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vector is 0 EO { H i } ,  and subscripts are required in (IO). Since specific 
Oi parameterizations may better represent various classes, improved 
classification may be possible. but at the cost of additional complexity. 

Based on  the representation off by 0, it is evident that relations exist 
between the various feature sets given above, as well as between addi- 
tional  feature sets that may be constructed. The complete analytical 
development of these mherently nonlinear relations is often quite d i f -  
ficult and they are only indicated here. Using the Volterra representation 
in (5 )  and white noise or pseudorandom signals, crosscorrelation rela- 
tions may be developed to obtain the Volterra kernels, and the  truncated 
model (6) may simdarly be used to relate the { Q ~ ~ . . . ~  } to crosscorrela- 
tion terms. Using the expansion in Hermite polynomials, the coefficients 
( a~l.,.rJ may be determined by crosscorrelation of y ( j )  with the  outputs 
of the various polynomial + r k ( . )  similar to the  determination of the 
Wiener coefficients in the continuous-time case [5]. Such crosscorrela- 
tions were used in [ l ]  and [2] for classification of nonhnearity. 

% 

VI. h D I T I O N A L  CONSIDERATIONS 

Classificarion Error 

The classification error relations presented in [ 11 and [2] will be briefly 
reviewed here due to space limitation. If (St,/3 (St),& represents the 
probability space, the probability of error in classification depends on 
how the probability mass is distributed over a(Q) by the measure h. 
However, since most applications involve consideration of density func- 
tions related to the pattern vector, it is more convenient to consider the 
related space (?’,/3 ( ?i ) .py)  with ?C = R” where n is the dimension of c. 
With appropriate assumptions on p, the mixture density function de- 
scription p(c)=Z’” p ( c ( q )  Pr[aiJ is possible and may be used to write 
the well-known Bayes error expressions [ll].  It should be noted that 
error expressions based on depend only on the nonlinear classes ai, 
while those based on 1.1 must also include effects of truncation and 
estimation error.  Further discussion of error  rates and experimental 
studies to approximate Bayes error rates may be found in [2], [I], 
respectively. 

Other Approaches to Classification 

Feature selection using- system representations discussed in [5] are 
based  on  the  information that is required to implicitly characterize an 
unknown  nonlinear system and lead to features  that are easily estimated 
for use in statistical classification methods. However, in some applica- 
tions  alternate  approaches  to classification may be more suitable such as 
behavior exhibited in phase-plane portraits, for which different features 
may be found useful. These and other possibilities remain to be consid- 
ered. 

If sufficient a priori information is available about the (q} to be 
considered, parameterizations more suitable  to  a specified class may be 
employed as  the basis for classification. In particular. if the  form of the 
f (  .;,ai) is suitably restricted, more specialized means of parameter 
estimation may be  used such as maximum a posteriori estimation [12]. 
Results of these hypothesis conditional estimates are subsequently used 
as  a basis for classification. 

Conclusions 

For systems with nonlinear structure,  a  formulation  of  the classifica- 
tion problem has been given a decision-theoretic format which leads to a 
pattern recognition solution [2]. While it is difficult to implement the 
theoretical solutions in [4] without malung simplifying assumptions, the 
formulation provides for systematically considering various aspects of 
the overall problem. Some analogies have been noted with other prob- 
lems. both  from  a  mathematical and applications point of view, and 
other examples involving waveform classification may be cited. 

Attention has  been restricted to a single input-single output formula- 
tion for simplicity, and it is evident that as the system order nx and the 
allowed nonlinear  forms increase in number, classification becomes 
more difficult. A more realistic approach is to assume that all the  states 
are measureable, possibly with additive noise, and formulate  a  pattern 
vector making use of the  additional  information. 
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The problem of feature selection has been considered from two main 
viewpoints, both of which of necessity involve implicit characterizations 
of systems. Experimental results in [l]  suggest that theoretical Bayes 
error  rates for classification based on truncated moments are quite low. 
Classification based on crosscorrelations in [l], [2] also gave low error 
rates, and although the crosscorrelations can be related to the 8 para- 
meterizacons of Section 111, experimental studies using actual estimates 
0 = w or 0 ( H i )  = u may also be considered. 
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Asymptotic Root Loci of Multivariable 
Linear  Optimal  Regulators 

HUIBERT  KWAKERNAAK 

Absimer-The  asymptotic loci of the  closed-loop poles  of the  multivari- 
able  time-invariant linear regulator  are considered as the weight on the 
input in the  criterion  approaches zero. It is proved  that  those poles that go 
to i n f i i  group into  several  Butterworth c o n f i i t i o n s  of different 
orders  and with different radii. It is furthermore shown that the fii-order 
patterns  are easily explicitly  determined.  Some  examples  illustrate  the 
results. 

I. INTRODUC~OK 

The purpose of this short paper is to settle a  question about the 
asymptotic loci of the closed-loop poles of multivariable optimal  linear 
regulators with quadratic criteria, as the weight on the  input goes to zero. 
This problem has been discussed by Chang [ I ]  and Kalman [2] for the 
single-input case, and for the multiinput case by Tyler and Tuteur [3], 
Kwakernaak and Sivan 141, [5], and, in a recent book, by Wonham [6]. 
The asymptotic behavior of the closed-loop poles is of interest because it 
gives an indication of the type of dynamic response that the  optimal 
regulator  may be anticipated to exhibit. 

In [5 ,  theorem 3.12, pp. 288-2891 it is claimed, but  not proved, that the 
far-away closed-loop poles group  into several Butterworth configurations 
of different orders and with different radii. An example is offered in 
support of this claim. Wonham [6, theorem 13.2, p.  3171 considers the 
problem under  certain restrictive condtions, which make it  a special 
case of the problem of [SI, and states that under these conditions no 
Butterworth patterns, or combinations of Butterworth patterns, occur. 
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It will be proved in this short paper that the claim that the far-away 
closed-loop poles group  into several Butterworth patterns is correct. To 
this  end, in Section I1 first some results are stated concerning higher 
order  root loci. In Section 111 the principal results are obtained, while 
Section IV deals with the special case considered by Wonham [6]. 

For a discussion concerning  the consequences of the  asymptotic 
behavior of the closed-loop poles for  the expected regulator response, 
and in particular concerning the  fact  that  some of the closed-loop poles 
approach  the system zeros or their mirror images, we refer to [5, sec. 3.81. 

11. A s n m o n c  PROPERTIES OF HIGHER ORDER ROOT LOCI 

The results detailed in this section may to a large extent be inferred 
from  Rosenau [7]. We shall consider  the  asymptotic behavior of the roots 
of a polynomial, whose coefficients are themselves polynomials in a 
complex parameter u, as Jol+co. The polynomial is represented in the 
form 

where n and kj, j =0,1,. . . ,n are  nonnegative integers, and where the 
complex coefficients ajk are such that ajk +O, and ajs #O for all j E 
{O,l;..,n-l) such that$>O. 

To determine  the  asymptotic behavior of the roots o fp  as 1u1+w, we 
first  define positive real numbers5  and kp*, both for p =0,1,. . . ,r, with r 
the largest integer that is found, such that 1) O =  K ~ <  K, < . . . < K ~ ;  2) 
k~=max(ko,kl;.-,k,); 3) for pE{l,Z;..,r), K, and kp* satisfy the 
inequal i tyj%+kj<q for all jE{O,l; . . ,n},   whilej%+kj=q for  at 
least two different values of j in the  set {0,1; . . ,n}. Thus, the  numbers 
r, ~p and kp*, p =0,1,. . . ,r ,  are entirely determined by the powers kj, 
j E {O,l,. . . ,n}. Fig. 1 illustrates how these numbers may be  obtained 
Foreachp~{1,2;.-,r},$andkp*arechosensuchthatk,<k,*-j~for 
a l l j  and such that kj = k; - j K p  for  at least two different values ofj. 

Lemma I :  The numbers K,, p E (0,1,. . . , r }  assume rational values 
only, and O < r < n .  

This lemma is easily proved. Now, in order to determine the asymp- 
totic behavior of the  roots of (1) as Jul+co we consider the polynomial 
obtained from (1) by only retaining of each coefficient the term with the 
highest power in u: 

Substitution of h=zu$ yields 

which is a polynomial in z. Since $ + jKp < k; for  each p E (O,l,. . . , r } ,  
division of (3) by akj+J5 shows that those roots (in z) of (3) that remain 
finite  as lu(+rr. are the  roots of the polynomial 4(z) ,  where 

with the integer set Kp = { j :  kj + j 5  = k;}. 
In the sequel we shall retain all roots of +o, which will be denoted as 

ZOk, k E { 1,2; . . ,no}, and the nonzero roots of +,,, p E ( 1,2; . . , r } ,  which 
will be denoted as zpk, k E { 1,2,. . . , n,}. If Go has no  roots we shall set no 
= 0. For p PO, +, has at least one nonzero root, so that n, 1 for p PO. 
The main result of this section is the following. 

Lemma 2: As JuJ+co, the n roots of  (1) asymptotically behave as 

j- 
Fig. 1. Determination of t h e  numbers K~ and q , p = O , l , . . . . r  . 

plausible. A more rigorous proof uses Rouche's theorem (compare [6D. 
Here we shall only verify that  the asymptotic behavior of all n roots of 
(1) has  been identified. The degree of Q0 is of course no. Inspection of 
Fig. 1 shows that the lowest power of z occurring in 9, is no; since +, has 
nI nonzero roots, the highest power of z occurring in +, is no+n, .  
Accordingly, the lowest power of z occurring in +z is n o f n , ,  and as a 
result the highest power is no+ n, + n,?. Continuing like this it follows 
that the highest power of z occuring in +, is no+ n, + . . . + nr, which 
equals n. This proves that in Lemma 2 the  asymptotic behavior of all n 
roots is identified. 

Example I :  As an application, we consider the  longitudinal motion of 
an airplane, as discussed in [4, example 3.21, pp. 293-2971. The system is 
described by the  state differential equation 

-0.1580 0.02633 -9.810 0 

0 0 1 
x ( f ) =  1 -0i571 - 1.030 0 

10.0005274 -0.01652 0 - 1.4661 

0.0006056 0 

while the output is  given by 

For a discussion of the physical significance of state,  input and  output 
variables we refer to [4]. Assume that  linear output feedback of the  form 
u ( f j =  -uFz(f) is applied, with F the matrix 

F = [  '00 y ] .  
We shall study  the  asymptotic pole locations of the closed-loop system 
as  the scalar  gain  factor u goes to infinity. The closed-loop characteristic 
polynomial is given by p(s.0) = det (SI - A + uBFC). Evaluation of this 
characteristic polynomial yields, retaining the leading terms only, 

~ ( ~ , 0 ) ~ ~ ~ - 0 . 0 3 0 2 8 ~ ~ ~ + 5 . 4 8 9 ~ ~ ~ - 0 . 1 6 8 5 ~ ~ ~ - 0 . 1 6 8 8 ~ ~ .  (8) 

Clearly, the closed-loop system is not asymptotically stable  for large u. It 
is easily found  that r =  2, and that ~ ~ ' 0 ,  K ,  = 4, and K ~ =  1. Furthermore, 
the integer sets KO, K,, and K, are given  by KO= (0, I}, K ,  = { 1,3}, and 
K2={3,4).  It follows that the polynomials Q ~ ,  +,, and +, are +o(z)= 

z4, with the result that zol= - 1.002, z1,=2.359i, z I Z =  -2.3593, and 
zzl =0.03028. This means that one closed-loop pole asymptotically ap- 
proaches the fixed location - 1.002 (this is  in fact the zero of the system 
[4D, while a pair of roots asymptotically behaves as +2.359iu1/', and 
the remaining root asymptotically behaves as 0.030280. 

-0.1688-0.1685~, +I(z)=  -0.1685~-0.03028~~, +2(z)=-0.03028z3+ 

z p k u $ , k E { 1 , 2 , ' . . , ~ } , p E { 0 , 1 , . . ' , r } .  
Since ~ ~ ' 0 ,  the lemma implies that no of the roots asymptotically 

approach fixed positions in the complex plane. The remaining n- no 
roots approach mfinity according  to different positive rational powers of 
(I. In this section we consider the stabilizable and detectable time- 

111. ASYXPTOTIC ROOT LOCI OF LIhTAR 
OPnhiAL REGULATORS 

The arguments leading up to Lemma 2 make  the result more or less invariant linear system 
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x ( r ) = A x ( r ) +  Bu(r)  (9) the  asymptotic behavior of the  roots of the  right-hand  side  of (18). We 

z ( t )=  D x ( r )  replace each polynomial or other  function in (18) with its leading term or 
(lo) asymptotic behavior as (sl-ao. Thus, substitution of upk(- I)%s% for 

and the quadratic criterion +(s), and of (- l)"sz" for +(s)+(-s) shows that there exists a group of 
roots of (18) asymptotically satisfying 

~ " [ l r ( r ) Q r ( r ) + u r ( r ) R u ( ~ ) 1 ~ ~ .  (1 1) 

Q and R are positive-definite symmetric matrices. In the sequel we shall 

s 2 ( n - r p , + ( - l ) + = 0  
P 

(19) 

denote &(x)= n and  dim(u)=m.  It is  well known (see, e.g., [ 5 ]  or [6D 
that the criterion (11) is minimized if the  input is chosen as u(r)= 
- Fx ( t ) .  where the gain matrix F is given  by F =  R - 'B rP, with P the 
unique nonnegative-definite solution of the algebraic Riccati equation 

O = D ~ Q D - P B R - ~ B ~ P + A ~ P + P A .  (12) 

It is moreover known  (see, e.g.,  [5,  sec.  3.8.11) that the closed-loop 
characteristic polynomial +Js) = det(sZ - A + BF)  satisfies the relation 

+ c ( s ) + c ( - s ) = + ( s ) + ( - s ) d e t [ Z + R - ' H T ( - - S ) Q H ( s ) l  (13) 

where +(s) = det(sZ- A )  is the open-loop characteristic polynomial, and 
H (s) = D (sZ- A ) -  'B the open-loop transfer matrix of the system. 

We shall study  the  asymptotic behavior of  the closed-loop poles of the 
optimal regulator, Le., the  roots of +='e($), when R in (11) is replaced with 
p R ,  and we let pJ0. In this case we have to replace (13) with 

We consider the right-hand side of (14) as pJ0. The roots of &(s) that 
remain finite are easily found; they are  the left-half plane  roots of the 
polynomial 

+ ( s ) + ( - s ) d e t [ H r ( - s ) Q H ( s ) l .  (15) 

Here we use the fact that the  roots of +&) are always in the left-half 
complex plane since the closed-loop optimal regulator is asymptotically 
stable. It will be assumed throughout that (15) is not i d e n t i d y  zero, and 
has degree 2q > 0. As a result, q of the closed-loop poles remain finite as 

To study the behavior of the roots that do not remain finite, we first 
introduce a few  new quantities. By replacing R in (14) with R - f R - i, 
and using the  fact that for any two matrices P and Q of compatible 
dimensions det(Z+ PQ)=det(Z+ Q P ) ,  we rewrite (14) as 

PJO. 

as pJ0. Those roots of (19) that lie in the left-half complex plane together 
form a Butterworth configuration (see, e.g.,  [SI)  of order n -  $, with 
radius ( ~ ~ ~ / p ) ~ / y " - ' + ) .  We thus  have the following result. 

Theorem I: As pJ0, q of the closed-loop regulator poles approach 
finite locations in the complex plane. The remaining n - q  closed-loop 
poles approach infinity and asymptotically group  into a number of 
Butterworth configurations, of different  orders and different radii. 

In Appendix B it is verified that in the  argument preceding the 
theorem all n - q closed-loop poles that  approach infinity are identified. 

Example 2: We again  consider  the  airplane of Example 1, and 
suppose that we wish to control the system such that a criterion of the 
form (1 1) minimized where 

The asymptotic behavior of the closed-loop poles of the resulting 
regulator as pJ0 has been determined numerically in [5, example 3.211. 
We shall verify these results here. Let us write +(s) for  the open-loop 
characteristic polynomial, Q=diag(q,,q,), R=pdiag(r,,rz),  and H ( s )  
= N(s ) /O(s ) ,  where the polynomial matrix N has entries hi i ( s ) , i j=  1,2. 
Finally, if p ( s )  is an arbitrary polynomial, we shall write p(s)=p(  -s). 
With this notation is not difficult to derive from (13) that 

For brevity we have  omitted  the  argument s. Furthermore, +(s) is the 
numerator  polynomial of the  transfer  matrix H, i.e., $(s)/+(s) 
=det[H(s)]. After calculation of the polynomials h,. and $, the right- 
hand side of (21) can  be evaluated. Including the leading terms only, we 
find that the  asymptotic behavior of the roots of +c(s)Q,( -s) is de- 
termined by the roots of  the polynomial q(A, l / ~ ) ,  with A =  sz, and 

+=(s)+c(-s)=O(s)+(-s)det ] (16) q(X,$)=h4-1.834X10-5 

and define 
- 1.1357X I0-f f)". 1.1402X I0-f :)2. (22) 

It is noted that the polynomial matrix M is para-Hermitian, i.e., M (- s) using the method of analysis of Section 11, it is easily found that as pJ0 
= Mr(s) .  Now we write the  roots of q asymptotically behave as 1.004, _ t 0 . 7 8 6 9 i ~ - ~ / ~ ,  and 

1.834X 10-5p-', respectively. Taking the square roots, and selecting the 
left-half plane values, it follows that  one of the closed-loop poles ap- 
proaches the fixed location - 1.002, that furthermore a pair of closed- 
loop poles  asymptotically  behaves according  to the  second-order 

(18) Butterworth pattern 0.6273(- 1 2  i ) p - ' I 4 ,  while the remaining closed- 
loop pole traces the  first-order Butterworth pattern -0.004283p-'/2. 
These  are exactly the  patterns that were obtained in [5, example 3.211. 

~ ( s ) = + ( s ) + ( - s ) ~ - t ~ r ( - s ) ~ ~ ( s ) ~ - : .  (17) 

where the & ( s ) , j =  1,2; .. ,m, are the eigenvalues of M ( s )  (regarded as 
functions oi s). 

Lemma 3: As IsI+ao, the eigenvalues of M ( s )  asymptotically behave 
a s u p k ( - I ) ~ s 2 ~ , w i K i t h k ~ { 1 , 2 ; ~ ~ , n p } a n d p ~ { O , 1 , - ~ ~ , r } . H e r e u , , i s a  
real number with 1$,>0 for kE(1,2; . . ,g)   andpE{1,2; . . , r ) ,  and 
uok>O for kE{1,2;-.,nO).  For  eachpE(O,I,-.. ,r) the  number K~ is 
an integer satisfying O = K ~ < K , < . - .  < ~ , < n - l .  Furthermore, r is a 
nonnegative integer, while n0,n,; . . ,n, are nonnegative integers with 
n o > O , q ~ O f o r p € { 1 , 2 ; ~ ~ , r ) , a n d n o + n l + ~ ~ ~  + n , = m .  

The proof of this lemma is given in Appendix A. It heavily relies on 
Section I1 of this short paper. The lemma may be applied in identifying 

Iv. DETEIL\uNAnON OF THE FIRST-ORDER 
BUTTERWORTH PATTERNS 

In this section it is shown how to  determine  the  asymptotic first-order 
Butterworth patterns. We write 

?An- I )  
M ( s ) =  2 Nisi 

i = O  

where Ni, i = 41,. . . ,2(n - 1) are constant matrices. Inspection of 
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2(n-  1) 

(24) 

shows that the eigenvalues of M(s)  that go fastest to co as Is1+co are 
obtained by determining  the nonzero roots  (in X) of 

It is easily verified (e.g., by using Levemer's expansion) that 
=(- 1 y - 1 ~  - ~ ( D B I T Q D B R  -$. Let the nonzero bositive) eigenvalues 
of the nonnegativedefinite symmetric  matrix R -:(DB)TQOBR -; 
be given by j+, i = 1,2,. . . , m'. Then (25) has as nonzero  roots 
(-l)"-'j+sx"-'), i =  1,2;. . ,m', which are  the  asymptotic  roots of M(s)  
corresponding to K~ = n - 1. The resulting faraway regulator poles are 
from (19) the left-half plane  roots of 

For each i a first-order Butterworth pattern is obtained, consisting of a 
single pole -( p+/p)k on the negative real axis. The number of first-order 
patterns equals rank (DBQ;). 

If rank (DBQ;) = m,  which is the  situation considered by Wonham [6], 
m'= m,  and the first-order patterns are the only patterns  found, since it 
follows from (15) that in this case q = n - m and hence  there  are exactly 
m faraway poles. 

Example 3: We use the result of this section to determine  the first- 
order Butterworth pattern of Example 2 directly. It is easily found that 

which has a single nonzero eigenvalue pI = 1.834X Correspond- 
ingly, the closed-loop system asymptotically has a single first-order 
Butterworth pattern, with the pole location -0.004283p-'/2. This agrees 
with what was found in Example 2. 

V. CONCLUSION 

It has  been proved that those closed-loop poles of the time-invariant 
multivariable optimal linear regulator that  go  to infinity as  the weight on 
the input decreases asymptotically group into several Butterworth con- 
figurations. It  has also been shown that the  number and asymptotic  radii 
of the first-order Butterworth patterns may be determined relatively 
easily. Similar methods to determine  the higher order  patterns seem not 
to  be available at present. 

APPEXNX A 
PROOF OF LEMMA 3 

We study the  asymptotic behavior of the eigenvalues of the matrix 
M(s) ,  given by (17). Since M is para-Hermitian,  the characteristic 
polynomial d(A,s)=det[XI -M(s)] satisfies d(A, - s)= d(A,s), so that we 
may write 

where the coefficients a,k are real. From Section I1  we conclude (taking 
o=s2)-that as Isl+m the roots of d(h,s) asymprotically behave as 
Zpks4, k E { 1,2,. . . ,%I, p E (O,1; . . , r } .  The  are rational  numbers 
satisfying 0 = K~ < K ,  < . . < For each p > 0 and k the real number zpk 
is nonzero. Furthermore, 0 < r < m,  while np > 0 for p > 0. 

Let us consider the case that s is purely imaginary. Setting s = iw, with 
w real, the asymptotic behavior of the roots  as w+ +- 03 is  given by 
zpk( - i)"Pwza. Now, for s=  iw the matrix M ( s )  is nonnegativedefinite 
Hermitian for each w, which implies that its eigenvalues are real and 
nonnegative for each w. Consequently, we cannot but conclude that for 

each p the number K~ must be an integer, and zpk( - l)a nonnegative real. 
Returning to the  case that s is not purely imaginary, and substituting 
(- l)$zpk = upk, we conclude that the  asymptotic  behavior of the eigen- 
values of M(s)  is (- I)%,$+, where the K,, are integers satisfying 
O = K ~ < K ~ < . - .  < ~ , , a n d w h e r e u ~ ~ > O f o r p > O , a n d u , ~ > O .  

To complete the proof of Lemma 3 it remains to demonstrate that 
K, 4 n - 1. This is trivially true if r = 0. Suppose that r > 0. It follows from 
Section I1 that  the inequality $+j% 4 k; is satisfied with equality for 

j = n , + n , + . . .  and for j = n o + n I + - . .  +%. Substitution of 
these two values of j in $ + j ~ , ,  and equating  the results it follows that 
npKp = kna+,,+ ... - kno+nl+ ... +%. Taking p = r, and using the fact 
that k,,o+nl+ _.. +% = k,,, =0, it is seen that 

Now, since the coefficient of X J  in d(A; s) = det[AI - M (x)] is the sum of 
all ( m - j )  x ( m  - j )  principal minors of M ( s )  (Gantmacher [9, p.  70]), 
and  2% is the degree of this coefficient it follows from the fact  that M ( s )  
has degree 2(n - 1) or less, that 2kj < 2(n - I)(m - j ) .  Applying this to 
(A2) we obtain 

Kr = 
kng+nl+...+ n , - l  krn-n, ( n - I ) n ,  

"r nr n, 
=- < - = n - 1  ('43) 

which terminates the proof of Lemma 3. 

A P P E ~ ? ) ~  B 
IDENTIFICATION OF CLOSED-LOOP POLES 

In this Appendix it will be verified that in the argument preceding 
Theorem 1 all n -  q faraway closed-loop poles are identified. Since 
upk>O for kE{1 ,2  , . . a ,  n,} andpE{1,2;..,r}, corresponding to each 
such upk we obtain n-Kp asymptotic  locations of closed-loop poles. 
Altogether, 

closed-loop poles may thus be identified. In Appendix A we found  that 
npKp=kno+,,,+ ...+%-, - kno+nl+ . . .+n ,  forpE{1,2;..,r].  It follows that 

2 np~p=k,o-kn,+n,+  . . .+,=k,o-k, , ,=kno. (B2) 
p = l  

In addition, 

i: np=m-no.  
p =  1 

It follows from  (Bl), (B2) and (B3) that 

r 
2 (n-Kp)np=n(m-no)-kno.  (B4) 

p =  1 

The possibility that uok=0 for one  or several values of k has  to be 
investigated. We consider the following cases. 

1) no = 0. Then 2kna = 2k0 is the degree of det [ M  (s)], which is easily 
determined to be 2(nm - n + q). Consequently, k ,  = nm - n + q and 

which means that all closed-loop poles are  found. There  are no closed- 
loop poles corresponding  to K ~ =  0. 

2) n o > ] ,  and uOk=o for all k ~ ( 1 , 2 , . . . , n , } .  In this case we have 
kn,>$ for jE{1,2;.-,no-1},  and hence also k,>k,=nm--n-q .  
This would imply 
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from which it follows that r=O. As a consequence, det[XI - M ( s ) ]  has 
degree no in X ,  which means that % = m ,  and hence kno= k,=O. This 
contradicts  the conclusion that kno> ko, which means that the  case 
cannot occur. 

3) no> 1, and uok > O  for one value of k E { 1.2,. . . ,no}. Correspond- 
ing  to this uOk we obtain an nth-order Butterworth configuration. yield- 
ing n closed-loop poles at once. Consequently q = 0 and r = 0. Since r = 0, 
det[M- M (s)] is of degree no in A, so that no= m, which in turn implies 
kn,= k,,, = 0. Since U0k can be nonzero for  one value of k only (otherwise 
several nth-order  patterns of closed-loop poles would result. which is 
impossible), we evidently have det[XI-M(s)]= -aX”-’+A”. with 
CI > 0. Unless m = 1, this implies det[M(s)]=O, which is contrary to 
assumption. The case m =  1, in which a single nth-order Butterworth 
pattern is obtained,  corresponds  to  the single-input case where H T ( - s )  
QH(s)= c/+(s)@( - s). with c a  constant. 

Summarizing, we have  demonstrated  that if no=O. one or several 
Butterworth patterns are obtained. The case no= I ,  which results in a 
single nth-order Butterworth pattern, only occurs when in the single- 
input case H ‘( - s)QH (s) = c/&)+( - s), with c a  constant.  The case 
no> 1 does not occur. 
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On Optimal and Suboptimal  Actuator 
Selection Strategies 

Y. VANBEVEREN .WD M. R. GEVERS, MEMBER, IEEE 

Abstract-Tbis short  paper studies a particular  class  of  optimization 
problems  dealing  with  the  selection,  at each instant  of time, of  one out of 
many  actuators  in  order  to  obtain a determined  result. A cost is associated 
with each actuator.  The cost function is the  integral  of a weighted 
combination  of  the  achieved  accuracy on the  state of the  system  and  the 
control  energy.  The  control  energy  term  depends  upon both the selected 
actuator  and  the  magnitude of the  applied  control.  The  problem is to 
design  an  optimal  actuator  selection  strategy.  The  analysis is limited to the 
class of  linear  deterministic  systems  with  measurable  states. A discrete 
approach is considered.  The  analytic  solution  to this optimization  problem 
is given f i t .  When  the  number  of  actuators  and  the  number  of stages in 
the  time  interval  become  large  the  optimal  analytic  solution  requires a 
considerable  combinatorial work; a suboptimal algorithm is then  proposed 
to alleviate this defect. 

I. INTRODUCTION 

The problem of selecting, at each instant of time, one  out of many 
available actuators is presently untreated in the literature. There are, 
however, applications in which several different or incompatible actions 
can be applied on  a process. Classes of examples are: problems with a 
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bottleneck (such as hierarchical systems in which a single line is to 
transmit  different effects having the same potentialities to  the various 
subsystems), or problems with different zones for the  control (e.g., a 
gearbox). In this last example the problem is both to select the best gear 
and to  determine  the pressure on  the accelerator. 

Some  aspects of the  dual problem on  the  optimal selection of sensors 
have been solved by Athans  [I].  Herring and Melsa [2],  and Bensoussan 

Athans [ I ]  has considered  the determination of optimal costly 
measurement strategies in the case of finite-dimensional systems. At each 
instant  during  a time interval, one out of a finite number of sensors must 
be selected to minimize a payoff that depends on two terms: the 
accumulated observation cost and the  prediction  accuracy at final time. 
The accumulated prediction error cost is not considered. 

Herring and Melsa [2] have generalized these results to allow the 
selection at each  instant of time of the best combination of a finite 
number of sensors. The payoff depends on the  observatioa cost as 
before, but also on  the accuracy of prediction at each  instant of the time 
interval considered. 

Bensoussan [3] has extended Athans’ results (but with different 
methods) to mfinite-dmensional spaces in order to optimize the  location 
of sensors in a  distributed  parameter system. He uses the same payoff as 
Athans. Aidarous, Gevers, and Installe have derived a numerically 
implementable algorithm for the  optimal allocation of sensors [7] and 
actuators [8]  in a  distributed  parameter system. 

In this short paper the problem of desigmng an optimal  actuator 
selection strategy is solved using the optimality principle. The cost 
function is not  the dual of any of the measurement strategy problems 
mentioned above, since it includes an instantaneous cost depending 
upon  both  the chosen actuator  and the control energy. The problem is 
stated in Section 11, and the N-stage optimization problem is solved in 
Section 111. Two criteria are presented for the a priori elimination of 
certain “bad” sequences. For the remaining sequences the solution 
depends on the initial state. For a long time interval (N  large) or a large 
amount of actuators.  the  computational effort required to find the 
optimal  actuator policy can become prohibitive. Therefore, a  suboptimal 
algorithm has been developed that drastically reduces the computation 
time. This “forward-backward” algorithm is presented in Section IV. All 
the simulations performed so far show that  the “forward-backward” 
algorithm is near optimal;  some numerical results are given in Section V. 

[31. 

11. hOBLEh1 STATWIEhT 

Consider a time-invariant linear dynamic system 

X( i+ l )=AX( i )+BU( i )  (1) 

where X is an n X 1 state vector and U is an mq X 1  control vector. A and 
B are n X n and n X mq matrices. B will be represented as follows: 

B = [ b l  6,  ... b,,,] 

where 4 is an n X q matrix corresponding to  thejth actuator. m actuators 
are available, but only one actuator can  be used at  any given  time. 
Therefore. 

Hence, if thejth actuator is chosen at time i, u,(i) may take  any real 
value, whde uk (i) = 0, k = j .  

It is assumed that  each pair [A,$]  is completely controllable, and  that 
the  state X ( i )  is exactly measurable. The cost function  to be minimized 
for  a N-stage problem is 

J N =  [ X ‘ ( i +  l ) Q X ( i + l ) +  U ‘ ( i ) R U ( i ) l  
x- 1 

(3) ;=o 


