore most errors will occur as packet errors.

Error correcting codes like FEC (Forward Error Correction) are mainly used at the data link
layer to reduce the impact of errors in the wireless connection. In most cases, these codes pro-
vide less than perfect protection and some amount of residual errors pass through. Higher
level protocol layers employ various block error detection and retransmission schemes such
as Go-Back-N and Selective Repeat.

In the design of error control mechanisms, the current issues are mainly complexity, buffering
requirements, throughput and delay. When energy constrains are taken into account, then
these classic ARQ (Automatic Repeat reQuest) protocols, perform badly because these proto-
cols keep retransmitting and spending energy. Alternative schemes, that try to avoid trans-
mitting during bursty error conditions, might perform more energy efficient with a slight loss

11

in throughput [31].

Forward Error Correction (FEC) can be used to improve the performance and to reduce
energy consumption not only at the data link level, but also in higher levels of the protocol
stack [23]. In particular, FEC can be beneficial for reliable multicast communication, because it
reduces the number of acknowledgements. Current error correction codes perform well when
the errors are independent, whereas their efficiency is usually less in the presence of bursty
errors.

Errors on the wireless link can be propagated in the protocol stack. In the presence of a high
packet error rate and periods of intermittent connectivity characteristics of wireless links,
some network protocols (such as TCP) may overreact to packet losses, mistaking them for
congestion. TCP responds to all losses by invoking congestion control and avoidance algo-
rithms. These measures result in a unnecessary reduction in the link’s bandwidth utilization
and increases in energy consumption because it leads to a longer transfer time. The limita-
tions of TCP can be overcome by a more adequate congestion control during packet errors.
These schemes choose from a variety of mechanisms to improve end-to-end throughput, such
as local retransmissions, split connections and forward error correction. In [2] several schemes
have been examined and compared. These schemes are classified into three categories: end-to-
end protocols, where the sender is aware of the wireless link; link-layer protocols, that provide
local reliability and shields the sender from wireless losses; and split-connection protocols, that
break the end-to-end connection into two parts at the base station. Their results show that a
reliable link-layer protocol with some knowledge of TCP provides good performance, more
than using a split-connection approach. Selective acknowledgement schemes are useful, espe-
cially when the losses occur in bursts.

B. System decomposition

In normal systems much of the network protocol stack is implemented on the main processor.
Thus, the network interface and the main processor must always be on for the network to be
active. Because almost all data is transported through the processor, performance and energy
consumption is a significant problem.

In a communication system locality of reference can be exploited by decomposition of the net-
work protocol stack and cautious management of the data flow. This can reduce the energy
consumption for several reasons:

• First, when the system is constructed out of independent components that implement dif-
ferent layers of the communication stack, unnecessary data copies between successive lay-
ers of the protocol stack are eliminated. This eliminates wasteful data transfers over the
global (!) bus, and thus saves much dissipation in buses, multiplexers and drivers.

• Secondly, dedicated hardware can do basic signal processing and can move merely the
necessary data directly to its destination, thus keeping data copies off of the system bus.
Moreover, this dedicated hardware might do its tasks much more energy efficient than a
general purpose processor.

• Finally, a communications processor can be applied to handle most of the lower levels of
the protocol stack, thereby allowing the main processor to sleep for extended periods of
time without affecting system performance or functionality.

This decomposition can also be applied beyond the system level of the portable: certain func-
tions of the system can be migrated from the portable system to a remote server that has
plenty of energy resources. This remote server handles those functions that can not be han-
dled efficiently on the portable machine. For example, a base station could handle parts of the
network protocol stack in lieu of the mobile. The remote server has a private dedicated com-

12

munication protocol with the mobile so that the mobile units can use an internal, light weight,
protocol to communicate with the base station rather than TCP/IP or UDP. The net result is
saving in code and energy. In such a system it is also efficient to adapt the protocols for the
specific environment it is used in. For example, as described in the previous section wireless
networks have a much higher error rate than the normal wired networks.

In order to save energy a normal mode of operation of the mobile will be a sleep or power
down mode. To support full connectivity while being in a deep power down mode the net-
work protocols need to be modified. Store-and-forward schemes for wireless networks, such
as the IEEE 802.11 proposed sleep mode, not only allow a network interface to enter a sleep
mode but can also perform local retransmissions not involving the higher network protocol
layers. However, such schemes have the disadvantage of requiring a third party, e.g. a base
station, to act as a buffering interface.

In the higher level protocols of a communication system caching and scheduling is used to
control the transmission of messages. In a situation with varying and multiple network con-
nectivity it may be wise to prefetch some information or postpone the actual transmission
until the quality of the connection is better, or until another, more power economic, network is
available. An application can for example schedule the times to turn on the processor when it
is connected to a wired network so that the application can download information from the
network when it consumes less energy or does not need its batteries.

C. Low power short range networks

Portable computers need to be able to move seamlessly from one communication medium to
another, for example from a GSM network to an in-door network, without rebooting or
restarting applications. Applications require that networks are able to determine that the
mobile has moved from one network to another network with a possible different QoS. The
network that is most appropriate in a certain location at a certain time depends on the user
requirements, network bandwidth, communication costs, energy consumption etc. The sys-
tem and the applications might adapt to the cost of communication (e.g. measured in terms of
ampère-hours or telephone bills).

Over short distances, typically of up to five metres, high-speed, low-energy communication is
possible. Private houses, office buildings and public buildings can be fitted with ‘micro-cellu-
lar’ networks with a small antenna in every room at regular intervals, so that a mobile com-
puter never has to communicate over a great distance --- thus saving energy --- and so that the
bandwidth available in the aether does not have to be shared with large numbers of other
devices --- thus providing high aggregate bandwidth. Over large distances (kilometres rather
than metres), the mobile can make use of the standard infrastructures for digital telephony
(such as GSM).

D. Energy aware MAC protocol

Current wireless networks do not pay much attention to the energy consumption, but mainly
focus on maximizing the throughput. In a wireless system the medium access protocols can
be adapted and tuned to enhance energy efficiency. An example of an energy aware MAC
protocol is LPMAC [14]. The basic objective is that the protocol tries to minimize all actions of
the network interface, i.e. minimize ’on-time’ of the transmitter as well as the receiver. In a
power aware TDMA protocol that coordinates the delivery of data to receivers is a base sta-
tion responsible for traffic scheduling [11]. The base station dictates a frame structure within its
range. A frame consists of a number of data-cells and a traffic control cell. Mobiles with sched-
uled traffic are indicated in a list, which allows mobiles without traffic to rapidly reduce
power (see Figure 4). The traffic control is transmitted by a base station and contains the infor-

13

mation about the subsequent data-cells, including when the next traffic control cell will be
transmitted.

As switching between states (i.e. off, idle, receiving, transmitting) consumes time and energy,
the number of state-transitions have to be minimized. By scheduling bulk data transfers, an inac-
tive terminal is allowed to doze and power off the receiver as long as the network interface is
reactivated at the scheduled time to transceive the data at full speed.

The overhead and energy consumption involved in the frame mechanism with traffic control,
can be reduced when the frame size can be adapted to the situation. For example in case of a
room in which only one mobile communicates, the frame size can be increased. There is a
trade-off between frame size and the latency. When a low latency is required the frame size
can be adapted accordingly.

Some applications require a distribution of information to a group of users. A multicast or
broadcast mechanism can reduce energy consumption since the information is sent only once,
and the base station - with plenty of energy - disseminates the information. Notice that the
performance (total aggregated throughput) is increased as well. The network and MAC pro-
tocols need to be adapted for these mechanisms.

Another way to increase the energy efficiency is that the MAC protocol has a strategy that
tries to avoid transmission during bad channel periods. In this way useless transmissions are
avoided.

4.3 Operating system and applications

In this section we will show several approaches that can be applied at the operating system
level and to the applications to reduce energy consumption.

A. Scheduling

In a system scheduling is needed when multiple functional units need to access the same
object. Scheduling is used by the operating system to provide each unit a share of the object in
time. Scheduling is applied at several parts of a system for processor time, communication,
disk access, etc. Currently scheduling is performed on criteria like priority, latency, time
requirements etc. Power consumption is in general only a minor criterion for scheduling,
despite the fact that much energy could be saved.

We will now show several possible mechanisms in which an energy aware scheduling can be
beneficial.

• Processor time scheduling

Most systems spend only a fraction of the time performing useful computation. The rest of
the time is spent idling. The operating systems energy manager should track the periods of
computation, so that when an idle period is entered, it can immediately power off major
parts of the system that are no longer needed [3]. Since all power-down approaches incur
some overhead, the task of an energy aware scheduler can be to collect requests for compu-

traffic
control

traffic
control

communication frame

Figure 4: example of a TDMA frame structure

14

tation and compact the active time-slots into bursts of computation.

Weiser et al. [27] have proposed a system that reduces the cycle time of a processor for
power saving, primarily by allowing the processor to use a lower voltage. For background
and high latency tolerable tasks, the supply voltage can be reduced so that just enough
throughput is delivered, which minimizes energy consumption. By detecting the idle time
of the processor, they can adjust the speed of the processor while still allowing the proces-
sor to meet its task completion deadlines. Suppose a task has a deadline of 100 ms, but it
will only take 50 ms of CPU time when running at full speed to complete. A normal system
would run at full speed for 50 ms, and then be idle for 50 ms in which the CPU can be
stopped. Compare this to a system that runs the task at half speed, so that it completes just
before its deadline. If it can also reduce the voltage by half, then the task will consume a
quarter of the energy of the normal system. This is because the same number of cycles are
executed in both systems, but the modified system reduces energy use by reducing the
operating voltage.

They classified idle periods into ‘hard’ and ‘soft’ events. Obviously, running slower should
not allow requests for a disk block to be postponed. However, it is reasonable to slow
down the response to a keystroke, such that processing of one keystroke finishes just
before the next. Another approach is to classify jobs or processes into classes like back-
ground, periodic and foreground. With this sort of classification the processor can run at a
lower speed when executing low priority background tasks only.

• File system

The file system is another issue in the interaction between hardware facilities for power
management and the system software. It is one thing to turn off a disk when it has been
idle for a minute, but it is much better to design a file system in such a way that it takes
advantage of the possibility of turning the disk off. For example the operating system’s file
system a scheduler can try to collect disk operations in a cache and postpone low priority
disk I/O only until the hard drive is running already or has enough data.

• Communication

The MAC protocol of a wireless system can be tuned in such a way that it tries to minimize
state-transitions and have bulk data-transfer (see for more information the section about
the power aware MAC protocol). In the higher level protocols of a communication system
scheduling is used to control the transmission of messages. In a situation with varying and
multiple network connectivity it may be wise to prefetch some information or postpone
the actual transmission until a more power economic network is available. For example an
application can schedule times to turn on the processor when it is connected to a wired net-
work so that the application can download information from the network when it con-

Figure 5: Power consumption in time of a typical processor system.

time

power

peak

sleep

useful
computation

consumption

15

sumes less energy or does not need its batteries.

• Battery relaxation

The capacity of batteries is strongly influenced by the available relaxation time between
current pulses. The relationship between how much of the battery capacity is recovered
during an off period depends on the cell chemistry and geometry. A scheduler could try to
find the optimum between required energy and available time.

B. Energy manager

Power down of unused modules is a commonly employed approach for energy reduction. To
take advantage of low-power states of devices, either the operating system needs to direct
(part of) the device to turn off (or down) when it is predicted that the net savings in power
will be worth the time and energy overhead of turning off and restarting, or the modules use
a demand- or data-driven computation to automatically eliminate switching activity of
unused modules. The device or system will enter the sleeping state when it is idle or when the
user indicates to do so.

The division of the system into modules must be such that the modules provide a clustered
functionality. For example, in the memory system, locality of reference can be exploited during
memory assignment to induce an efficient and effective power down of large blocks of mem-
ory. This shows once again that a close cooperation between the operating system that per-
forms the memory allocation, the energy manager that controls the power states of the
devices, together with a suitable hardware architecture can be beneficial for energy reduction
of the system.

In order to control the modules, changes must be made to current architectures for hardware,
drivers, firmware, operating system, and applications. One of the key aspects is to move
power management policy decisions and coordination of operations into the operating sys-
tem. The operating system will control the power states of devices in the system and share
this information with applications and users. This knowledge can be used and integrated in
the Quality of Service model of the system.

C. Applications

Applications play the most critical role in the user’s experience of a power-managed system.
In traditional power-managed systems, the hardware attempts to provide automatic power
management in a way that is transparent to the applications and users. This results in some
legendary user problems such as screens going blank during video or slide-show presenta-
tions, annoying delays while disks spin up unexpectedly, and low battery life because of inap-
propriate device usage. Because the applications have direct knowledge of how the user is
using the system to perform some function, this knowledge must be penetrated into the
power management decision-making in the system in order to prevent these kinds of user
problems.

Obviously, careless application’s use of the processor and hard disk drastically affects battery
life time. For example, performing non-essential background tasks in the idle loop prevents
the processor from entering a low power state (see for example [13]). So, it is not sufficient to
have the system to be low power, but the applications running on the system have to be writ-
ten energy aware as well.

D. Code and algorithm transformation

As much of the power consumed by a processor is due to the fetching of instructions from
memory, high code density can reduce energy consumption. However, this only works well
when the execution cycle is not (much) longer. Today, the cost function in most compilers is

16

either speed or code size. An energy aware compiler has to make a trade-off between size and
speed in favour of energy reduction. The energy consumed by a processor depends on the
previous state of the system and the current inputs. Thus, it is dependent on instruction
choice and instruction ordering. Reordering of instructions can reduce the switching activity
and thus overall energy consumption. However, it was found not to have a great impact [26].

At the algorithm level functional pipelining, retiming, algebraic transformations and loop
transformations can be used [16]. The system essential power dissipation can be estimated by
a weighted sum of the number of operations in the algorithm that has to be performed [4].
The weights used for the different operations should reflect the respective capacitance
switched. The size and the complexity of an algorithm (e.g. operation counts, word length)
determine the activity. Operand reduction includes common sub-expression elimination,
dead code elimination etc. Strength reduction can be applied to replace energy consuming
operations by a combination of simpler operations (for example by replacing multiplications
into shift and add operations). Drawbacks of this approach are that it introduces extra over-
head for registers and control, and that it may increase the critical path.

5 A case study: energy reduction in the Moby Dick project
The Moby Dick project [18] is a joint european project (Esprit Long Term Research 20422) to
develop and define the architecture of a new generation of mobile hand-held computers,
called Pocket Companion. The design challenges lie primarily in the creation of a single archi-
tecture that allows the integration of security functions, externally offered services, personal-
ity, and communication. Research issues include: security, energy consumption and
communication, hybrid networks, data consistency, and environment awareness. In this sec-
tion we will elaborate on the techniques used in the Moby Dick project for reducing energy
consumption.

To support multimedia functionality for the intended applications of the Pocket Companion
the system needs to have real-time properties. The increasing levels of performance and inte-
gration that is required will be accompanied by increasing levels of energy consumption.
Without significant energy reduction techniques and energy saving architectures, battery life
constraints will limit the capabilities of a Pocket Companion. More extensive and continuous
use of network services will only aggravate this problem since communication consumes rel-
atively much energy.

5.1 The Pocket Companion’s system architecture

The goal of the Pocket Companion’s architecture is to optimize the overall energy-performance
of the system, and not performance alone. The technology is used to decrease energy
consumption and to increase functionality to provide services such as multimedia devices,
compression and decompression, network access, and security functions.

The difficulty in achieving all requirements into one architecture stems from the inherent
trade-offs between flexibility and energy consumption, and also between performance and
energy consumption. Flexibility requires generalized computation and communication
structures, that can be used to implement different kinds of algorithms. For multimedia
applications in particular there is a substantial reduction in energy consumption possible as
the computational complexity is high, they have a regular and spatially local computation,
and the communication between modules is significant. Improving the energy efficiency by
exploiting locality of reference and using efficient application-specific modules therefore has a
substantial impact on a system like the Pocket Companion.

While conventional architectures (like used in current laptops) can be programmed to

17

perform virtually any computational task, they achieve this at the cost of high energy
consumption. The Pocket Companion has a rather unconventional architecture that saves
energy by using system decomposition at different levels of the architecture and exploiting
locality of reference with dedicated, optimized modules.

Our approach is based on dedicated functionality and the extensive use of power reduction
techniques at all levels of system design. The system has a number of premises:

• An architecture with a general purpose processor surrounded by a set of heterogeneous pro-
grammable modules, each providing an energy efficient implementation of dedicated tasks.
Application-specific coprocessors might be able to perform their tasks more efficient - in
terms of performance and/or energy consumption - than a general purpose processor. For
example, even when the application-specific coprocessor consumes more power than the
processor, it may accomplish the same task in far less time, resulting in a net energy saving.

• A reconfigurable internal communication network that exploits locality of reference and elimi-
nates wasteful data copies. When the system is decomposed out of application-specific
coprocessors the traffic on the bus is reduced by eliminating unnecessary data copies. For
example, in a system where a stream of video data is to be displayed on a screen, the data
can be copied directly from the network into the screen memory, without going through
the main processor.

• A system design that avoids unnecessary activity: e.g. by the use of autonomous modules
that can be powered down individually and are data driven. Each module can be opti-
mized - apart for its main task - for energy consumption. It can have a separate clock, volt-
age control, power-down modes, and dedicated features to save energy.

• A wireless communication system designed for low energy consumption by the use of
intelligent network interfaces that deal efficiently with a mobile environment, by using a
power aware network protocol, by using an energy efficient MAC protocol, and by energy
aware error control mechanisms.

In the Pocket Companion’s architecture we distinguish a switch surrounded by several
modules (see Figure 6). All modules in the system communicate over a communication

network. The switch interconnects the modules and provides a reliable path for
communication between modules. As in switching networks, the use of a multi-path topology
will enable parallel data flows between different pairs of modules and thus will increase the
performance. Modules are autonomous and can communicate without involvement of the

processor
main

storage
stable

audio

video

network
interface

switch

display

camera

speaker
microphone

wireless

wired

Figure 6: Pocket Companion system architecture

reader
smartcard smart

card

input device
memory

18

main processor. Each module has its own functionality and responsibility. The modules are
optimized for their function in terms of performance and energy consumption and have their
own local power management.

5.2 Testbed for the Pocket Companion

Currently we are designing and building a testbed for the Pocket Companion using existing
hardware components and subsystems. The hardware basis of the Pocket Companion is an
interconnection switch. All data in the system is based on the size of an ATM cell (48 bytes
data). This not only allows us to easily interconnect with an ATM environment, but the size is
also adequate: it is small enough to buffer several cells in the switch and have small latency,
and large enough to keep the overhead small.

The prototype of the switch is build using a Xilinx FPGA and six small micro-controllers. The
switch is capable to connect six modules. It is a tiny ATM switch as it is able to transfer ATM
cells to a destination according to its VCI (Virtual Channel Identifier). The basic functions of
the micro-controllers is to perform routing, to establish a connection and to interface with the
connected modules. The design methodology used is data-driven and based on asynchronous
methods, combined with synchronous parts. Each part of the switch that is not used at some
time does not receive any data and clock changes, thus minimizing energy consumption.

The attached modules can be similar to today’s PDAs, notebook computers or ‘handheld PCs’
augmented with a security module and one or several wireless network devices. Currently
we are using the WaveLAN modem as network interface to experiment with MAC protocols
and error correction. With this testbed we can easily evaluate (parts of) the architecture
concerning energy consumption, security, Quality of Service and communication. We
gradually improve the architecture to the final architecture.

We also experiment with system software, as hardware architecture and system software are
related. The operating system Inferno from Lucent Technologies [7] is quite well suited for this
purpose.

6 Conclusions
More and more attention will be focused on low power design techniques as there will
become an increasing numbers of portable, battery powered systems. System designers can
decrease energy consumption at several levels of abstraction. At technological and architec-
tural level energy consumption can be decreased by reducing the supply voltage, reducing
the capacitive load and by reducing the switching frequency. Much profit can be gained by
avoiding unnecessary activity at both the architectural as system level. At system level, they
can take advantage of power management features where available, as well as decomposed
system architectures and programming techniques for reducing power consumption.

Remarkably, it appears that some energy preserving techniques not only lead to a reduced
energy consumption, but also to more performance. For example, optimized code runs faster,
is smaller, and therefore also consumes less energy. Using a cache in a system not only
improves performance, but, - although requiring more space - uses less energy since the data
is kept locally. The approach of using application specific coprocessors is not only more effi-
cient in terms of energy consumption, but has also a performance increase because the spe-
cific processors can do their task more efficient than a general purpose processor. Energy
efficient asynchronous systems also have the potential of a performance increase, because the
speed is no longer dictated by a clock, but is as fast as the flow of data.

However, some trade-offs need to be made. These techniques often lead to less performance,

19

that only can be improved by adding more hardware. Most energy efficient systems use more
area, not only to implement the new data flow or storage, but also to implement the control
part. Furthermore, energy efficient systems can be more complex. Another consequence is
that although the application specific coprocessor approach is more efficient than a general
purpose processor, it is less flexible. Furthermore, the latency from the user’s perspective
might be increased, because a system in sleep has to be wakened up. For instance, spinning
down the disk causes the subsequent disk access to have a high latency.

Applications play a critical role in the user’s experience of a power-managed system. There-
fore, the application and operating system must allow a user to have guide the power man-
agement.

Any consumption of resources by one application might affect the others, and as resources
run out, all applications are affected. Since system architecture, operating system, communi-
cation, energy consumption and application behaviour are closely linked, we believe that a
QoS framework can be a sound basis for integrated management of all resources, including
the batteries.

7 References
[1] Abnous A, Rabaey J.: “Ultra-Low-Power Domain-Specific Multimedia Processors,” Pro-

ceedings of the IEEE VLSI Signal Processing Workshop, San Francisco, October 1996.

[2] Balakrishnan H., et al.: “A comparison of mechanisms for improving TCP performance
over wireless links”, Proc. ACM SIGCOMM’96, Stanford, CA, USA, August 1996.

[3] Burd T.D., Brodersen R.W.: “Energy efficient CMOS microprocessor design”, Proceedings
28th. annual HICSS Conference, Jan. 1995, vol. I, pp 288-297.

[4] Chandrakasan A.P., et al.: “Optimizing power using transformations”, Transactions on
CAD, Jan. 1995.

[5] Flynn M.J.: “What’s ahead in computer design?”, Proceedings Euromicro 97, pp 4-9, Sep-
tember 1997.

[6] Ikeda T.: “ThinkPad Low-Power Evolution”, IEEE Symposium on Low Power Electronics,
October 1994.

[7] Intel486SX: information can be browsed on: http://134.134.214.1/design/intarch/
prodbref/272713.htm

[8] Koegst, M, et al.: “Low power design of FSMs by state assignment and disabling self-
loops”, Proceedings Euromicro 97, pp 323-330, September 1997.

[9] Lapsley, P: “Low power programmable DSP chips: features and system design strate-
gies”, Proceedings of the International Conference on Signal Processing, Applications and Tech-
nology, 1994.

[10] Larri G.: “ARM810: Dancing to the Beat of a Different Drum”, Hot Chips 8: A Symposium
on High-Performance Chips, Stanford, August 1996.

[11] Linnenbank, G.R.J. et al.: “A request-TDMA multiple-access scheme for wireless multi-
media networks”, Proceedings Third Workshop on Mobile Multimedia Communications
(MoMuC-3), 1996.

[12] Lorch, J.R.,: “A complete picture of the energy consumption of a portable computer”,
Masters thesis, Computer Science, University of California at Berkeley, 1995

20

[13] Lorch, J.R., Smith, A.J.: “Reducing power consumption by improving processor time
management in a single user operating system”, Proceedings of 2nd ACM international
conference on mobile computing and networking, Rye, November 1996.

[14] Mangione-Smith, W., et al.: “A low power architecture for wireless multimedia sys-
tems: lessons learned from building a power hog”, Proceedings of the international sympo-
sium on low power electronics and design, Monterey, August, 1996

[15] McGaughy, B: “Low Power Design Techniques and IRAM”, March 20, 1996, information
can be browsed on http://rely.eecs.berkeley.edu:8080/researchers/brucemcg/
iram_hw2.html

[16] Mehra R., Rabaey J.: “Exploiting regularity for low power design”, Proceedings of the
International Conference on Computer-Aided Design, 1996

[17] Merkle, R.C.: “Reversible Electronic Logic Using Switches”, Nanotechnology, Volume 4,
pp 21 - 40, 1993 (see also: http://nano.xerox.com/nanotech/electroTextOnly.html)

[18] Mullender S.J., Corsini P., Hartvigsen G. “Moby Dick - The Mobile Digital Companion”,
LTR 20422, Annex I - Project Programme, December 1995 (see also http://
www.cs.utwente.nl/~havinga/pp.html)

[19] “A Case for Intelligent DRAM: IRAM”, Hot Chips 8 A Symposium on High-Performance
Chips, information can be browsed on: http://iram.cs.berkeley.edu/publications.html

[20] Piguet, C, et al.: “Low-power embedded microprocessor design”, Proceeding Euromicro-
22, pp. 600-605, September 1996.

[21] Rabaey J. et al.: “Low Power Design of Memory Intensive Functions Case Study: Vector
Quantization”, IEEE VLSI Signal Processing Conference, 1994.

[22] Rabaey J., Guerra L., Mehra R.: “Design guidance in the Power Dimension”, Proceedings
of the ICASSP, 1995.

[23] L.Rizzo: “Effective Erasure Codes for Reliable Computer Communication Protocols”,
ACM Computer Communication Review, Vol. 27- 2, pp 24-36, April 97

[24] Sheng S., Chandrakasan C., Brodersen R.W.: “A portable multimedia terminal”, IEEE
Communications Magazine, December 1992, pp 64-75

[25] Stemm, M, et al.: “Reducing power consumption of network interfaces in hand-held
devices”, Proceedings mobile multimedia computing MoMuc-3, Princeton, Sept 1996.

[26] Tiwari V. et al.: “Compilation Techniques for Low Energy: An Overview”, IEEE Sympo-
sium on Low Power Electronics, October 1994.

[27] Weiser, M, et al.: “Scheduling for reduced CPU energy”, proceedings of the first USENIX
Symposium on operating systems design and implementation, pp. 13-23, November 1994.

[28] “Minimizing power consumption in FPGA designs”, XCELL 19, page 34, 1995.

[29] Smit, G.J.M., et al.: “Design and realization of a receiver for wireless ATM”, submitted
for publication.

[30] Podlaha, E.J., Cheh, H.Y.: “Modeling of cylindrical alkaline cells. VI: variable discharge
conditions”, Journal of Electrochemical Society, vol 141, pp. 28-35, Jan. 1994.

[31] Zorzi, M.,Rao,R.R.: “Error control and energy consumption in communications for
nomadic computing”, IEEE transactions on computers, Vol 46, pp. 279-289, March 1997.

