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1. INTRODUCTION 

Let V be a reflexive Banach space and f and f two real-valued functionals defined on v. 
For p E t( v) [f(v) denotes the range of the functional tl we consider the constrained 
minimization problem 

Pp : inf j(u). 
I&-‘@) (1.1) 

Here t-‘(p) denotes the level set of t: 

t--‘(p) = (I4 E v 1 r(u) = p}. 

which is a nonempty subset of V for p E t( k’). A solution fi of (1.1) is an element from 
V which satisfies 

(ii) = p and f(h) = h(p), 

wherein h is the function defined by 

h: t(v)+ R: h(p) := inf f(u). (1.2) 
&t-‘(p) 

To get an idea of the main types of functionals we want to consider we list the con- 
ditions which will occasionally be assumed to hold 

(/I) fis weakly lower semicontinuous on V, and 
coercive on I/ [i.e., f(u) + m if IIuIIv+~I; 

(rl) t is weakly continuous on V; 

(f,t2) f E C1( V,R), t E C’( V, R). 

If f and f satisfy these assumptions, then the existence of at least one solution u of P,, 

Editor’s note: Abstract appears at the end of the article. 
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is guaranteed (cf. Proposition 2.1) and if [‘(lo # 0. this solution satisfies the equation 

j”(U) = /d(u) (1.3) 

for some unique multiplier p E R (cf. Proposition 2.3). 
The operator equation (1.3) can be viewed at as a nonlinear eigenvalue problem in the 

dual space V* (with p as the eigenvalue) for the operators .f“, t’ : V + V*. Our aim is to 
derive properties of those solutions of (1.3) which are also solutions of ( 1.1). In particular 
it is tempting to describe solution branches of (1.3) [i.e., connected sets of pairs ([I,@) E 
V x R which satisfy (1.3)] with the aid of the parameter p as it enters in (1.1). In many 
applications a parametrization of such a branch with p : {(u@)+(p)) 1 p E r(V)} 
C V x R, is possible and may be particularly fruitful if a continuation of a solution branch 
described with the eigenvalue F as parameter (as is usually done) is not possible (e.g.. if 
there is a “bending of the solution branch”: cf. Crandall & Rabinowitz [21 and Example 
5.5. A study of such a continuation process requires both a global investigation and a 
more precise local description of the solution sets. 

In this paper we shall deal with the global aspects of such a continuation. In a sub- 
sequent paper [53 we shall give a more detailed analysis of the local properties of such 
a global solution branch. 

The general results to be derived are applicable to problems of semilinear elliptic type: 
Let Q C R” be a bounded domain with smooth boundary XI and L a uniformly elliptic 
operator of the form 

L = - i a,,[a&)a,,l + c(x), 
i.j=l 

(1.4) 

where the coefficients of L are real, Uij(-U) = Nji(-Y) is twice continuously differentiable in 
5 for i,j = 1,. . . , n, and c(x) is nonnegative and once continuously differentiable in n. 
Then the nonlinear eigenvalue problem 

Lu = PI’(U) in (1 

u=o on aR 
(1.5) 

can be described as an operator equation as (1.3), with V = a’(n) = k@‘,‘(n) the usual 

Sobolev space, if .f‘is defined to be the quadratic functional 

f(u) = ;b,Lu) = ; I u(x)Lu(x)dx. (1.6) 
n 

Then .f’satisfies cf‘l,2). and in this case f’is equivalent to the square of the norm of fll(fl): 

for some y > 0. 
Then, for the class of functionals t on &l(0) which satisfy (t 1,2), the general theory 

will enable us to describe a global solution-branch of the nonlinear eigenvalue problem 
(1.5). 

To describe the contents of this paper: in Sec. 2 we state some preliminary results, 
especially a simple relation between the function h, given by (1.2), and the multiplier of 
a solution of problem 9,, is derived, and some important consequences are noticed. In 
Sec. 3 we first investigate when a solution of 6??,, also gives an extreme value for the 
functional t on a level set of the functional .f‘(the irl\vrsr extremum problem for Y,,). 
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Furthermore, we show how useful qualitative information about the behaviour of the 
function h can be obtained from a study of such an inverse extremum problem. In Sec. 
4 we show how ideas from “convex analysis” (as can be found, e.g., in Rockafellar [91 
and Ekeland and Temam [3]) can be applied to obtain a dual formulation for the con- 
strained extremum problems 9,. Therefore it is not necessary to require the functionals 
.f and t to be convex: (local) convexity of the function h suffices to obtain (local) duality, 
and this on its turn implies that a solution of 9, with multiplier p is in fact a (local) 
minimum of the functional f-pt on I/. The results derived in Sets. 2, 3, and 4 enable us 
to describe a global solution branch of (1.3) with the parameter p . For a class of semilinear 
eigenvalue problems as described above, this will be shown in Sec. 5. There some well 
known results are derived in a new way, and especially for problems for which “bending” 
occurs, this description gives new insights into these delicate problems. 

To conclude we emphasize that for the global result to be derived here, no nondege- 
neracy condition for the (constrained) extreme points are required, although conditions 
of this kind turn up in a more detailed local description of the continuation process. 

2. PRELIMINARIES 

The first results deal with the solution set of problem pp. 

Proposition 2.1. Assume that the functionals f and t satisfy conditions Cf,t 1). Then 
for every p E t(v), CT, has at least one solution. 

Pr0o.f. Because of condition (fl) the functional fis bounded from below on all of V, 
and hence certainly on t-‘(p). Put 

(y *= inf f(u), 
U3-‘@) 

and let {u,} be a minimizing sequence: .f( u,) J (Y for n --, a, t(u,) = p for all n E N. 
AS f is coercive this minimizing sequence is uniformly bounded in V and hence has a 
weakly convergent subsequence, say u,, - li in I/. Because of condition (t 1) 

: f(h) = limf(un) = p, 
n--r= 

hence fi E t-‘(p). [The level set t-‘(p) is weakly closed.1 As fis weakly lower semicon- 
tinuous, 

j(h) 5 lim inff(u,,) = (Y. 
n+= 

By definition of (Y we also have (Y 5 f(fi), hence f(k) = a. This shows that C is a 
solution of 9,. 

For simplicity denote the solution set of c??~ by P,: 

P, := {u E V/u is a solution of Y,}. 

Proposition 2.2. Assume conditions (f,t 1) to hold. Then Pp is a weakly compact subset 
of V. Moreover, if f satisfies the extra condition 

(f3) for every sequence N, for which u, - ri (weakly) 

in V and f(u,) --, .f(G), It follows that [in --, ii 

(strongly) in I/, 

then P, is a compact subset of V. 



240 E. W. C. VAN GROESEN 

Proo.f. As f‘is coercive on V. P, is a bounded subset of V. Let {II,} be any sequence 
from P,; then t(~,) = p and .~‘(II,,) = h(p) for all n E N, where /r(p) is defined in (1.2). 
As {u ,} is bounded it contains a weakly convergent subsequence, say u,,< - li in V. As 
in the proof of Proposition 2.1 it easily follows that t(fi) = p and Ati) = /z(p), i.e., that 
ir E P,. Hence P, is weakly closed. If fsatisfies the extra condition C_j3), the subsequence 
u,, converges strongly to ir, which implies that P, is compact in this case. 

We now recall the Euler equation which must be satisfied by a solution of pp. This 
result, a generalization of Lagranges multiplier rule to infinite dimensions, is originally 
due to Lusternik 171. See, e.g., Vainberg [ll, Theorem 9.111 as a convenient reference. 

Proposition 2.3. Assume .f‘ and t satisfy condition (j: t2). Then, if II E P, with t’(u) 
# 0, there exists a unique multiplier p E R such that II satisfies 

f’(u) = @I(U). (2.1) 

The next lemma relates the multiplier p of a solution of C%‘,, to the function h defined 
in (1.2). Note that, if f satisfies df‘l), J‘ is bounded from below on V, and hence 11 is 
bounded from below on t(v). Moreover, the range of the functional t, f(V) C R. is a 
connected interval if, e.g., t is continuous. Let i(v) denote the interior of this range. 
Assume for the following conditions Cf,r2) to hold. 

Lemmu 2.4. For p E i( v), let u be a solution of C??‘p with r’(u) # 0 and with multiplier 
/-L. Then we have 

where 401) and K.(p) denote the right- and left-hand-side derivative of the function I-I, 
respectively. 

Prwj’. As t’(u) # 0 it is possible to take 1’ E V such that { t’(~),ll) = 1. With j”(u) = 
Pi’ it follows that (.f’(~),\3 = p. Furthermore, the function E : R + R defined by 

f(u + av) = p + e(a) 

is continuously differentiable and satisfies 

43 = 0, -$ (0) = 1. 

By definition of the function h we have for (Y E R 

h(p + e(a)) 5 f(u + uv). 

Now, consider the expression 

If cx J 0, we have E(U) -1 0 and 

h;(p) + 
4~ + ~(a)) - h(p) < f(u + a “1 - Au) (f’(u).v) - 

E(Q) r(u + nv) - f(u) 
3-=p. 

(f(u),4 

In the same way, for CY t 0, it is found that h’_(p) 2 IL, which proves the lemma. 
The foregoing lemma has two immediate corollaries which turn out to be useful. 
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Corollar?: 2.5. If h is differentiable at p, then all solutions of gp have the same 
multiplier, which may therefore be denoted by p(p), and which is given by 

P(P) = h’(P). (2.3) 

Corollav 2.6. Suppose that k is locally convex at p E i(v). Then h is differentiable 
at p : h;(p) = h’(p), and hence the conclusion of Corollary 2.5 holds. 

3. INVERSE EXTREMUM PROBLEMS 

Related to the extremum problem 9, we consider as “inverse extremum problems” 
the two families of constrained extremum problems 

Yr : ygF)(r)4u) (3.1) 

3, : inf f(u) (3.2) 
uv-‘tr, 

for r E f(v). Corresponding to Yr and !& we define solution sets S, and Qr and 
functions s and 9 in the same way as was done for problem 9,: 

S, := { u E VJu is a solution of Yr} 

Qr = {u E Vlu is a solution of &}, 

s(r) := sup t(u) 
uV_‘tr, 

(3.3) 

for r EAV). 

(3.4) 

In this section we study the relation between problem gp and these inverse extremum 
problems. The results of this section will be important for the rest of this paper: it will 
be shown how, for functionals which satisfy cf, t l), qualitative behaviour of the function 
h, defined in (1.2), can be obtained from the functions s and 9 defined above (which 
are simpler to investigate as shall be shown). 

To start, we investigate when a solution of 9, is also a solution of Sp, or 2,. for I’ = 
h(p). In general this will not be the case: a solution u of 9, will usually only give local!\ 
(i.e., in a sufficiently small neighbourhood of u) an extreme value for the constrained 
functional t on the level set f-‘(h@)). The first lemma gives the usual relation between 
the functions h, s, and 9. 

Lemma 3.1. Suppose P, # 0. Then we have 

(4 s(W) 2 P. 

(b) 9(h(p)) = P. 

(3.5) 

(3.6) 

Proqf. Let ti E P,. Then .f(ti) = h(p) and r(G) = p. Hence d E f-‘(h(p)) and by 
definition of the functions s and 9 

s(h(p)) 2 t(k) = p and q(Q)) I t(b) = p, 

which proves the lemma. 
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The following result gives in principle the complete answer to the question formulated 
above. 

Pwmitiotl 3.2. Suppose P, # 0. Then we have 

(a) if s(h(p)) = p, then P, = Shcp, 

(b) if q(O)) = p, then P,, = Qh,,,,. 

Pr(Jc?f‘. We shall prove (a). Then (b) can be obtained analogously. Let D E P,: then 
.tlII) = /r(p) and f(n) = P; thus, as R E ~-Y/I(P)) and .s(/~(p)) = p = t(b), ir is clearly 
a solution of Yh,“,. On the other hand, if ir E ShCp,, then s(ll(p)) = t( ir) and h(p) = 
.fcri), and thus, if s(l?(p)) = P. fi satisfies t(fi) = p and,f(ri) = /l(p) which shows fi E P,. 

The next lemma gives a criterion to decide whether the conditions of the foregoing 
proposition are satisfied. 

Lrtn~m 3.3. Suppose P, # 0. Then, 

(a) if h(5) > h(p) for 5 E (p,~) I-I t(v), then s(h(p)) = p: 

(b) if h(i) > h@) for 5 E (--a,~) CT t(V), then q(h(p)) = p 

Proc?f’. Again we shall prove only (a). Suppose Q/Z(P)) = ~7 + (Y for some (Y > 0 
[because of (3.5) we need not to investigate the possibility CY < 01. Then 

sup t(u) = p + CY, 
uEf-‘(h(y)) 

which implies that there exists an element ir E V and a number c E R with p < 4 < I> 
+ LY such that r(fi) = < and f‘(k) = /z(p). From this it follows that 

h(5) := inf f(u) ‘f(k) = h(p). 
IcEI-’ 

Hence /I(<) 5 /z(p) for 5 > p if s( h(p)) = p + cy for some (Y > 0. This proves statement (a). 
If we let a/~(p) denote the subdifferential of the function h at p (cf. also Sec. 4) we get 

a special case of the foregoing lemma. 
Corolltrry 3.4. Suppose P, $; 0. Then 

(a) if ah(p) f~ R+ # 0, then s(h(p)) = p; 

(b) if ah(p) fl R- # 0, then q(h(p)) = p. 

The foregoing results imply 
Proposition 3.5. 

(a) Suppose there exists p+ E R such that [writing J+ := (~>+,QJ) rl r(V)] 

(i) P, # 0 for p E J+; 

(ii) h is monotonically increasing on J,. 

Then s(h(p)) = P for all p E .I+; in other words: the function s : { h(plp E J+} ---, R is 
the inverse of the function 11 : .I+ --, R. 
(b) Suppose there exists p_ such that [writing J- := (-=,p_) n t( V)] 

(i) PpI, # 0 for p E J..: 

(ii) II is monotonically decreasing for p E J_. 
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Then q(h(p)) = p for all p E J-: the function 4 : { h(p)lp E J_} + R is the inverse of 
the function h : .I_ + R. Because of these results it will be clear why we have called 
problems Zfr and % inverse extremum problems of ~3’~. 

Now suppose that the functionals .f and t satisfy condition (f, t 1). Then P, # 0 for p 
E t( I-‘) (Proposition 2. I), and the foregoing results show how from qualitative behaviour 
of the function h we can deduce results concerning the coincidence of the solution sets 
P, and S, or Qr and concerning the functions s and q for suitable values of r. 

However, this qualitative behaviour of the function h is usually difficult to obtain 
directly from a study of the constrained extremum problem 9,. It turns out, as we shall 
see below, that it is much simpler to obtain such qualitative information for the functions 
s and 4 on f( I’). Assuming this to be the case for the moment, we can “construct” the 
function h [at least on a subset of its domain t( V)] from the functions s and 4 in much 
the same way as was described above for the reversed problem. For convenience we 
shall list the main results. 

Lemma 3.6. 
(a) If S, # 0, then h(s(r)) I r. 
(b) If Q+ # 0, then h(q(r)) 2 r. 

Proposition 3.7. 
(a) If S, # 0 and h(s(r)) = r, then Pscrj = S,. 
(b) If Qr # 0 and h(q(r)) = r, then P,,, = Qr. 

Lemma 3.8. 
(a) If S, # 0 and if s@) > s(r) for p E (r,m) n f( v), then h(s(r)) = r. 
(b) If Qr # 0 an if 4@) > q(r) for p E (r,m) n .f( v) then h(q(r)) = r. 

Proposition 3.9. 
(a) 

(b) 

Suppose there is i- E R such that [writing J := (f,m) rl f( v)] 
(i) S, # 0 for r E J; 

(ii) s is monotonically increasing for r E J. 
Then h(s(r)) = r for r E J: the function h : { s( rlr E J} + R is the inverse of the 
function s : J --, R. 
Suppose there is f E R such that [writing J := (P,“) 0 .f( I’)] 
(i) Qr # 0 for r E J; 

(ii) 9 is monotonically decreasing on J. 
Then h(q(r)) = r for r E J: the function h : { q( r)lr E J} --, R is the inverse of the 
function 4 : J + R. 

For the applicability of these last results it is necessary to study the existence of 
solutions of SF, and g2, and to obtain qualitative information of the functions s and 4 for 
r E .f( v). To that end we consider the extremum problems 

where 

B, := (74 E Vk(u) I r}. 

The idea is that the level set f-‘(r) is the bour@ary of the set B,, such that if it is known 
that t attains its maximum (or minimum) on B, at a point which is not in the interior of 
B,, then Sp, (or 9,) has a solution. 

To make any progress in this direction we assume that f and f satisfy Cf,tl). Because 
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of (j’l), J‘is bounded from below on V and attains its minimum, so that it is no restriction 
to assume that .f satisfies 

v1*1 flo, = 0,Au) 2 0 vu E v. 

Then we have the following standard result (see, e.g., Vainberg 111, Theorem 9.21, Berger 
[ 1, Theorem (6.1. I)]). 

P~vwsition 3.10. Suppose fand t satisfy Cflt 1) and cf’l*). Then, for every I’ > 0. the 
set B, is bounded and weakly closed in V. Furthermore, f is bounded from above and 
from below on B, and attains its maximum and minimum value at points of s,. 

Of course it is posible that both the maximum and minimum value of f are attained 
at interior points of B,. Then these points are solutions of t’(rr) = 0, and S, and Qr may 
be empty. But if it is known that r has at most cne stationary point, at least one of the 
two extremal elements lies on the boundary of B,. In this w_ay we_obtain the following 
results (mononicity is a simple consequence of the fact that B, C B,, for 0 < r < ro). 

Proposition 3.11. Suppose ./‘ and t satisfy (f; t 1,2) and (f’l*). 
(4 

(b) 

If t’(u) # 0 Vrr E _ v, then S, # 0 and -Qr # 0 for every r E R+. Moreover, the 
functions s : R’ + R and (1 : R+ + R are monotonically increasing and monotonically 
decreasing, respectively. 
Suppose that I satisfies 

(i) t(0) = 0 
(ii) r’(lr) = 0 G II = 0 

(iii) t takes positive values at every neighbourhood of II = 0. Then S, # 0 for every 
r E R’ and s : R’ + R is monotonically increasing. 
Moreover, if for some i- > 0: 
(iv) t has negative values at f”(f), then we also have Qr # 0 for r 1 P and (I : 
{r/r 2 F} -+ R is monotonically decreasing. 

4. DUALITY 

For what follows it is convenient to define the function h on all of R as a function into 
ii = R U {cc} U {-m}: 

h:R-+R,h@):= 

[ 

inf f(u) if p E t( v) 
u U_‘(P) (4.1) 

CC else 

Lemmrr 4.1. An equivalent formulation of problem 8, is 

(4.2) 

Proctf‘. Immediate from 

“P{f(‘) - cL(t(u) - P)} = I f(u) if t(u) = p 

lrER 
CEI ift(u) ~ p 

Now we define a dual variational problem for g,, and a local version thereof. 
DejJinition 4.2. The drrcrl problem 9’; of g’p is defined to be the extremum problem 
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and the ~-local dual problem loc,9,* of PP is defined for E > 0 as 
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loc,P,* : sup inf U(u) - IL(l(U) - P)>. 
pERuEt-‘(p-c.p+r) 

(4.4) 

Any number @ E R for which the supremum is achieved in (4.3) [or (4.4)1 will be called 
a solution of 9,* (of loc$-‘p*, respectively). The solution sets of 9; and loc,CP,* will be 
denoted by P,* and lot, Pt , respectively. 

Remark 4.3. Note that 9,, and 9”: can be considered to be limiting cases of 10~~9~ 

9, = locoP,* 

9; = loc,P,*. 

Leth*:R+Randh**: R + R denote the dual (= conjugate) and the bidual function 
of h. Then we have 

Lemma 4.4 

(i) h*W = -inf (f(u) - F~(u)} for p E R 
UEV 

(4.5) 

(ii) h**(p) = “,“EPR in! (f<u) - p(t(u) - p)} for p E R. (4.6) 

Because of Remark 4.3 this lemma is a special case (for E = m) of the following result 
which gives (for E = m) analogous statements for the local dual problem. Therefore define 
the function 

h * R + R for E > 0, p E R : h&q) := h(q) if 9 E (P--E,P+E) 
c9 * m else 

Lemma 4.5. 

(i) hTs(cL) = --_nfp+rj if(~) - MLO) for cc E R 

(ii) 4$(p) = sup inf {f(u) - ~4r(lo - P> for P E R, 
pERuE;-‘@-(.~+a) 

(4.7) 

(4.8) 

(4.9) 

where the infimum of a functional taken over an empty set is defined to be +m. 
Proof. 

(i) Substituting (4.7) and (4.1) in the definition of dual function, we obtain for p E R 

h,$(~) = sups {cLq - h,,(q)) = pE;u:p+C) -+q - h(p)) 

= SUP {w? - u;~~(,,f’“‘> 
qaP-r.p+*) 

= - inf inf V(u) - W(u)) 
9E@-r.p+c)uEP-‘(9) 

= - inf cr(u) - W(U)). 
I&-yp-c,p+e) 
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(ii) Using hT,,*(q) := sup {p~q - h$,&)} it follows with (i): 
PER 

GXq) = sup inf {f(u) - CL(~(U) - 4)) Vq E R. 
/.&R uEt-‘@-c.p+d 

For y = p this is the desired result. 
Lrnzmcl 4.6. For arbitrary E > 0, p E R we have 

h**(p) I /2$*(p) I h(p). (4.10) 

Proof’. As t-‘(p-•E,P+E) C V, it fol&ws from (4.6) and (4.9) that I?**(p) 5 11:$(p). 

Furthermore, as for arbitrary j‘ : R + R the inequality f”*(s) 5 ,f‘(_r) VX E R holds, we 
have /z:,,*(q) 5 h,,,(y) Vq E R and thus the second inequality because Izs.,,(p) = /z(p) for 
every p E R. 

We now come to the definition of (local) stability of problem pp. The importance of 
this notion will become clear in the, following. 

Dejinition 4.7. Problem gp is said to be 

(a) stuhle if (i) P, # 0 

(ii) P.Z # 0 

(iii) h**(p) = h(p) ; 

(b) locc~ll~ stable if (i) P, # 0 

and for some E > 0: (ii) lot, Pt # 0 

(iii) h::(p). 

Proposition 4.8. Suppose 8, is locally stable. Let ti E P, and /1 E loc,P,*. Then fi E 
t-‘(p) is a solution of the extremum problem 

36 . 
IJ.. inf {f(u) - fit(u)). (4.11) 

uEI-‘(p-E,p+c) 

Consequently, if t is continuous, then fi is a local minimal point of the functional .f’ - t~z 
on all of V, and if (f‘,t2) holds, then (G, fi) E I’ x R satisfies 

f’(i4) = /.2’(u) 

t(U) = p. 

Proqf‘. For ir E P, we have flfi) = h(p) and t(O) = p, thus also 

h@) = f(b) - Nf(fi) - P). 

For p E loc,PS it follows from 

G3P) = 

(4.9) that 

inf {f(u) - Il(t(u) - P)). 
UEl--‘(p-e.p+c) 

As /12$(p) = h(p) and t(O) = p, it follows from these results that fi is a solution of 
problem 2;. Furthermore, if t is continuous, t-‘(p--E,p+c) is a neighbourhood of the 
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level set t-‘(p); in particular, for & E r-‘(p) there exists 6 > 0 such that B(fi;G) = 
{u E VI 11 u - ii 11 < S} is contained in l-l@-e,p+~). Consequently, the functional 
f - &t achieves its infimum on B(fi,6) in the interior point fi, which is then a stationary 
point of this functional and thus, if (f,t2) holds, we have j’(a) = pf’( fi). 

Taking E = 0~ in Proposition 4.8 there results 
Corollary 4.9. Suppose 9, is stable. Let fi E P, and p E Pg. Then li E t-‘(p) is a 

solution of the unconstrained extremum problem 

s(, : inf {f(u) - Mu)}, (4.12) 

UEV 

i.e., a is a global minimal point off - pr on all of I/. 
Some other simple consequences of Proposition 4.8 can be stated: 
Corollury 4.10. Suppose 9, is locally stable and f and t satisfy Cf,f2). Then we have 

(i) If lo@,* has more than one solution, then for every M E P, we have 

f’(u) = 0 and I’(U) = 0. 

(ii) If fi E loc,P,* is the only solution of loccg,*, then for every u E P, we have t’(u) # 
0, and all solutions of 9, have the same multiplier p. 
(iii) If f’(u) # 0 for u E t-‘(p), or t’(u) # 0 for u E r-‘(p), then loc,p; has a unique 
solution. 

With the notion of subdifferentiability it is possible to give an equivalent definition of 
stability of problem 9,. To obtain the same results for local stability we introducethe 
concept of (E-) local subdifferentiability in the following way: the function h : R ---* R is 
said to be e-locally subdifferentiable at p if &h(p) # 0, where the e-local subdifferential 
&h(p) is defined with the aid of the function h,, : R + k introduced in (4.7) as 

&hcP) := ~LPW (4.13) 

Noticing that &h(p) > &,h@) for every 0 < E < l O, we can define 

&&p) := u &h(P) (4.14) 
czo 

and call h locally subdifferentiable at p if its local subdifferential &h(p) is nonempty: 
t&h(p) # 0. It is a simple matter to verify that h is continuous and locally subdiffer- 
entiable at p if and only if f is locally convex at p. 

Lemma 4.11. 
(i) p E P,* @ p E ah**(p) 

(ii) p E loc,P; e /A E ah:;(p). 
Pro0.f. Writing A*** for the dual function of h** we have by definition of subdifferential: 

iJ- E ah**@) e h**(p) + h***(p) = pp. 

Using the well known fact that h*** = h” we have 

/A E ah**(p) e h**(p) + h*(p) = /.Lp 

from which statement (i) follows with the aid of Lemma 4.4. In the same way, using 
Lemma 4.5, (ii) is proved. 
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Protmsitio~~ 4.12. Problem pU is stable (resp. locally stable) if and only if 
(i) P,, # 0 

(ii) 11 is subdifferentiable at p: ?I /i(p) # 0 
[ 11 is locally subdifferentiable at p: ?&/I(/>) # 0, respectively.] 

P,oc?f‘. Suppose pp, is locally stable. Then (i) P, # 0. Furthermore for some E > 0. 
Ii:,*(p) = 1r([?), which implies alrZ,*(p) = a/z([l), and as loc,P,* # 0, it follows from 
Lemma4.11 that al?:,* # 0. Hence (ii) &/z(p) = a/t,.,,(~) # 0. 

On the other hand, if &/z(p) # 0, then I?,,,,(p) = V,,*(p) and then d/~,,,,(p) = ah$,,*(p) 

# 0. Hence /J(P) = /J,**(P) and. with Lemma 4.11. loc,Pj # 0. Together with P,, # 0 
this means that 8,, is locally stable. In the same way. or taking E = ‘-c. the equivalence 
of the statements for the stability case is proved. 

Cordhr.v 4.13. Let Y,, be locally stable and suppose that z’( [I) # 0 or f’( II) # 0 for 
every u E r-‘(p). Then /J is differentiable at p with 

(4.15) 

Proof. From Corollary 4.10 (iii) it follows that lo@‘, has a unique solution, say p. 
Then, according to Lemma4.11, {p} = Jh$,,*(p), and then {p} = &,/r(p), which implies 
that h is differentiable at p, and that (4.15) holds. 

Corollrrtyv 4.14. Suppose t is continuous and assume that Tp, has a solution II with 
multiplier Jo which is not a local minimum of the functional J‘ - pt on V. Then f is not 
locally subdifferentiable at p; in particular, h is not locally convex. 

Proof. From Proposition 4.8 it follows that 9, is not locally stable. As P, # 0 by 
assumption, Proposition 4.12 implies that I&/J(~) = 0. 

We shall now derive a strrhilit_v criterion, i.e.. we shall derive a criterion to determine 
the complete set of numbers p E R for which p* is stable. This is possible through an 
investigation of the family of unconstrained extremum problems rC, introduced in (4.12). 
Let K, denote the solution set of Xp 

K,: = {u E V/u is a solution of ZK,}, 

and let 

k : R -+ ii, k(p) := in& {f(u) - PI(u)}. (4.16) 

Note that k(~) = --/I*(/*) and thus domk C R is a simply connected interval of R on 
which k is a finite concave function. Corollary 4.9 may be formulated: if g, is stable, 
then II E K, for every II E P, and every p E P,*. We shall now prove the “converse” 
of this result. 

Proposition 4.15. If Kp # 0 then 9, is stable for p E { t( u)( II E K,}. 
Proof‘. Let ti E Kp and put p = t( fi). As ii E t-‘(P) is a global minimal point of the 

functional J‘ - +t on all of V, fi is certainly a minimal point off’ - pt on the level set 
!--‘(p)~ Hence B E Pp, f(h) = h(p) and 

-h*(P) = I1’E”f u-(u) - pt(u)} = f(U) - /Lf(Li) = h(j) - /.@. 

Hence I?(p) + /J*(P) = t.~p which means that p E a/J(p). This shows that 9, is stable. 
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The last lemma characterizes the values p E R for which K, # 0 in a simple 
situation. 

Lemma 4.16. Suppose that the functionals fand t satisfy conditions Cf,tl). 
Then we have 

KF # 0 e p E domk [i.e., k@) < ~1. 

Moreover, if f - pt : I/ -+ R is coercive on I’/, then p E domk. In particular: 
(i) if t is bounded from below on I/, then domk > R- 

(ii) if t is bounded from above on I’, then domk > R+ 
(iii) if t is bounded from above and from below on I’, then domk = R. 
Proqf. If f and t satisfy cf, tl), then for every I_L E I R, the functional f - I-L t is weakly 

lower semicontinuous. The results then follow immediately from the fact that for such 
functionals the infimum, if finite, is actually attained. 

Remark 4.17. If for p E t(v) it is known that h(p) is finite and locally a concave, 
differentiable function, then it is not difficult to show 141 that for sufficiently small e > 0: 

h(P) = inf f(u) = inf sup inf -V(u) - p(t(U) - p)) 
I&-‘(/?) PER 9E(P-c,p+d uEl-79) 

(4.17) 

where fiR is attained for p = p = $ (p), sup is attained for q = p and inf is 
9E@-r.p+c) UE r-‘(p) 

attained for any solution of 9, (which has necessarily multiplier p). In this case of locally 
concave functions, the extremum problem defined in the right hand side of (4.17) is not 
easier to deal with than the original problem 9, and seems to be of no use to extract 
information from it for problem 9,, in contradistinction to the case of a locally convex 
function h which gave rise to the study of the e-local dual problem lo@‘,*. 

5. APPLICATIONS 

We shall now demonstrate some of the foregoing results to functionals .f and t which 
lead to semilinear eigenvalue problems of elliptic-type. Therefore, let n be a bounded 
domain in R” and let L be given by (1.4). Then, as is well known, with V = fil(fl) = 
#‘,‘*‘(fl) the usual Sobolev space, the functional f defined by (1.6) satisfies conditions 
cf1,2) and condition crJ> of Proposition 2.2 

We consider functionals t of the form 

U(S) 

y(x,z)dz dx, I 
where the function y E C3(R x R,R) satisfies the following growth condition: 

(t3): if n > 2 then for some constants, b, 2 0, b2 2 0: 

]-y(x,z)] 5 b, + bz[zIs for z E R, x E R, 

n+2 
where s <--’ n _ 2, if n = 2, then ]y(x,z)l I expx(z), 

where lim xo = 0. 
lZI+oc z* 

(5.1) 

(5.2) 
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From standard embedding results for R’(R), it follows that such functionals I are defined 
and finite on V and satisfy conditions (t I,?). 

From Propositions 2.1 and 2.3 it follows that for every ,V E t( V). 9pI, has at least one 
solution. and solutions II for which I’( 11) # 0 satisfy for some /.L E R the equation 

f.u = /.ky(.r,u) .I E I). 

Exotnplr 5.1. The simplest case is obtained when the functional t is given by 

t(u) = 
i 

; u* dr. 
I: - 

This leads to the linear eigenvalue problem for the operator L: 

Lu = pu. 

(5.3) 

(5.4) 

(5.5) 

For p > 0. problem pp, (and 9,. for r > 0) characterize the eigenfunction 11~ of (5.5) 
corresponding to the principal, i.e., smallest, eigenvalue p, (>O), normalized in such a 
way that t( [I~) = p (or 4 ( u,LuJ = T, respectively). Apart from sign. the solution of Y,, 
is unique and positive on a. Note that in this case we have /l(y) = ~,a /, for p > 0, 
a/r(O) = (-“Q, p,], a/r(p) = {,ur} for p > 0. The function S(T) is given by S(T) = (1l~J . r 
for I’) 0, and for the function q(r) we have q(r) = 0 for r > 0: Qr has no solution, 
but Q, has u = 0 as unique solution, for which t’(0) = 0. 

E.~rt&e 5.2. Equation (5.3) is strblitzrar if y satisfies the estimate (5.2) with 0 < s 
< 1. Then the functional t satisfies for some constants c1 2 0, c2 2 0. 

It(u)1 5 c, + c* 11 u 11 liS. 

From Example 5.1 it follows that the principal eigenvalue pI satisfies 

(u,Lu) 2 p1 1) u 11 * vu E v, (5.6) 

for which we can conclude that the functional i( 44,Lu) - Ft(u) is bounded from below 
and coercive on V for every p E R. Hence, Lemma 4.16, domk = R and K, # 0 for 
~1 E R. Consequently (Corollary 4.13), at points where 11 is continuous it is differentiable 
and subdifferentiable. ‘4s a specific example, consider the bounded functional 

r(u) = ! (1 - c0su)d.u. 
n 

Then I(V) = [O,p,) where p,, = 2 Ind.r. For n = 1, R = (0.1) and L = -(d*/d.r’), the 
equation 

Lu = /I sinIr (5.7) 

describes the plane steady-states of an elastic, flexible rod with constant mass-density: 
if in the (_v,:) plane the rod is described with an arclength coordinate .V E [O./l as 
(y(x),=(x)), then II = II(X) denotes the tangent of the rod with the positive v-axis: 

jf(xl = COSu(.r), 5. = sinu(.x). 
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In this case, problem 9, can be interpreted as the principle of minimal potential energy, 
the requirement t(u) = p being the constraint that the potential energy has to be compared 
for configurations, described by u(x), which [are horizontally inclined at the endpoints: 
u(0) = u(l) = 0 and which] have prescribed horizontal distance y(l) - ~(0) between the 
endpoints: 

I 
I 

Y(c) - Y(O) = cosu(x)dx = 1 - p. 
0 

The inverse extremum problem Y, determines among all configurations which have r as 
value of the potential energy, that configuration which has the least horizontal distance 
_I(/) - ~(0) between its endpoints. In this case, the multiplier P also has a physical 
interpretation: it is proportional to the horizontal component of the compressive load 
necessary to maintain the rod in the required position. Concerning the unconstrained 
extremum problem rC,, it is easily seen that kb) = 0 and K, = (0) for p I 0, whereas 
for cc. > 0 this problem is well known in the literature [B, 101. In fact, the solution can be 
explicitly expressed in terms of Jacobi elliptic functions. From the available information, 
or in a direct way, one obtains the following results. For I’ E (0,~) the function S(T) 
monotonically increases from 0 to po, such that the inverse function h(p) monotonically 
increases on (0,~~) with h(p) + = if p t po. Moreover, the function h is differentiable 
and subdifferentiable on (O,p,), and thus there is a one-to-one correspondence between 
p E (0,~~) and the multiplier I( of the solutions of 9,. From this, together with K, = 
{0} if 0 < p I pI, and K~L = { + I/&)} if p > I*_~ [where U@) is the unique positive 
solution of 2&l this implies that the “first buckling mode” { U(~)}~,~, can also be para- 
meterized with the parameter p E (0,~~) [and also with the parameter r E (0,m)l: 

-h@)) = 
i I g (1-4 = fJh@) for p E (0,~~). 

For this problem, q(r) = 0 and Qr = 0 for r > 0. 
Let us now consider some problems which give rise to equations of superlinear type. 
Example 5.3. As a first specific example of this kind, let 

t(u) = +2 - fg2(x)U4 
I 

dx, (5.8) 

where R E CO(n,R) is a given function which satisfies g(x) 2 go > 0 for x E cr. The 
corresponding equation (5.3) reads 

Lu = /.L[u - g2(x)u3]. (5.9) 

The functional t is bounded from above but not from below: 

t(V) = (-“go), where p. = 
I 

ig-*(x)dx. 
rl4 

Noticing that t’(u) = 0 if and only if u = 0 (for u E V’), problem, 9, has for every 
r > 0 a solution and on [O,m), s(r) is a continuous, monotonically increasing function 
from 0 to po. Furthermore, for cc. 2 0, k(p) is finite and SC, has a solution [hence h : 
(0,~~) --* R is a finite (sub-) differentiable convex function]: Kr = (0) if 0 5 CL I pl, and 
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for p > pl, Kr = {k C’(p)}, where cl(p) is the unique nonnegative solution of (5.9) [l. 
p. 3121. . 

By the extremal characterization and the maximum principle for L, every solution of 
Pu. p > 0, must be of the same sign on (1. from which it follows that P,, = 

{ c U(p(p) )} for p > 0. where 

As was shown by Berger, the mapping (CL ,,zc) 3 P --, I/(p) E C’:(n) is continuous. 
Because the mapping (0,~“) 3 p + p(p) E (p ,,x) is also continuous, the solution branch 
L’(P(P)) depends continuously on p. p E (0. I’,,). To investigate Yp,, for p < 0, first note 
that in this case every solution has a negative multiplier: this follows by multiplying Eq. 
(5.9) with II and integrating over 0: 

As k(p) = --CC for p < 0, the curve /z(p) is not subdifferentiable for any p < 0, and 
[O,PJ = a/r(O). Moreover, as t can take negative values, the solution of Qr is nontrivial 
(II # 0) if r is sufficiently large: for some r. > 0, Qr has a solution and q(r) is a continuous. 
monotonically decreasing function for r > ro. It is not difficult to see that II is in fact a 
concave function of p for p < 0: therefore it suffices to show that if 0 is a solution of B,. 
with p < 0 and then necessarily with multiplier in < 0, then fi is not a local minimum of 
the functional ./‘ - pr (Corollary 4.14). To that end consider the function 

x@) := f(pU) - /it@i3) 

in a neighbourhood of p = 1. Using (dxldp)(l) = 0 in the expression for (d2x/dpZ)(1), we 
find 

which result contradicts the condition (d”xldp’)(l) 2 0 which is necessary in order that 
R be a local minimum of the functional J’ - iif. 

E.rtunple 5.4. As another specific example, consider the functional 

t(u) = J ($2 + +I)d.u. 
n - 

Then t( v) = [O,a) and t’( II) = 0 if and only if II = 0 on V. The function s(r) is continuous 
and monotonically increasing on R’. Hence the same applies for the function 11 on R’. 
and thus p B 0 for any solution of 9,. It is easily seen that domk = (-m,Ol, and thus h 
is not subdifferentiable for any p > 0. In much the same way as was done in the previous 
example (for p < 0), it can be shown that h is a concave function on RC. Hence /L(P) is 
a monotonically decreasing function of p, and in fact ~(0) = CL,, p.(p) + 0 for p - m. 
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Exumple 5.5. Another class of problems is obtained if 
the extra condition 

y(x,O) > 0 for x E 3. 

253 

we impose on the function y 

(5.10) 

Then S, # 0 for every r > 0 and s : (0,~) -+ R+ is continuous and monotonically 
increasing with s(0) = 0. Hence /t(O) = 0 and /r : t(v) n R+ + R+ is continuous and 
monotonically increasing. Because of condition (5.10), the multiplier p of any solution of 
YP tends to zero if p 4 0. Together with /r(O) = 0 and h(p) > 0 for p > 0, this implies 
that there exists a (maximum) value p*, 0 < p* 5 =, such that h is finite and convex on 
the interval (O,p*). Hence h is differentiable and locally subdifferentiable for p E (0, p*) 

and 9’,, is locally stable there. Further information of the function y determines the value 
of p* and the behaviour of p and h in a neighbourhood of p*. For instance it is possible 
that p* = ~0, such as for the simple functional 

t(u) = I u dx 
n 

- in’which case 9, is stable for p > 0, or that p* is the finite least upper bound of the 
functional t. such as for 

t(u) = 
I 

(u - $dx : p* = ; dx 
R 

in which case 9, is stable for P E (O,P*) and h(p) ---, m, P.(P) + 03 for p t p*. 
Let us now describe a situation for which p* is finite but not an endpoint of t(V). 

Therefore suppose that y satisfies the extra conditions 

%(x,O)>O forxEE 

$(x,L)>O forxEfl,;>O. 

(3.11) 

It was shown by Qandall and Rabinowitz E21 (cf. also Keener & Keller 163) that-in this 
case there exists a A > 0 such that (5.3) has positive solutions if and only if p < A, and 
that there exists a continuous solution curve 10,x) 3 cc + U(p) E C2*@) with the 
properties: (i) r/b) is a minimal solution of (5.3) [i.e., if v is another positive solution of 
(5.3), then U@)(x) < V(X) for x E al, (ii) U(p) is the only positive solution of (5.3) 
which is a local minimum of the functional & u,Lu) - pf(u), 

These results may be interpreted in terms of constrained extremum problems if we 
impose an extra condition which assures that solutions of 9, for p > 0 are necessarily 
nonnegative [e.g., y(x,z) > 0 for ; E RI. Then we have the following situation: there 
exists a connected interval (0,~~) such that .9, is locally stable for 0 < p < p* and /r is 
convex, differentiable on (O,p*) with p(p) = (dhldp)(p) increasing from 0 to h. If p* -C 

m, for p E (p*,“), lz(p)_is a continuous, concave function [because of (ii) and Corollary 
4.141 at which p(p) (< A) is monotonically decreasing, s_ay w(p) 4 &-m for p --, m. Then 
necessarily pcF 2 0. Note that if in a specific situation (A >) ~~ > 0, then P’, is in fact 
stable for those values of p < p* for which F.(P) -=c pm, in which case the solutions 
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U(p( p)) are in fact global minimum points of the functional $ tr,LrO - P( I’)t (10. With the 

extra conditions 

J 
-; 

y(x.t)dt 5 H_y(s,z) for : > 2, for some i > 0. H E [O,:), 
0 

(5.1') 

it was shown in Ref. 2 that for every P E (0,:) there exists at least a second nonnegative 
solution of (5.3). As this second solution has a larger value of t than I( U’(p)) [by the 
minimality of U(p)], this implies that CL, = 0 and thus P(P) J 0 for p + x. [Note that 
this can also immediately be concluded from the fact that k(p) = --3c for every p > 0 if 
y satisfies (5.12), which also shows the existence of a finite value p’“.] In the following 
paper [5] we shall describe the continuation of the solution branch with the parameter 1’ 
instead of with the parameter I_L in a more detailed way. 
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Abstract-In this paper we consider constrained extremum problems of the form 

B,, : inf ,f(~), 
UEf-‘(P) 

where .f‘ and r are continuously differentiable functionals on a reflexive Banach space 
2’ and where r-‘(p) denotes the level set of the functional I with value p E R. 

Related to problems 8,, we investigate inverse extremum problems, which are ex- 
tremum problems for the functional r on level sets of the functionalf. Under conditions 
that guarantee the existence of solutions of Yp,, let /7(p) denote the value of J‘ at such 
a solution. If /I is a (locally) convex function at some p E R, we show that it is possible 
to define a dual problem of Yfi. This dual problem is a saddle-point formulation for the 
functional V x R 3 (rr,~) +,f(rr)-p[r(u)-p]: for some extreme value jZ (which is the 
Lagrange multiplier.of a solution of PO) the solutions of bf, are precisely the (local) 
minimal points of the functional f‘-ji? on 1’. 

It is shown how these results can be used to describe solution branches of nonlinear 
eigenvalue problems (of semilinear elliptic type) with a global parameter, such as 
p E R, instead of with the eigenvalue as parameter. 


