Mll’/lem(lll('!;l Modelling, Vol. 1, pp. 237-254, 1980
Printed in the USA. All rights reserved.

0270-0255/80/030237-18$02.00/0
Copyright © 1980 Pergamon Press Ltd.

DUAL AND INVERSE FORMULATIONS OF CONSTRAINED
EXTREMUM PROBLEMS

E. W. C. vAN GROESEN
Mathematical Institute
Catholic University
Toernooiveld, Nijmegen
The Netherlands

Communicated by Gian-Carlo Rota

1. INTRODUCTION

Let V be a reflexive Banach space and f and ¢ two real-valued functionals defined on V.
For p € t(V) [1(V) denotes the range of the functional ¢] we consider the constrained
minimization problem

P, inf Au). (1.1)
uErY(p) ’
Here t7(p) denotes the level set of t:

t74(p) = {u € V| (w) = p},

which is a nonempty subset of ¥ for p € (V). A solution & of (1.1) is an element from
V which satisfies

Hiu)=p and f(&) = h(p),

wherein /1 is the function defined by

h:(V)—R:hp):= inf flu).

(1.2)
uEt-y(p)

To get an idea of the main types of functionals we want to consider we list the con-
ditions which will occasionally be assumed to hoid

(f1) fis weakly lower semicontinuous on V, and
coercive on V [i.e., f(u) > = if

ullv— el

(t1) tis weakly continuous on V;

(f,12) f€ CYV,R),t € C(V,R).

If f and ¢ satisfy these assumptions, then the existence of at least one solution u of 2,

Editor’s note: Abstract appears at the end of the article.
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is guaranteed (cf. Proposition 2.1) and if ¢'(«) # 0. this solution satisfies the equation
Ju) = pt'(u) (1.3)

for some unique multiplier u € R (cf. Proposition 2.3).

The operator equation (1.3) can be viewed at as a nonlinear eigenvalue problem in the
dual space V* (with w as the eigenvalue) for the operators f*,t" : ¥V — V*. Our aim is to
derive properties of those solutions of (1.3) which are also solutions of (1.1). In particular
it is tempting to describe solution branches of (1.3) [i.e., connected sets of pairs (1.u) €
¥V x R which satisfy (1.3)] with the aid of the parameter p as it enters in (1.1). In many
applications a parametrization of such a branch with p : {(u(p).u(p)) | p € WV}
C V x R, is possible and may be particularly fruitful if a continuation of a solution branch
described with the eigenvalue u as parameter (as is usually done) is not possible (e.g., if
there is a ‘‘bending of the solution branch’’: cf. Crandall & Rabinowitz [2] and Example
5.5. A study of such a continuation process requires both a global investigation and a
more precise local description of the solution sets.

In this paper we shall deal with the global aspects of such a continuation. In a sub-
sequent paper [5] we shall give a more detailed analysis of the local properties of such
a global solution branch.

The general results to be derived are applicable to problems of semilinear elliptic type:
Let  C R” be a bounded domain with smooth boundary 4Q2 and L a uniformly elliptic
operator of the form

L== 3 0,la5(09,] + c(n, (1.4)

where the coefficients of L are real, a;(.x) = a;(x) is twice continuously differentiable in
Qfori,j=1,...,n, and ¢(x) is nonnegative and once continuously differentiable in (1.
Then the nonlinear eigenvalue problem

Lu= put'(u) inQ)
u=0 on o}

(LD

can be described as an operator equation as (1.3), with V = H'(Q) = W'3(Q) the usual
Sobolev space, if f'is defined to be the quadratic functional

fluw) = %(u,Lu} = % Lu(x)Lu(x)dx. (1.6)

Then f satisfies (f1,2). and in this case f is equivalent to the square of the norm of H({):

1 )

S el =rw=vl ull 7, (1.7)

for some y > 0.

Then, for the class of functionals ¢ on A'(Q}) which satisfy (¢1,2), the general theory
will enable us to describe a global solution-branch of the nonlinear eigenvalue problem
(1.5).

To describe the contents of this paper: in Sec. 2 we state some preliminary results,
especially a simple relation between the function /1, given by (1.2), and the multiplier of
a solution of problem 2, is derived, and some important consequences are noticed. In
Sec. 3 we first investigate when a solution of %, also gives an extreme value for the
functional ¢ on a level set of the functional f (the inverse extremum problem for 2,).
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Furthermore, we show how useful qualitative information about the behaviour of the
function # can be obtained from a study of such an inverse extremum problem. In Sec.
4 we show how ideas from ‘‘convex analysis’’ (as can be found, e.g., in Rockafellar [9]
and Ekeland and Temam [3]) can be applied to obtain a dual formulation for the con-
strained extremum problems %,. Therefore it is not necessary to require the functionals
f and r to be convex: (local) convexity of the function 4 suffices to obtain (local) duality,
and this on its turn implies that a solution of #, with multiplier u is in fact a (local)
minimum of the functional f-ur on V. The results derived in Secs. 2, 3, and 4 enable us
to describe a global solution branch of (1.3) with the parameter p. For a class of semilinear
eigenvalue problems as described above, this will be shown in Sec. 5. There some well
known results are derived in a new way, and especially for problems for which ‘‘bending’’
occurs, this description gives new insights into these delicate problems.

To conclude we emphasize that for the global result to be derived here, no nondege-
neracy condition for the (constrained) extreme points are required, although conditions
of this kind turn up in a more detailed local description of the continuation process.

2. PRELIMINARIES

The first results deal with the solution set of problem %,.

Proposition 2.1. Assume that the functionals f and r satisfy conditions (f,r1). Then
for every p € 1(V), P, has at least one solution.

Proof. Because of condition (f1) the functional f is bounded from below on all of V,
and hence certainly on #7!(p). Put

a:= inf flu,
uct—(p)

and let {u,} be 2 minimizing sequence: f{«,) | a for n — <, t(u,) = p for all n € N.
As f'is coercive this minimizing sequence is uniformly bounded in V and hence has a
weakly convergent subsequence, say u,, — & in V. Because of condition (r1)

: /(i) = lim f(uy,) = p,

n—oc

hence & € 1~(p). [The level set 1~!(p) is weakly closed.] As fis weakly lower semicon-
tinuous,

i) =< lim inf f(up) = a.

n—oc

By definition of a we also have « = f(4), hence f(#) = «. This shows that & is a
solution of 2,.

For simplicity denote the solution set of #, by P,:
P, := {u € V|uis a solution of 2, }.

Proposition 2.2. Assume conditions (f.71) to hold. Then P, is a weakly compact subset
of V. Moreover, if f satisfies the extra condition

(f3) for every sequence u, for which u, — i (weakly)
in V and f(u,) — f(i), it follows that u, — 4 A

(strongly) in V,

then P, is a compact subset of V.
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Proof. As fis coercive on V, P, is a bounded subset of V. Let {«,} be any sequence
from P,; then 7(u,) = p and flu,) = h(p) for all n € N, where /(p) is defined in (1.2).
As {u,} is bounded it contains a weakly convergent subsequence, say u, — i in V. As
in the proof of Proposition 2.1 it easily follows that #(#) = p and f{i) = A(p), i.e., that
i € P,. Hence P,is weakly closed. If fsatisfies the extra condition (f3), the subsequence
u, converges strongly to &, which implies that P, is compact in this case.

We now recall the Euler equation which must be satisfied by a solution of %,. This
result, a generalization of Lagranges multiplier rule to infinite dimensions, is originally
due to Lusternik [7]. See, e.g., Vainberg {11, Theorem 9.11] as a convenient reference.

Proposition 2.3. Assume f and t satisfy condition (f,72). Then, if « € P, with t'(«)
# 0, there exists a unique multiplier » € R such that « satisfies

fl(u) = pt'(u). 2.1

The next lemma relates the multiplier & of a solution of %, to the function # defined
in (1.2). Note that, if f satisfies (f1), f is bounded from below on ¥V, and hence / is
bounded from below on f( V). Moreover, the range of the functionai ¢, «(}) C R. is a
connected interval if, e.g., ¢ is continuous. Let 7(}) denote the interior of this range.
Assume for the following conditions (f,2) to hold.

Lemma 2.4. For p € {(V), let u be a solution of P, with t’(«) # 0 and with multiplier
. Then we have

h(p) = u = h(p), (2.2)
where h.(p) and hL(p) denote the right- and left-hand-side derivative of the function 4,
respectively.
Proof. As t'(u) # 0 it is possible to take v € V such that (¢'(u),) = 1. With f'(u) =
wt'(u) it follows that {f'(u),v) = u. Furthermore, the function € : R — R defined by

Hu + av) = p + e(a)

is continuously differentiable and satisfies
d
€0)=0,—(0) = 1.
da

By definition of the function /1 we have for « € R
h(p + e(a)) = f(u + av).

Now, consider the expression
1
—{h(p + () ~ h(p)}.
e(a)

Ifa | 0, we have e(«) | 0 and

h(p + e()) — h(p) _ flu + av) — fu) __)<f'(u),v> —u
e(a) T Hu+ av) - ) (W),

hi(p) <

In the same way, for « 1 0, it is found that h’(p) = w, which proves the lemma.
The foregoing lemma has two immediate corollaries which turn out to be useful.
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Corollary 2.5. If h is differentiable at p, then all solutions of #, have the same
multiplier, which may therefore be denoted by u(p), and which is given by

m(p) = h'(p). (2.3)

Corollary 2.6. Suppose that h is locally convex at p € 1(V). Then h is differentiable
at p : h’(p) = h'(p), and hence the conclusion of Corollary 2.5 holds.

3. INVERSE EXTREMUM PROBLEMS

Related to the extremum problem 2, we consider as ‘‘inverse extremum problems’’
the two families of constrained extremum problems

%, . sup Hu) 3.1
uEf-(r)

92,: Inf Auw 3.2)
uer-in

for r € f(V). Corresponding to &, and 2, we define solution sets S, and Q, and
functions s and g in the same way as was done for problem 2,:

S, := {u € Vjuis a solution of ¥,}
0O, = {u € V]uis a solution of 2,},

s(r) ;= sup t(u) (3.3)
uEr-i(r)
forr € AV).
gn) := inf Hu) (3.9
w1

In this section we study the relation between problem %, and these inverse extremum
problems. The results of this section will be important for the rest of this paper: it will
be shown how, for functionals which satisfy (f,r1), qualitative behaviour of the function
h, defined in (1.2), can be obtained from the functions s and g defined above (which
are simpler to investigate as shall be shown).

To start, we investigate when a solution of %, is also a solution of &, or 2, for r =
h(p). In general this will not be the case: a solution v of ?, will usually only give locallv
(i.e., in a sufficiently small neighbourhood of ) an extreme value for the constrained
functional 7 on the level set f—*(h(p)). The first lemma gives the usual relation between
the functions A, s, and q.

Lemma 3.1. Suppose P, # . Then we have

(@) s(h(p)) = p. (3.5
(b) q(h(p)) = p. (3.6)

Proof. Let 4 € P,. Then f(z) = h(p) and () = p. Hence 4 € f~'(h(p)) and by
definition of the functions s and ¢ ‘

s(h(p)) = (&) = p and q(h(p)) = (&) = p,

which proves the lemma.
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The following result gives in principle the complete answer to the question formulated
above.
Proposition 3.2. Suppose P, # J. Then we have

(a) if s(k(p)) = p,then P, = Sy,
(b) if g(h(p)) = p,then P, = Quyp,).

Proof. We shall prove (a). Then (b) can be obtained analogously. Let # € P,: then
iy = h(p) and (i) = p; thus, as i € f~Y(h(p)) and s(h(p)) = p = (i), @t is clearly
a solution of %,,. On the other hand, if & € S, then s(/i(p)) = (&) and h(p) =
Sui), and thus, if s(f(p)) = p, & satisfies t(&) = p and f(it) = h(p) which shows it € P,.

The next lemma gives a criterion to decide whether the conditions of the foregoing

proposition are satisfied.
Lemmu 3.3, Suppose P, # @. Then,

(a) if h(Q) > h(p) for { € (p,) N V), then s(h(p)) = p:
(b) if i) > h(p) for { € (—o,p) N «( V), then q(h(p)) = p.

Proof. Again we shall prove only (a). Suppose s(/i{p)) = p + a for some a« > 0
[because of (3.5) we need not to investigate the possibility « < 0]. Then

sup Huw) =p+ «,
uESf t(hipn

which implies that there exists an element i+ € V and a number { € Rwith p < < p
+ « such that +(#) = { and f(#4) = /i(p). From this it follows that

h() := inf f(u) = f(u) = h(p).

uEr Y

Hence () = h(p)for L > pif s(h(p)) = p + « for some a > (. This proves statement (a).
If we let 8h(p) denote the subdifferential of the function / at p (cf. also Sec. 4) we get
a special case of the foregoing lemma.
Corollary 3.4, Suppose P, + . Then

(a) ifoh(p) N R™ #+ &, then s(h(p)) = p;
(by ifoh(p) N R™ #+ ¢, then g(h(p)) = p.

The foregoing results imply
Proposition 3.5.

(a) Suppose there exists p,. € R such that [writing J, := (p.,») 0 (V)]

WP, +forpeE J.;

(i1) & is monotonically increasing on J..
Then s(/i(p)) = p for all p € J.; in other words: the function s : {h(p|lp € J.} — R is
the inverse of the function /1 : J, — R.
(b) Suppose there exists p_ such that {writing J_ := (—%,p_) N (V)]

WP, +Jforp e J_:

(i1} /1 is monotonically decreasing for p € J_.
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Then g(h(p)) = p for all p € J_: the function g : {h(p)|p € J_} — R is the inverse of
the function h : J_ — R. Because of these results it will be clear why we have called
problems &, and 2, inverse extremum problems of 2,.

Now suppose that the functionals f and ¢ satisfy condition (f,71). Then P, # & for p
€ 1(V) (Proposition 2.1), and the foregoing results show how from qualitative behaviour
of the function # we can deduce results concerning the coincidence of the solution sets
P, and S, or @, and concerning the functions s and ¢ for suitable values of r.

However, this qualitative behaviour of the function # is usually difficult to obtain
directly from a study of the constrained extremum problem #,. It turns out, as we shall
see below, that it is much simpler to obtain such qualitative information for the functions
s and g on f{V). Assuming this to be the case for the moment, we can ‘‘construct’ the
function #/ [at least on a subset of its domain 7( V)] from the functions s and ¢ in much
the same way as was described above for the reversed problem. For convenience we
shall list the main results.

Lemma 3.6.

(a) If S, + &, then h(s(r)) = r.
(b) If O, + &, then h(q(r)) = r.
Proposition 3.7.
(a) If S, # @ and h(s(r)) = r, then Py = S,
(b) If O, # & and h(q(r)) = r, then Pyy, = Q.
Lemma 3.8.
(@) If S, # & and if s(p) > s(r) for p € (r,®) N f{V), then A(s(r)) = r.
(b) If O, # D anif q(p) > gq(r) for p € (r,®) N f(V) then h(q(r)) = r.
Proposition 3.9.
(a) Suppose there is # € R such that [writing J := (7,0) N (V)]
i S, +aforre J; '
(i) s is monotonically increasing for r € J.
Then h(s(r)) = r for r € J: the function 4 : {s(r|r € J} — R is the inverse of the
function s : J - R.
(b) Suppose there is # € R such that [writing J := (#,%) N f(V)]
) Q,#forr€J;
(11) g is monotonically decreasing on J.
Then h(q(r)) = rfor r € J: the function /1 : {q(r)|r € J} — R is the inverse of the
function g : J — R.

For the applicability of these last results it is necessary to study the existence of
solutions of ¥, and 2, and to obtain qualitative information of the functions s and g for
r € f(V). To that end we consider the extremum problems

&, . sup (w)

uER,

?2-,: inf
o 1

where
B, := {u € V|f(u) = r}.

The idea is that the level set f~!(r) is the boundary of the set B,, such that if it is known
that ¢ attains its maximum (or minimum) on B, at a point which is not in the interior of
B,, then &, (or 2,) has a solution.

To make any progress in this direction we assume that f and ¢ satisfy (f,11). Because
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of (f1), f'is bounded from below on V and attains its minimum, so that it is no restriction
to assume that f satisfies

(f1*y  AO)=0,Au)=0 VuelV.

Then we have the following standard result (see, e.g., Vainberg[11, Theorem 9.2], Berger

[1, Theorem (6.1.1)]).

Proposition 3.10. Suppose f and ¢ satisfy (f,71) and (f1*). Then, for every r > 0, the
set B, is bounded and weakly closed in V. Furthermore,  is bounded from above and
from below on B, and attains its maximum and minimum value at points of B,.

Of course it is possible that both the maximum and minimum value of ¢ are attained
at interior points of B,. Then these points are solutions of ¢'(#) = 0, and S, and Q, may
be empty. But if it is known that 7 has at most one stationary point, at least one of the
two extremal elements lies on the boundary of B.. In this way we obtain the following
results (mononicity is a simple consequence of the fact that B, C B, for 0 < r < ry).

Proposition 3.11. Suppose f and t satisfy (f,71,2) and (f1%).

(@) If t'(u) + 0Vu € V, then S, # & and Q, ¥ J for every r € R*. Moreover, the
functions s : R* — R and ¢ : R* — R are monotonically increasing and monotonically
decreasing, respectively.

(b) Suppose that r satisfies

(i) t(0) =0

i =0 u=20
(ili) 7 takes positive values at every neighbourhood of « = 0. Then S, # J for every
r € R*and s : R* — R is monotonically increasing.
Moreover, if for some 7 > 0:
(iv) t has negative values at f~!(7), then we also have Q, # J for r = F and q :
{rlr = F} — R is monotonically decreasing.

4. DUALITY
__ For what follows it is convenient to define the function /7 on all of R as a function into
R =RU {=} U {-x}:

h:R— R, h@):=[ ifé—ﬁ?) itp &) @.1)

s else

Lemma 4.1. An equivalent formulation of problem 2, is

P, . inf sup{fAu) — u(Ku) — p)}. “4.2)
uEV LER

Proof. Immediate from

_ _ _ | fwift(uw) =p
i{ég{ﬂu) u(fu) — p)} [oo if t(u) £ p

Now we define a dual variational problem for 2, and a local version thereof.
Definition 4.2. The dual problem P} of P, is defined to be the extremum problem

P¥ :sup inf{fuw) — w(uw) — p)}, 4.3)

HER UEV
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and the e-local dual problem loc, P} of P, is defined for € > 0 as

locc?y :sup  inf  {f(w) — pu(t(u) — p)}. 4.4)
LERUE I~ (p—e,p+e)

Any number u € R for which the supremum is achieved in (4.3) {or (4.4)] will be called
a solution of @} (of loc. P}, respectively). The solution sets of ?; and loc. 2} will be
denoted by P} and loc. P}, respectively.

Remark 4.3. Note that 2, and 2} can be considered to be limiting cases of loc.Px

P, = locP}

P = locP}.

Let h* : R — R and #** : R — R denote the dual (= conjugate) and the bidual function
of h. Then we have
Lemma 4.4

) h*(u) = ‘iléf;{f(“) — ut(u)} foru ER 4.5)
(if) W**(p) = sup inf {f(u) — pw(t(u) — p)} for p € R. 4.6)
nER uEV

Because of Remark 4.3 this lemma is a special case (for € = ) of the following result
which gives (for € = x) analogous statements for the local dual problem. Therefore define
the function

hp:R— Rfore >0, P ER:h (q) := {Z(q) i,flgee (p=e.p+e) 4.7
Lemma 4.5.
@ kW) =  —inf  {f(w) — pt(w)} for u € R (4.8)
uEt—Y(p—e,p+e)
(@) hE3(p) = sup inf {f(w) — w(2(u) — p} for p ER, (4.9

HRERUE—Y(p~e,p+e)

where the infimum of a functional taken over an empty set is defined to be +.
Proof.
(i) Substituting (4.7) and (4.1) in the definition of dual function, we obtain for u € R

h¥p(w) = sup {uq — heo(@)} = sup {ug — h(p)}
qER qE(p—€,p+e)

= sup {ug - inf f(u)}
qE(p—€,p+e€) u€r—(q)

= —inf inf {f(w) — pe(w)}

gE(p—€,p+e)uCi~'(g)

= —inf  {f(y) - piw)}

uEi—"(p—e,p+e)
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(i) Using A¥§(q) := sup {;q — A¥,(w)} it follows with (i):
HER

h¥k(q) = sup inf {flu) — u(t(u) - @)} Vg ER.

UER uEr—(p—e.p+e)

For ¢ = p this is the desired result.
Lemma 4.6. For arbitrary € > 0, p € R we have

h**(p) = he*(p) = h(p). (4.10)

Proof. As t™{(p—e,p+e) C V, it follows from (4.6) and (4.9) that h1**(p) = i Z5(p).
Furthermore, as for arbitrary f : R — R the inequality /**(x) = f(x) Vx € R holds, we
have h*%(q) = h.,(q) Yg € R and thus the second inequality because h.,(p) = h(p) for

every p € R.
We now come to the definition of (local) stability of problem %,. The importance of

this notion will become clear in the following.
Definition 4.7. Problem 2, is said to be

(a) stable if ) P+
(i) P} +
(ii) Z**(p) = h(p).

(b) locally stable if i P, +J

and for some € > 0: (ii) loc P} £+
(i) A&5(p).
Proposition 4.8. Suppose 2, is locally stable. Let # € P, and g € loc.P;. Then a €
t7!(p) is a solution of the extremum problem

e inf  {f(w) — a1} (4.11)

u€t-(p—e,p+e)

Consequently, if ¢ is continuous, then & is a local minimal point of the functional f — u?
on all of V, and if (f,£2) holds, then (#,2) € V x R satisfies

f'@) = pt'(w)
t(i) = p.
Proof. For 1 € P, we have f(i) = h(p) and (i) = p, thus also
h(p) = f(i) — p(e() — p).
For o € loc P} it follows from (4.9) that

hEi(p) = inf {f(w) — @le(u) ~ p)}.

u€t—~'(p—e,p+e)

As h¥}(p) = h(p) and (i) = p, it follows from these results that & is a solution of
problem X*%. Furthermore, if ¢ is continuous, " !(p—e€,p+e€) is a neighbourhood of the
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level set r7Y(p); in particular, for i € r7'(p) there exists & > 0 such that B(i{;6) =
{u € V| |u—- a| < 8} is contained in r~!(p—e¢,p+¢€). Consequently, the functional
f — @t achieves its infimum on B(&,9) in the interior point &, which is then a stationary
point of this functional and thus, if (f,r2) holds, we have f'(&) = at'(&).

Taking € = o« in Proposition 4.8 there results

Corollary 4.9. Suppose P, is stable. Let # € P, and o € P;. Then a4 € t7'(p) is a
solution of the unconstrained extremum problem

Hu : inf {fw) — pt(w)}, 4.12)
uevV

i.e., iz is a global minimal point of f — &t on all of V.

Some other simple consequences of Proposition 4.8 can be stated:

Corollary 4.10. Suppose P, is locally stable and f and ¢ satisfy (f,72). Then we have
(i) If loc.2} has more than one solution, then for every v € P, we have

f'(u) = 0and ¢'(u) = 0.

(ii) If i € loc P} is the only solution of loc. 2}, then for every u € P, we have t'(u) #
0, and all solutions of #, have the same multiplier 4.

@ii) If f'(u) # 0 for u € t7%(p), or t'(u) # 0 for u € 17'(p), then loc,P* has a unique
solution.

With the notion of subdifferentiability it is possible to give an equivalent definition of
stability of problem 2,. To obtain the same results for local stability we introduce_the
concept of (e—) local subdifferentiability in the following way: the function # : R — R is
said to be e-locally subdifferentiable at p if 3.7(p) # &, where the e-local subdifferential
dch(p) is defined with the aid of the function 4., : R — R introduced in (4.7) as

0h(p) 1= dhep(p)- 4.13)

Noticing that d.4(p) D 9. h(p) for every 0 < € < €y, we can define

Och(p) := U dch(p) 4.14)

€0

and call h locally subdifferentiable at p if its local subdifferential 8,,.2(p) is nonempty:
dc N(p) ¥ . It is a simple matter to verify that / is continuous and locally subdiffer-
entiable at p if and only if fis locally convex at p.

Lemma 4.11.
() o € P & p €Edh**(p)
(i) u € locP} © u € 3hEX(P).

Proof. Writing h*** for the dual function of #** we have by definition of subdifferential:

B € R*X(p) & h**(p) + h***(w) = up.
Using the well known fact that #*** = h* we have
K E dh**(p) & h**(p) + h*(u) = np

from which statement (i) follows with the aid of Lemma 4.4. In the same way, using
Lemma 4.5, (ii) is proved.
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Proposition 4.12. Problem 2, is stable (resp. locally stable) if and only if

i P, #0

(i) /1 is subdifferentiable at p: 3/ (p) # &

[/ is locally subdifferentiable at p: 9,,.1(p) # &, respectively.]

Proof. Suppose 2, is locally stable. Then (i) P, # . Furthermore for some € > 0,
h¥¥py = h(p), which implies d/F}(p) = oh(p), and as loc.PF + O, it follows from
Lemma 4.11 that a/1%} # &J. Hence (ii) 3./1(p) = dh (p) + O.

On the other hand, if 8./i(p) #+ &, then K () = 1F¥(p) and then 3/ ,(p) = dhEE(p)
# 0. Hence h(p) = h¥*(p) and. with Lemma 4.11, loc. P} # &. Together with P, # &
this means that 2, is locally stable. In the same way, or taking € = =, the equivalence
of the statements for the stability case is proved.

Corollury 4.13. Let 2, be locally stable and suppose that /(«) # 0 or f'(«) £ 0 for
every u € t '(p). Then h is differentiable at p with

{9—/' )} = dich 4
dp(p = Yloc (P) ( 15)

Proof. From Corollary 4.10 (iii) it follows that loc,%?, has a unique solution, say f.
Then, according to Lemma 4.11, {u} = ah¥}(p), and then {u} = 8,,./1(»), which implies
that /1 is differentiable at p, and that (4.15) holds.

Corollary 4.14. Suppose 1 is continuous and assume that &, has a solution « with
multiplier & which is no¢ a local minimum of the functional f — wt on V. Then fis not
locally subdifferentiable at p; in particular, /1 is not locally convex.

Proof. From Proposition 4.8 it follows that %, is not locally stable. As P, # & by
assumption, Proposition 4.12 implies that 9,,.1(p) = &.

We shall now derive a stability criterion, i.e., we shall derive a criterion to determine
the complete set of numbers p € R for which 2, is stable. This is possible through an
investigation of the family of unconstrained extremum problems %, introduced in 4.12).
Let K, denote the solution set of ¥,

K,: = {u € Vjuis a solution of ¥},
and let

k:R— R, k() := inf {f() = wt (W)}, (4.16)
ueV

Note that k(u) = —Ah*(u) and thus domi C R is a simply connected interval of R on
which & is a finite concave function. Corollary 4.9 may be formulated: if ?, is stable,
then v € K, for every « € P, and every 1 € P5. We shall now prove the ‘‘converse’”
of this result.

Proposition 4.15. If Ku # & then 2, is stable for p € {t(u)|u € K.}.

Proof. Let it € K, and put p = 1(ir). As it € t7Y(p) is a global minimal point of the
functional /' — w? on all of V, & is certainly a minimal point of f — ut on the level set
t7Y(p). Hence a € P;, f (it) = h(p) and

—h*u) = lgf {fw) = pt(w)} = f(a) = pe(a) = h(p) — up.

Hence #(p) + /h*(u) = wp which means that u € d/1(p). This shows that P; is stable.
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The last lemma characterizes the values u € R for which K, # & in a simple
situation.

Lemma 4.16. Suppose that the functionals f and ¢ satisfy conditions (f,?1).
Then we have

K, + 3 u € domk [i.e., k(u) < =],

Moreover, if f — ut : V — R is coercive on V, then u € domk. In particular:
(i) if ¢ is bounded from below on V, then domk D R~
(ii) if ¢ is bounded from above on V, then domk O R*
(iii) if ¢ is bounded from above and from below on V, then domk = R.

Proof. If f and 1 satisfy (f,1), then for every u € IR, the functional f — ut is weakly
lower semicontinuous. The results then follow immediately from the fact that for such
functionals the infimum, if finite, is actually attained.

Remark 4.17. If for p € (V) it is known that A(p) is finite and locally a concave,
differentiable function, then it is not difficult to show [4] that for sufficiently small € > 0:

h(py= inf f(w) = inf sup inf {f(w) — w(t(w) — p)} 4.17)
u€r-(p) HER gE(p—~¢,p+e) uE—Yg) .
o . . dh . . . . .
where inf is attained for u = i = — (p), sup is attained for ¢ = p and inf is
xER dp gEP—e.p+e) uE1=(p)

attained for any solution of %, (which has necessarily multiplier ). In this case of locally
concave functions, the extremum problem defined in the right hand side of (4.17) is not
easier to deal with than the original problem 2, and seems to be of no use to extract
information from it for problem %,, in contradistinction to the case of a locally convex
function /# which gave rise to the study of the e-local dual problem loc. %2} .

5. APPLICATIONS

We shall now demonstrate some of the foregoing results to functionals f and ¢ which
lead to semilinear eigenvalue problems of elliptic-type. Therefore, let () be a bounded
domain in R" and let L be given by (1.4). Then, as is well known, with V = HYQ) =
W) the usual Sobolev space, the functional f defined by (1.6) satisfies conditions
(f1,2) and condition (f3) of Proposition 2.2

We consider functionals ¢ of the form

u(ry
t(u) = fn[j 'y(x,z)dz} dx, $.n
0

where the function y € C3(} x R,R) satisfies the following growth condition:
(£3): if n > 2 then for some constants, b, =0, b, = 0:
ly(x,2)] < b, + byjz|*forz ER, x € Q,

+ 2
where s < :—_5; if n = 2, then |y(x,z)] =< expx(2), 5.2)

where lim x(2) =
|zl—  Z

0.



250 E. W. C. vaN GROESEN

From standard embedding results for A'(Q), it follows that such functionals ¢ are defined
and finite on V' and satisfy conditions (¢1,2).

From Propositions 2.1 and 2.3 it follows that for every p € (V). 2, has at least one
solution, and solutions « for which ¢'(«) # 0 satisfy for some 1 € R the equation

Lu = py(x,u) e Q. (5.3)

Example 5.1. The simplest case is obtained when the functional ¢ is given by
Hu) = J Lt d. (5.4)
[+

This leads to the linear eigenvalue problem for the operator L:
Lu = pu. (5.5)

For p > 0, problem 2, (and &, for r > 0) characterize the eigenfunction u«, of (5.5)
corresponding to the principal, i.e., smallest, eigenvalue w, (>0), normalized in such a
way that #(u«,) = p (or 4 (u,Luy = r, respectively). Apart from sign, the solution of #,
is unique and positive on . Note that in this case we have h(p) = u,-p for p > 0,
3 h(0) = (—o, u,l, dh(p) = {u,} for p > 0. The function s(r) is given by s(r) = (1/w,) -
for r > 0, and for the function g(r) we have g(r) = 0 for r > 0: Q, has no solution,
but Q- has « = 0 as unique solution, for which #'(0) = 0.

Example 5.2. Equation (5.3) is sublinear if y satisfies the estimate (5.2) with 0 < s
< 1. Then the functional ¢ satisfies for some constants ¢, = 0, ¢, = 0.

) =c + e ul] ™
From Exampile 5.1 it follows that the principal eigenvalue u, satisfies
(u, Ly = py [l u® VYue v, (5.6)

for which we can conclude that the functional 4 «,Lu) — wt(u) is bounded from below
and coercive on V for every u € R. Hence, Lemma 4.16, domk = R and K, # & for
« € R. Consequently (Corollary 4.13), at points where #/ is continuous it is differentiable
and subdifferentiable. As a specific example, consider the bounded functional

Hu) = J (1 — cosu)dx.

Q

Then (V) = [0,po) where p, = 2 fndx. For n = 1, Q = (0./) and L = —(d?*/dx?), the
equation

Lu = psinu (5.7)

describes the plane steady-states of an elastic, flexible rod with constant mass-density:
if in the (v,z) plane the rod is described with an arclength coordinate x € [0./] as
(¥(x),2(x)), then « = u(x) denotes the tangent of the rod with the positive y-axis:

dy z

——(x) = ) 4 _ sinu(x)
dx x) = cosu(x), dx = X).
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In this case, problem 2, can be interpreted as the principle of minimal potential energy,
the requirement #(#) = p being the constraint that the potential energy has to be compared
for configurations, described by u(x), which [are horizontally inclined at the endpoints:
u(0) = u() = 0 and which] have prescribed horizontal distance y(/) — v(0) between the
endpoints:

i

y() - y(0) = f cosu(x)dx = | — p.

The inverse extremum problem &, determines among all configurations which have r as
value of the potential energy, that configuration which has the least horizontal distance
¥(I) — ¥(0) between its endpoints. In this case, the multiplier u also has a physical
interpretation: it is proportional to the horizontal component of the compressive load
necessary to maintain the rod in the required position. Concerning the unconstrained
extremum problem ¥, it is easily seen that k(i) = 0 and K, = {0} for u < 0, whereas
for u > 0 this problem is well known in the literature [8, 10]. In fact, the solution can be
explicitly expressed in terms of Jacobi elliptic functions. From the available information,
or in a direct way, one obtains the following results. For r € (0,%) the function s(r)
monotonically increases from 0 to p,, such that the inverse function #(p) monotonically
increases on (0, po) with A(p) —» = if p 1 p.. Moreover, the function # is differentiable
and subdifferentiable on (0, p,), and thus there is a one-to-one correspondence between
p € (0,p¢) and the multiplier x of the solutions of #,. From this, together with K, =
{0} if 0 < u =<, and Ku = {xU)} if o > pu, [where U(u) is the unique positive
solution of ¥,] this implies that the ‘‘first buckling mode’” { U(u)}u>u, can also be para-
meterized with the parameter p € (0,p,) [and also with the parameter r € (0,%)]:

/
{u(p)} = {:—; (P)} = dh(p) for p € (0,po).

For this problem, g(r) = 0 and Q, = & for r > 0.
Let us now consider some problems which give rise to equations of superlinear type.
Example 5.3. As a first specific example of this kind, let

t(u) = f [—;uz - ig’(x)u“] dx, (5.8)
o

where g € C°(5,R) is a given function which satisfies g(x) = go > 0 for x € Q. The
corresponding equation (5.3) reads

Lu = pufu — g¥(x)u?). (5.9)

The functional ¢ is bounded from above but not from below:
1(V) = (=%,po), where p, = f 8 (0dx.
(]

Noticing that t'(«) = 0 if and only if v = 0 (for « € V), problem %, has for every
r > 0 a solution and on [0,%), s(r) is a continuous, monotonically increasing function
from 0 to p,. Furthermore, for & = 0, k(u) is finite and ¥, has a solution [hence #/ :
(0,p0) — R is a finite (sub-) differentiable convex function): K, = {0} if 0 = u < u,, and
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for u > uy, Ky = {x U(w)}, where U(u) is the unique nonnegative solution of (5.9) [1.
p. 312].

By the extremal characterization and the maximum principle for L, every solution of
P.. p > 0, must be of the same sign on . from which it follows that P, =
{x U(u(p))} for p > 0. where

_{ﬂ' }-ah()
{uw(p)} = dp(p) = dh(p).

As was shown by Berger, the mapping (1,,*) 3 u — U{un) € C{(}) is continuous.
Because the mapping (0,p,) 3 p — w(p) € (u,,%) is also continuous, the solution branch
U(u(p)) depends continuously on p. p € (0, py). To investigate 2, for p < 0, first note
that in this case every solution has a negative multiplier: this follows by multiplying Eq.
(5.9) with « and integrating over (Q:

0=(u,luy =pn f(u"’ - fu)dx = M(—f wdx + 4p).
o

o

As k(u) = —= for u < 0, the curve /(p) is not subdifferentiable for any p < 0, and
(0,u,] = 8#(0). Moreover, as ! can take negative values, the solution of Q, is nontrivial
(u # 0) if r is sufficiently large: for some r, > 0, Q, has a solution and g(r) is a continuous.
monotonically decreasing function for r > r,. It is not difficult to see that / is in fact a
concave function of p for p < 0: therefore it suffices to show that if i is a solution of 2,
with p < 0 and then necessarily with multiplier i < 0, then & is not a local minimum of
the functional f — it (Corollary 4.14). To that end consider the function

X(p) = flpi) — pt(ph)

= P L - a0} + Lt | wd
- - ¥

in a neighbourhood of p = 1. Using (dx/dp)(1) = 0 in the expression for (d*x/dp>)(1), we
find

, .
X = 2;1J wdx < 0,
dp*

i

which result contradicts the condition (d*x/dp?)(1) = 0 which is necessary in order that
it be a local minimum of the functional f — at.
Exuample 5.4. As another specific example, consider the functional

() = JQ Cu? + tut)do.

Then #(V) = [0,%) and ¢'(«) = 0 if and only if « = 0 on V. The function s(r)is continuous
and monotonically increasing on R*. Hence the same applies for the function # on R*.
and thus p = 0 for any solution of #,. It is easily seen that domk = (—=,0], and thus #
is not subdifferentiable for any p > 0. In much the same way as was done in the previous
example (for p < 0), it can be shown that £ is a concave function on R*. Hence u(p) is
a monotonically decreasing function of p, and in fact w(0) = u,, u(p) = 0 for p — =.
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Example 5.5. Another class of problems is obtained if we impose on the function y
the extra condition

v(x,00 >0 forx€ Q. (5.10)

Then S, # 0 for every r > 0 and s : (0,) — R" is continuous and monotonically

* increasing with s(0) = 0. Hence #(0) = 0 and 4 : (V) N R* — R* is continuous and
monotonically increasing. Because of condition (5.10), the multiplier u of any solution of
%, tends to zero if p | 0. Together with #(0) = 0 and #(p) > 0 for p > 0, this implies
that there exists a (maximum) value p*, 0 < p* =< o, such that / is finite and convex on
the interval (0, p*). Hence 4 is differentiable and locally subdifferentiable for p € (0, p*)
and %, is locally stable there. Further information of the function y determines the value
of p* and the behaviour of u and / in a neighbourhood of p*. For instance it is possible
that p* = =, such as for the simple functional

t(u) = Lu dx

“in'which case P, is stable for p > 0, or that p* is the finite least upper bound of the
functional ¢, such as for

t(u) = L(u - %uz)dx cpt = %de

in which case 2, is stable for p € (0,p*) and h(p) = =, u(p) - = for p 1 p*.
Let us now describe a situation for which p* is finite but not an endpoint of (V).
Therefore suppose that y satisfies the extra conditions

%(x,0)>0 forxe Q

’ G.11)
d>y

F(x,z)>0 forxeQ,:>0.

b4

It was shown by Crandall and Rabinowitz [2] (cf. also Keener & Keller [6]) that in this
case there exists a A > 0 such that (5.3) has positive solutions if and only if u <A, and
that there exists a continuous solution curve [0,A) D u — Uu) € C>**Q) with the
properties: (i) U(u) is a minimal solution of (5.3) [i.e., if v is another positive solution of
(5.3), then U(u)}x) < v(x) for x € Q], (ii) U(u) is the only positive solution of (5.3)
which is a local minimum of the functional ¥ «,Lu) — wt(u).

These results may be interpreted in terms of constrained extremum problems if we
impose an extra condition which assures that solutions of #, for p > 0 are necessarily
nonnegative [e.g., v(x,z) > 0 for z € R]. Then we have the following situation: there
exists a connected interval (0,p*) such that &, is locally stable for 0 < p < p* and / is
convex, differentiable on (0,p*) with w(p) = (dA/dp)(p) increasing from 0 to A. If p* <
«, for p € (p*,»), h(p) is a continuous, concave function [because of (ii) and Corollary
4.14] at which p(p) (< A) is monotonically decreasing, say u(p) | u. for p — . Then
necessarily u. = 0. Note that if in a specific situation (A\ >) p. > 0, then &, is in fact
stable for those values of p < p* for which u(p) < u«, in which case the solutions
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U(u(p)) are in fact global minimum points of the functional X «. Ly — p(p)t(u). With the
extra conditions i

y(x,2)

lim =

I

(5.12)

J y(x,0dt =< 8zy(x,z) for z > 2, for some z > 0.8 € [0,/),
0

it was shown in Ref. 2 that for every u € (0,0) there exists at least a second nonnegative
solution of (5.3). As this second solution has a larger value of ¢ than ((U(w)) [by the
minimality of U(w)], this implies that x. = 0 and thus u(p) | 0 for p — =. [Note that
this can also immediately be concluded from the fact that A(u) = —c for every u > 0 if
v satisfies (5.12), which also shows the existence of a finite value p*.] In the following
paper [5] we shall describe the continuation of the solution branch with the parameter p
instead of with the parameter 1 in a more detailed way.
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[§]

1

Abstract—In this paper we consider constrained extremum problems of the form

P, :inf flu),

uEt=Y(m

where f and ¢ are continuously differentiable functionals on a reflexive Banach space
¥ and where r~!(p) denotes the level set of the functional ¢ with value p € R.

Related to problems 2, we investigate inverse extremum problems, which are ex-
tremum problems for the functional 1 on level sets of the functional f. Under conditions
that guarantee the existence of solutions of 2,, let /i(p) denote the value of f at such
a solution. If /1 is a (locally) convex function at some p € R, we show that it is possible
to define a dual problem of 2;. This dual problem is 4 saddle-point formulation for the
functional ¥V X R 3 (u,u) = fu)—ult(u)— p): for some extreme value @ (which is the
Lagrange multiplier of a solution of ;) the solutions of #; are precisely the (local)
minimal points of the functional f—ur on V.

It is shown how these results can be used to describe solution branches of nonlinear
eigenvalue problems (of semilinear elliptic type) with a global parameter, such as
p € R, instead of with the eigenvalue as parameter.



