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Team Decision Theory for Linear Continuons-Time
Systems

ARUNABHA BAGCHI anp TAMER BASAR, SENIOR MEMBER, IEEE

Abstracr—This paper develops a team decision theory for linear-
quadratic (LQ) continuous-time systems. First, a counterpart of the well-
known resuit of Radner on quadratic static teams is obtained for two-
member continuous-time L.Q static team problems when the statistics of
the random variables involved are not necessarily Gaussian. An iterative
convergent scheme is developed, which in the limit yields the optimal team
strategies. For the special case of Gaussian distributions, the team-optimal
solution is affine in the information available to each DM, and for the
further special case when the team cost function does not penalize the
intermediate values of state, the optimal strategies can be obtained by
solving a Liapunov type time-invariant matrix equation. This static theory
is then extended to LQG continuous-time dynamic teams with sampled
observations under the one-step-delay observation sharing pattern. The
unique solution is again affine in the information available to each DM,
and further, it features a certainty-equivalence property.

I. INTRODUCTION

Team theory, originally developed by Radner and Marschak [1], [2],
has penetrated the control literature through the works of Ho and Chu
[3], [4]. In particular, a result of Radner in [2] has attracted attention in
the control literature, which states that a static, strictly convex linear-
quadratic Gaussian (LLQG) team problem (with decision variables taken
as vectors in appropriate dimensional Euclidean spaces) admits a unique
team-optimal solution that is affine in the observation of each decision
maker (DM). This result, the so-called Radner’s theorem, has found
recent applications in the decentralized control of dynamic discrete-time
LQG team problems under the one-step-delay information sharing pat-
tern [5]-[7] or equivalently under the one-step-delay observation sharing
pattern [8, Remark 6]. By repeated application of Radner’s theorem at
each stage, it can be shown that such decentralized control problems
admit affine solutions which also exhibit some kind of a separation
property.

In the present paper, we develop an analogous theory for continuous-
time systems. We first derive a counterpart of Radner’s theorem for
two-member continuous-time linear-quadratic static team problems when
the statistics of the random variables involved are not necessarily Gaus-
sian. Existence and uniqueness of the solution is established, and it is
shown that the team-optimal solution satisfies a pair of integral equa-
tions which can be solved as the limit of a convergent iterative scheme.
For the special case of Gaussian distributions, however, the team-optimal
solution of the static team problem is affine in the observation of each
DM, with the coefficients involved satisfying a pair of linear integral
equations. It is further shown that the solution of these integral equa-
tions are related to the solution of a time-invariant matrix equation of
Liapunov type when the cost function assigns only terminal quadratic
cost to the state variables. Finally, the static theory is extended to LQG
continuous-time dynamic team problems with discrete observations,
under the quasi-classical one-step-delay observation sharing pattern. The
unique team-optimal solution is obtained explicitly, which is again affine
in the information available to each DM.
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II. GENERAL FORMULATION OF THE DYNAMIC TEAM PROBLEM

Let {x,,¢> 1y} denote an #-dimensional stochastic process satisfying
the Ito differential equation

dx,=[ A(t)x,+ B (¢)u}+ B2(t)u?)] dt+ F(t) dw,

t> 10, X, =Xg, m

and whose sample paths are continuous. Here, x, is 2 Gaussian random
vector with mean x, and covariance Z;, and {w,t>1y} is an »-
dimensional standard Wiener process. A(-), B'(-), B(-), and F(-) are
appropriate dimensional matrices with continuous entries on [tg, #;).
{u}, > 1} and {u2, > 1) are, respectively, r,- and r,-dimensional sto-
chastic processes denoting the controls of DM1 and DM2, respectively.

The decision makers make independent sampled noisy measurements
of the state. Specifically, it is assumed that an m;-dimensional observa-
tion

yi=Cx, +v}, =12 )
is available to DM at the sampled time instant ¢; where j=0,1,- -+, N—1,
and 1o <f; < <ty_y <ty =1 Let us denote the index set of time
samples by #={0,1,- - -, N—1}. Then, the random vectors {v;, j€0,i=
1,2} are assumed to have independent Gaussian statistics, and with
0f ~N(0, R}), R} >0, j€8, i=1,2. Their statistics are also taken to be
independent of the Wiener process {w,, 7> #,} and the Gaussian vector
Xg. C is an observation matrix of appropriate dimensions.

We now adopt a quasi-classical information pattern for this decision
problem. Specifically, it is assumed that the decisionmakers exchange
their independent sampled observations with a delay of one sampling
interval. Such an information pattern is known as the one-step-delay
observation sharing pattern [8).

Mathematically speaking, the information available to DMi in the
time interval

(3a)

and §;_, denotes the common information available to the decision
makers in the same sampling interval, i.e.,

[4,01) 59} wherenj={y}.8,_,},

‘sj—l={yjl—l’yjz—1""ry(;’y()z}' (Sb)

Let o/ denote the sigma-algebra generated by the information set 7
Further, let Hy denote the class of second-order stochastic processes
{u},1>1,), which satisfy the requirement that their restriction to the
interval [#;,7,,,) is of-measurable, for all j€4. Then, a permissible
decision law (strategy) for DM is a mapping y': [#g, £;] X RO +m2¥
R", such that y/(-, 7)€ H},. Denote the class of all such strategies for
DM by Tf. It should be noted that, for each pair of elements in
HY x HE, the stochastic differential equation (1) admits a unique solu-
tion whose sample paths are continuous [9].

For each {y'&€T},y2 €T3}, we now define the quadratic strictly
convex cost function for the team (comprised of these two decision
makers) as

wi=v(t,7),

J(+', 72)=E'{ x; Q5% +frfx;Q(l)x, +u) ul +u,2'u,2) dt
‘o

i=l,2} (C))]

where 0 >0, Q(-) >0, the latter has continuous entries on [#o, f;], and
the expectation operation is taken over the underlying statistics.

Then, an optimal solution for this continuous-time dynamic team
problem is a pair {y'° €T}, y¥ €T2}, such that

inf infJ(y', y2)=J(+", v*). ©)
Ty, T
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Before obtaining the solution of this dynamic team problem, we first
consider its static version (obtained by setting N=1) in the next section,
and then we turn to the more general version in Section IV.

II. StaTic TEAM PROBLEM
A. A More General Formulation

In the static version of the dynamic team problem formulated in the
previous section, the decision makers make noisy linear observations of
the random initial state x,, and do not acquire any further information
as the decision process proceeds. Hence, the static version can be
recovered from the previous general formulation by simply setting N=1,
In this section, we actually first treat a more general version of this static
problem, in which x4 is a second-order random vector with known (but
not necessarily Gaussian) statistics, and the static observation y’ of DMi
is not related to x, necessarily in a linear fashion. In fact, we only
assume that the conditional joint probability distribution of (y', y2)
given x, is a priori known, but this distribution need not be Gaussian.

When the information structure of each DM is static in nature, it is
not necessary to differentiate between a strategy and its realized value
(control), and hence, hereafter in this section, we will only consider the
controls {u},¢> ¢y} and {u2,¢>1,} as the decision variables of interest.
Consistent with this adoption, we will investigate the minimizing solution
in the product space H X H? instead of in T} XT'. Here, HY stands, by
abuse of notation, for the modified version of Hj, (introduced in Section
IT) with N=1, that also accounts for the more general (not necessarily
Gaussian) statistics introduced above. The same statement applies to T},
too. We now introduce an inner product {---»; on H{ through the
relation

<u,o>,.=E{f"fu,(u)'o,(w)dz} (62)

for each pair {u€H{, vE Hf} where w €, with (2, B, ?) denoting the
underlying probability space. Together with this inner product, and for
each i=1,2, Hj becomes a Hilbert space which we simply denote by H".

To complete the formulation of the static team problem, we let
L (11, t;]X2) denote the space of functions from [¢o,2,] X into R”,
under the inner product

{x,2) =E{x,!(w)'z,f(w)+j""x‘(w)'z,(w) dl} . (6b)

Further, let Q be an operator mapping L,([#9,#,]X®) into itself,
defined for each xE L, (9, #;]X L) by

o(t)x,(w),
Qfxt,(w)’

o <t<ts

(2x)(w)= { M

=t

Then, the static continuous-time quadratic team problem under consid-
eration in this section is the following.
Static Team Problem: Determine a pair {u!’ €H',u?*’ €H?} that

J(u', u?)={0x, x 3y +<u u' y +<u? ut),, ®
subject to the constraint (1).

B. Existence of a Unigue Team-Optimal Solution

The Hilbert space setting formulation given above leads to a rather
simple proof of existence and uniqueness of the minimizing solution
{1, 4%}, as well as to a set of two coupled linear equations that the
desired solution satisfies. Let us first define a Volterra operator (see [10]
for a definition) £;: H*—L,;([¢o, #;]1X ) by

) ()= [ (1, )B(Iu(w)ds, i=1,2 (92)
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where ®(7, 5) is a state transition matrix function satisfying

%“’” =A(D®(1,5); (s, s)=1. (9b)
Further, let r€ L, ;([#g,2;] X&) be defined as
r(©)=@(¢, fo)xo(w)+ [ ‘@ (1, )F(s) dw,(w). (%)

Then, it is easy to see that, for each {u'€H', u? €H?), the unique
solution of (1) can be written as

x,=(E1u'),(w)+(E‘,2u2)'(w)+r,(w), (10)

which, when substituted in (8), yields the following equivalent expression
for J:

t>1g,

J(u', u?)=<Q(Ly* +Lu” +r), Liu' +Cou +r),

+{ul uty + P, u?>,. (1)
We now have

Lemma 1: A pair {u" €H',u* €H?)} is a minimizing solution if,
and only if, it satisfies the pair of equations

(I+E308 ) u" +£108,u% = —Ber} )

30 4" +(I+£308,)u" = —£30r

where £ denotes the adjoint of £,.
Proof: Since J is continuously differentiable and strictly convex on
H'x H?, every person-by-person optimal solution is also team-optimal,
and furthermore, the first-order conditions are also sufficient. Hence, the
result follows by taking the Gateaux variations of J separately with
respect to #' and 42, and by setting them equal to zero. O
The following lemma now proves existence and uniqueness of the
minimizing solution.
Lemma 2: The pair of equations (12) admits a unique solution.
Proof: Let us first note that (12) can also be written as

10
(1+B“QE)[ :20 } =—L*Qr (13)
where £: H' X H2—L, (7o, t;1xQ) is defined as £=(£,,L,), and I is
the identity operator mapping H'XH? into itself. Then, it readily
follows that (12) admits a unique solution if, and only if, (7+£*Q8£) is
invertible. Now, since £, is a Volterra operator, it is completely continu-
ous (i.e., compact) [10], and so is its adjoint £¥. This implies that £ and
£* are also compact. Furthermore, Q is a bounded operator. Since the
product of compact and bounded operators is compact [10], it now
follows that £*QF is compact, which is also self-adjoint and nonnegative.
This, then, implies that the operator (7+£*QF) is indeed invertible,
since it is the sum of an identity operator (with is strongly positive) and a
nonnegative self-adjoint compact operator. O

C. Functional Equations for the Team-Optimal Solution

We now seek to obtain, as an equivalent counterpart of (12), a set of
functional (integral) equations that the team-optimal solution should
satisfy. To this end, we start with the operator form (12) and first rewrite
those equations as

U= —£20(8u" +L,u?" +7) = —£10x® } 1

u2°= _BZ‘QXO
where x° denotes the optimal team trajectory. By utilizing certain

standard properties of adjoint operators, we can show (see [22, Appendix
I]) that £* has the functional form

Lrzi=0vf, i=1,2,
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where
oi(w)= f UBI(tY®(s, tYE[zi(w)|6*] ds+ Bi(2YD(t;,t VE[ zi (w)|0']
(15)

and o’ stands for the sigma-algebra generated by the information set of
DM:. This result, together with some routine, but cumbersome, manipu-
lations applied to (14), leads to the following result, whose proof can be
found in [22].

Theorem 1: The unique optimal solution {#'"€H',u*’€H?} of the
static team problem satisfies, and is the unique solution of, the following
pair of coupled integral equations:

u:°=B'(z)'{sl(z) f ‘\pl(:,s)B'(s)B'(s)'zids-I;} (16a)

u,2°=Bz(t)’{S2(t) S ‘wz(r,s)Bz(s)Bz(s)'lfdv—l.’} (16b)

where §(¢), i=1,2 are the unique nonnegative definite matrix function
solutions of the Riccati equations

SH(£)= —A(tY S (1) = S' (1) A(1) — Q(1) + S (1) B (1) B' 1Y S'(1),
Si(4)=0; (17a)
¥i(t, 5), i=1,2, are the state transition matrices for the systems
x=(A(t)-B' (1) B (£YS'())x;

and

z:=s"(:){<1>(t, 1) E[ xo(w)|o’]

+ [‘(1,5)BUs)E[ uf(w)]o'] ds} +ki,  (17b)

i=j; i, j=12
where k!, i=1,2, satisfy
Ki(w)=—(A(ty = (1) B (1) B (1) Yki(w) ~ S()BN D E[ uf(w)|o"]

ki(w)=0;  j=i, je{1,2}. 17¢)

L]

‘When the underlying statistics are not Gaussian, it is, in general, quite.
difficult to solve the pair of equations (16) mainly because of the
presence of conditional expectations. One can, however, obtain the
solution as the limit of a convergent sequence of iterations, by means of
what is known as the infinite second guessing technique [11], [12]:

The Infinite Second Guessing Algorithm:

1) Start with any »2 €H?, substitute this in (16a), and solve the
resulting equation for the corresponding u' € H'.

2) Substitute this ¥! €H' into (16b) and solve for the corresponding
uteH?

3) Use the solution of (16b) obtained at step 2 to replace the starting
choice at step 1, and reiterate.

Proposition 1:

1) In the preceding algorithm, the corresponding linear integral equa-
tions at each step admit a unique solution.

2) Regardless of the initial choice, the infinite second guessing algo-
rithm converges to the unique optimal solution.

Proof: First note that, for each u? € H?, (16a) constitutes a neces-
sary and sufficient condition for u' € H' to minimize J(«', u?) over H.
Likewise, (16b) provides a necessary and sufficient condition for minimi-
zation of J(u', u?) over H?, for each fixed «' € H'. Hence, the proposi-
tion readily follows, since J is continuously differentiable and strictly
convex on H' X H? and it has a unique minimum (Lemmas 1 and 2). []
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D. The Special Case of Gaussian Statistics

When the underlying statistics are Gaussian, it is possible to determine
the structure of the team-optimal controls explicitly. To this end, and in
view of the formulation of the general problem in Section II, let
xg~N(Xy, Zy) and the observation y’ of DM/ be given as

yi=Cixg+of, i=1,2 (18)
where 0,~N(0, R’), R">0, and these three random vectors are statisti-
cally independent. Now, consider the iterative algorithm of the previous
subsection, starting at step 1 with #2=0 a.s. Then, the resulting expres-
sion for u] is

u; =—B'(1)'S ())¥' (1, 10) E[ xql0'] 19
so that u/ is really a linear function of E[x,|o], which, in turn, is affine
in y! because of the underlying Gaussian statistics.

Now, if this functional form is substituted in (16b), at step 2, it follows
through a similar argument (but this time via the solution of a linear
differential equation) that the solution u? will be affine in y2, again
because of Gaussian statistics. This argument then iteratively yields (also
in view of Proposition 1) the conclusion that, when the underlying
statistics are Gaussian, the unique team-optimal solution is affine in the
information available to each DM. We have, in fact, the following.

Theorem 2: The continuous-time two-member LQG static team prob-
lem formulated in this section admits the unique solution

ul’=PY(1)[ ' — C'%o] - B'(1YS(1)¥(1, 1) %, (202)

uZ’=P2(1)[ y2- C2%y |- B2(rYS(:)¥(t, 14) %, (20b)

where 5(1), 1o <1< 2y, is the unique nonnegative definite matrix function
solution of the Riccati equation

S(t)+A(2)'S(2)+S(£)A(r) — S(1)[ B'(£) B (1) + B2(2) B2 (1))

S()+Q(1)=0, S(t)=0y, @n
¥(z, s) is the state transition matrix function satisfying
AHE5) [ 4y [ BBty
+B2(1)B2(tY1S()]¥(s,5)  ¥(s,s)=I. (22)

The pair {P!(-), P3(-)} satisfies (and constitutes the unique solution for)
the coupled set of integral equations

P‘(:)=B'(t)’Sl(t)f"I"(t,s)B‘(s)Bl(s)’L‘(s)ds—B‘(t)’Ll(t)
to
(23a)
P2(£)=B2(¢YS*(1) f "W2(1,5)B2(5)B2(sYL2(s) ds— B2(¢YL3(1)
‘o
(23b)
where
L"(t)=s"(z){q>(:,zo)+f‘cp(x,s)31(s)Pf(s)dscf}2i+x"(z),
ij i, j=1,2 (24a)

and

Ki(£)=~(A(ty =S (£)B () B (1)K (1) - S () B (1) PI(£)CIZ,
istj; i, j=1,2  (24b)
and
SI=3,C(CIZCH + R,

i=1,2. 25)
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Proof: A proof of this theorem is provided in the Appendix. 0
We obtain extremely simple expressions for the optimal !, i=1,2, in
the special case when Q(#)=0, i.e., if no cost is assigned to the inter-
mediate values of the state vector.
Corollary: For the continuous-time two-member LQG static team
problem formulated in this section, and with Q(+) taken to vanish
identically on the interval [7y, #;], the unique minimizing solution is

ul’= — B'(tYK(£)®(t, 1) D[ »' ~ Cl%, | — B2y S(2)¥ (¢, 14) 7o
(26a)

4= — B2(tYK(1)®(1, t5) DY [ y2— C2%y |~ B2 (1)’ S(£)¥(¢, 14) %o,

(26b)

where D'° uniquely satisfies the Lyapunov-type matrix equation

(I+MYDY — M I+ M2) " ' MIDICIZ2=31 - M2(1+M?) " '32C23!
(27a)

and D?’ is given by

D¥=(1+M?) " (22-M'D"C'2?). (270)
Here, M' is a constant matrix defined by

M= [ 010, 5)BH)BU(SYK()O(s, 1) b, i=1,2 (270)
to

Proof: Details are given in [22]. O
E. Minimum Team Cost Under Gaussian Statistics

We now obtain an expression for the minimum value of the cost
function of the static LQG team problem solved in the previous subsec-
tion. The results to be derived in the sequel will especially be useful in
the derivation of the optimal solution of the dynamic LQG team prob-
lem in Section IV.

Let ||-|| denote the standard norm on an appropriate dimensional
Euclidean space. Then, we first have

Lemma 3: The cost function J, defined by (4), can equivalently be
written as

I, u2)= [YE((|u} +B(eYS()x, )| +||u? +B2(YS(1)x,|| 2} dt
to
+%0S(0)x,+J, (28a)

where 8(-) is defined by (22) and J, is given by

I, =Tr(Z,5(0)) + n( fl ‘fS(t)F(z)F(t)'dr) (28b)

and is independent of the controls.
Proof: This result follows from the standard “completing the square™
argument of LQ stochastic control {13] by appropriate decomposition. [
Now, to obtain an expression for the minimum team cost, it will be
sufficient to substitute the optimal team solution given in Theorem 2 into
J. If this is done, then the integral term in (28a) reads

SUE(IP (D = C1%o]+ BHYS(O xf = ¥(1, 10) o I
+I PO 2~ C2% |+ B2 (1Y S()[ %) = ¥(1, 10) %o ]I 2 } dr (29)

where x2, t > t,, denotes the optimal team trajectory and is determined
as the unique solution of

dxl=[ A()x? + B (O)ul" + B2(1)u2" | dt+ F(t) dw,,  x, =%,

(0)

Let us now decompose x? into two parts and write it as x? =m, +§,
where m, and £,, respectively, satisfy
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Do 4(0)m, ~ [ BOBIY + BB YISt )m,
mog=Xp (3la)

dt, =A()E,dt— (B (D PH(O[y - C'%,]
+BZ(I)P2(I)[)’2—C220]) dt+F(I)dwn

£o=xo—%o. (31b)

The solution of (31a) can readily be obtained as
m, =‘I"(” ’o)fo

where Y(f,5) is defined by (22). Then, if the decomposition x? =
Y(1, t)%g +£; is used in (29), the resulting expression becomes only a
function of the stochastic process {£,,¢>7,), i.e., it can be written as

f"fE{ I PY(£)[C'¢o +0' ]+ B (1YS(1)¢,11
+| PA(D[ C2Ey +02]+ B2(eYS(1)é, |12} . (32)

This expression can further be simplified by making use of the solution
of (31b) and the statistical independence property of £4, o' and v2. The
final form is given below as the second term of expression (34) and the
result is summarized in Lemma 4. The details of the manipulations
involved to arrive at expression (34) will not be given here since they are
rather straightforward (although cumbersome) and not that interesting
for our purposes. What is important to note is the structure of the
minimum value (as a function of X,) given in Lemma 4.

Preliminary Notation for Lemma 4:

Define the appropriate dimensional matrix functions AY(-), A3(-),
AYC), ATC), AY(), AS() on [#g, 4] as

o()=PI(t)C +B'()'S(t) (¢, 1)

— Bi(ryS(2) J; ‘®(t,5)BI(s)Pi(s) ds C'
—Bi(1YS8(t) f ‘®(1,5)BI(s)P/(s) dsC,
itj, i, j=1,2. (33a)
N(8)=Pi(r)+ B'(1YS(s) | ‘®(t, )BI(s)Pi(s) ds;  i=1,2,
(33b)
A()=BHeys(r) [ ‘B(t, 5)B(s)P(s)ds; i, i, j=1,2.
o

(330)
Further, let
o= T 7] (A M) AR 0) 2
+(AL(YAUD+AT() AL ())R!
+(Ah(Y AL () + AF(Y AY(D)) R?
+S(2Y(B'()B' (1) +B*(1)B*(1))S(1)
. f, :(I)(t,T)F('r)F('r)'(I)(t,‘r)'d‘r] dr. 349

Lemma 4: The minimum value of the cost function of the static LQG
team problem under consideration is
Jo = J(u?, uP)y= 54 S(0) %o+, (35)

where J,, is given by (34) and is independent of x,. O
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IV. Sorution OF THE DyYNAMIC TEAM PROBLEM

The solution of the dynamic LQG team problem formulated in Sec-
tion H can now be obtained by making use of the static theory devel-
oped in the previous section. The derivation basically involves a dynamic
programming type of argument, and one has to utilize Theorem 2 and
Lemma 4 at every sampling time interval. In the sequel, this will be
achieved by first enlarging the strategy spaces of the decisionmakers so
as to formulate a new team problem whose team-optimal solution can be
obtained more readily, and then by relating the solution of the original
team problem to the one obtained for the auxiliary one. Such an indirect
derivation seems to be inevitable, since otherwise the analysis gets quite
cumbersome.

The only difference between the new dynamic team problem to be
introduced and the original one lies in the information patterns. Specifi-
cally, the new one is defined by replacing ) and §;_, given by (3), by 7
and §;_,, respectively, where

i={rh 81} (36a)

¢§j_1={8-_,;u},u,2,t<tj}. (36b)

Under this new information pattern, the decision makers have also
access to each other’s control values used during all past sampling
integvals. It should be noted that this information pattern is not the
continuous-time counterpart of the one-step-delay information sharing
pattern [14] and, the way it stands, it is not of much practical impor-
tance. It, however, provides mathematical convenience in obtaining the
solution of the original team problem, as it will become clear later.

Under this new information pattern, let us replace the strategy spaces
T} and T2 by T}, and T2, respectively, where the latter are defined in an
analogous way, but under the new information pattern. Since the new
strategy spaces are larger, we immediately have the inequality

min minJ(y!, 72)>mmmmJ('y v?), 37
Ty T3

r, T3

i.e,, the minimum cost of the new team problem provides a lower bound
for the minimum cost of the original one. The following lemma now says
that, in fact, they have to be the same.

Lemma 5: . .

1) To every pair {y' €Ty, y2ET})}, there corresponds a unique pair
{¥' €Ty, y*€TE} so that (7', 72)=J(v", v?).

2) The inequality in (37) is, in fact, an equality.

Proof: 1) For each {y! €T}, ¥2E€TE), the implicit equations’

() =uj(w) } SNl
72(72)=u2(w) T

can be solved recursively for {ui(w), j=N—1,---,0;i=1,2} as func-
tions of {'qj,j =N-1,-++,0;i=1,2} because of the nature of the infor-
mation pattern. Then, the resulting functional relations provide a pair in
T} xT3, and a unique one since the stochastic differential equation (1)
admits a unique solution in each sampling interval.

2) This result follows readily from 1). a

Remark I: There, in fact, exist uncountably many pairs in I‘N XI‘N
corresponding to a given pair in T X T'3; equivalently, a pair of strate-
gies under the original information structure has several representations
{15] under the new (enlarged) information pattern. Hence, Lemma 5 also
says that all representations of a minimizing solution pair for the original
team problem, and those only solve the new team problem. In the sequel,
we will obtain one such representation which is, in fact, the simplest one
1o derive; and then we solve implicit equations of the type (38) to obtain
the desired optimal team solution. (]

(38

'Here, ¥/ and u} denote, respectively, the restrictions of y/ and ' to the sampling
interval [£, ¢4 1)
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An Auxiliary Result: In the derivation of  optimal solution for the
new team problem, we will need the expressions for x, = E[x,l|8j_,]

and cov(x x, ), which we first obtain, To this end, let us first introduce
a stochastic process {z,,1> 1y} and a deterministic matrix function =(-)
on [tDs tf] by

o

dz,
—2;'-=A(t)z,+B'(t)u,l+Bz(t)u,2, z, =X,
39

4o <t<t;,  j=1,--,N.
2’J=Z‘,—+Kj[_){’-—c}ztj_]
dzd(t) =A()Z(t)+Z()A() + F(t)F(ty
2(1)=Z2y, o <t<yy, j=1, N (40)
2(4) =205 ) - K,G2(%)
where
—\r — -1
K=2(5)G[ GE(#7 )G +R,] (41a)
R,=diag(R}, R}) (41b)
=027y, (410
=(c¢/.c7Y (41d)

It should be noted that the matrix Z(-), as well as the sample paths of

{z,,t> 1y}, have discontinuities at the sampling points #;,--~,fy_,.
Now, we have the following result.
Lemma 6:
a B8 ~ .
2,2 E % 161 ]=2;, =l N-L. (42a)
cov(Z,,%,)=2(f7), j=1,+-,N—-1. (42b)
Proof: Relations (39)-(40) (without the term B'u!+B2%u?) con- -

stitute the filtering equations for linear continuous-time systems with
discrete (sampled) observations [16]. Inclusion of the term B'u} + B2u?
in (39) is possible (as in the standard LQG control theory) because of the
nature of the information patiern involved. Specifically, z, =
E[x,|8_;ul,u, s<tifort;_ 1$1<1), and z, =E[x, |§;], and Z(s)=
cov(z,, z,). Equations (42a) and (42b) then readlly fol.low from these
relations in light of (36b). O

Derivation of an Optimal Solution for the New Team Problem:

We now seek to obtain a solution for the optimization problem

mmmm.l(-y ¥2).
y B

To this end let us ﬁrst attempt to obtain the restriction of the sought pair
of strategies %' ,y °} to the sampling interval [ty—1, tx), which we
denote by {y4_,. 7N 1} where ty=¢;. Defining

g(ul,u?, x,) = x,Q()x,+ulu! +uZu? (43a)
and
2 5 ra 1,2 =12 2 i
Ivy= kzl _/; E{g,(a,, wl, 2 NWvé-1s Yk—l)} dr 1<j<N-1,
- k-1
(43b)

we note that J can be written in the equivalent form

2This is not & eondmonal expectation, but simply expectation with u} determined by
the control strategy v}, in the interval [£z_,, #z).
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e 92)=E{ (3,

¢ ~ ~
g ubouton) s o) s 420
N-1

where the second term does not depend on the restriction of {-y 7} to
the sampling interval [7y_;, #y). Hence, to determine {y,,, b T2 1) we
can confine our attention to the first term of (43c), which we may denote
by J¥~1 where we define, in general,

N
z ~p o~ g
JJ=E{E{x;,S(t,)x,,+ > f"g,(u},u?,Xr)dtl(Y}’“ff)"’j}}
k=j+1 8k

j=N-—1,---,0. (44)
That is, first conditioned on the common information 5 available to the
decisionmakers in the sampling interval [¢,,7;,.,), and t.hen full expecta-
tion. Now, note that the probability dlsm”buuon of x,,_, conditioned on
Ox_ is Gaussian (because of linear state dynamics and linear observa-
tion equations) and furthermore, it has mean %,,  and covariance
3(ty_,) by Lemma 6. Then, the team problem defined by JV~! be-
comes equivalent to the static LQG team problem of Section III-D, with
only #, replaced by z5_,, X, by %,,_,, Zy by Z(¢5_,) and C’ by Cj_,.
Consequently, the result of Theorem 2 directly applies here, implying
that the solution will be given by

FERY=PUO] b1~ ChorFey, | - BY(OSOU(t ty_ )5,
(452)

1= Ch_ Ry, |- BEOSOW(E ty_ )i,
(45b)

7@ =P yh_

where {P'(-), P2(-)} will be given by a pair of equations, which is a
counterpart of (23).

Now, if this solution is substituted into J¥ !, we know from Lemma 4
that it will have the functional form

VP E{%, S(n_1)E,, J+IN (46)

where the second term is given as a counterpart of (34) and does not
depend on the past controls (or strategies). Furthermore, replacing ﬁ,n_l
in the preceding expression by X,,  —x,  +X, . We can express its
first term as

E{x;,_ S(ty_)%_, +2x0,_ Sty )R, —%,_,) }
+tr] S(ty_1)Z(15_1)]
which is equivalent to
E{x;, S(ty_1)x,,_,} —t[S(ty_)Z(t5_,)] @n

using standard properties of conditional mean, Hence, while determining
the pair {75 _,, ¥3_2}, the expression of interest is [also from (43¢)]

JN-2 =E{ E{x;n_.s(tN—l)xm_.

# [ el ) (o 20 B | 9
N-2

since Z(-) is independent of the controls. But, this team problem is
analogous to the one considered on the sampling interval [¢y_,, 7x)
thereby admitting a solution in the structural form (45). Proceeding in
this manner, we obtain, by induction, the following proposition.
Preliminary notation for Proposition 2:
Let 3/ be appropriate dimensional matrices defined by
B =3()C (G2 +R) ™, i=1,2,

jE0.  (49)
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Let f’"(-), };'2(,) be piecewise continuous functions on [y, £,], which
satisfy the coupled set of linear integral equations

Bl(0)=B'(tyS'(1) [ "4} (2, 5)B\(s)B*(sY L} (5) ds— B'(¢YL}(#)
]
(502)
P(1)=B2(2y$2(1) [ "9} (1,5)B2(s)B*(sY L} (s) ds— B> (Y L}(¥)
4

t; <t<tyyy, j=0,1,---,N—1 (50b)

where
IZ;(:)=§"(:){¢(:, L)+ f ‘a(e, s)Bk(s)ﬁk(s)dscf}i;+E;(z)
Yy
(51a)

and
I'E;(z)= ~(AQy - Si(£)BI(£)B'(2Y ) Ki(1) — S'() B*(1) P*(£)CFZ,

(51b)

Ki(t41)=0, ik, i,k=1,2, jEb

where §° (1) satisfies

S(r)= — ACey§' (1) - $ () A() - Q) + S (B () B' (1Y S¥(n),

4y <t<ty, S(4)=5(1;)), i=1,2, j=N,--,1, (51c)

while
¥/(1, 5) is the state transition matrix of the system

i=(A()-B (OB (YS'())x, t€]t;.1,,), i=1,2, jEb.

Proposition 2: 1) The set of equations (50) admits a unique solution
pair {P'( ), P2(- *)}. 2) The LQG dynamic team problem of Section II,
and under the amended information structure (4!, %2), admits an opti-
mal solution whose restriction to the sampling interval [¢;,¢;,1) is

P =PUn) 5] -3, | - BN YS(OW(,1)%,  (522)

728, 72)=P(1)] y?- C7%, | - B2 (2Y'S()¥(t.1,))%, (52b)

<<ty J=0,+-,N—1

Proof: 1) This result readily follows from Theorem 2, since the pair
of equations (50) on each sampling interval is analogous to the pair (23).
2) The inductive argument for derivation of this optimal solution has
already been outlined prior to the statement of this proposition. (]

It should be noted that we cannot claim uniqueness of the solution
prmnted above, in view of Remark 1. In fact, all pairs of strategies in
T}, XT3 that provide t.he same minimum value for J will be different
representatlons of {'y , 72 } One such representation will, however, lie
in Ty X T2, which will constitute the unique solution of the original team
problem by Lemma 5. This particular representation is given below in
Theorem 3.

Theorem 3: The LQG dynamic team problem of Section II, and
under the one-step-delay observation sharing pattern as formulated
there, admits the unique solution (in T} XT'#) whose restriction to the
sampling interval [¢,, ¢, ) is given as

P ) =P )| 5} -G | - B YS(u ), (539
Yo(1,9%) =P ()] 52 - 74, | - B2y S, 1)E,,  (53b)

;<t<tyyy, Jj=0,--+,N-1
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where é ; is defined as

§j=z°(tj‘), jEad (54)
where z%(z) is the solution of (39) with u replaced by y*'(, 7°). O
Proof: This result is an immediate consequence of Proposition 2
and Lemma 5, since (53) indeed exists by recursively solving the dif-
ferential equation (39), and it is clearly an element of T}, XT'Z. O
Remark 2: Since (-, ) is the fundamental matrix corresponding to
the feedback system of the deterministic version of the problem, it
should be clear from (53) that the optimal solution of the dynamic team
problem features a certainty-equivalence property. The second terms in
(53) yield exactly the solution of the deterministic version of the problem
if §; is replaced by x(7;). The first terms, on the other hand, reflect the
contribution of the nonshared part of the information to each DM’s
strategy, i.e., they are the innovation terms. O

V. CONCLUSIONS

In this paper we have presented a complete solution to the LQG
continuous-time two-member team problem, in which the decision-
makers make independent noisy measurements of the state at sampled
instants of time, and exchange this information with a delay of one
sampling interval. The optimal team solution is affine in the information
available to each DM, and the coefficient terms involved are determined
recursively and by solving a pair of integral equations at each step. It is
shown that, under certain conditions, the solutions of these integral
equations can be obtained by solving Liapunov type time-invariant
matrix equations.

The delayed observation sharing pattern considered in this paper
within the context of continuous-time dynamic teams seems to be a
natural counterpart of the discrete-time one-step delayed observation
sharing pattern [8]. Other types of delayed information sharing patterns
for continuous-time systems have recently been considered in the litera-
ture, notably in [18] and [19]. The former article is devoted to decentral-
ized control of Gauss-Poisson processes, in which case each DM instan-
taneously observes the jumps occurring in his own system dynamics but
transmits this information to the other DM’s with a certain amount of
delay.

The latter reference formulates a general decentralized LQ team
problem and also makes use of techniques of functional analysis (in
particular, properties of Volterra operators) in arriving at certain general
conclusions. The general model of [19] is, however, restricted consider-
ably by the assumption that the state and information variables are
unaffected by the controls of the DM’s; hence, it is basically static in
character. Our static team problem considered in Section III can defi-
nitely be viewed as a special case of this general model, but [19] does not
contain the explicit optimal team solution presented in this paper and,
furthermore, it does not discuss the existence and uniqueness questions
thoroughly investigated in this paper.

One natural (although not straightforward) extension of the results of
this paper would be to obtain Nash equilibria of similarly structured
stochastic nonzero-sum differential game problems. For a counterpart of
Lemma 2 to be valid in that case, one has to impose certain additional
restrictions on the parameters of the problem. This has actually been
done in [20] where authors obtain a sufficient condition for the LQG
nonzero-sum differential game to admit a unique Nash equilibrium
solution under static information. For the dynamic continuous-time
LQG nonzero-sum differential game, and under the one-step-delay ob-
servation sharing pattern of this paper, Nash equilibria will again be
unique whenever it exists, and the equilibrium strategies of the de-
cisionmakers (players) will be affine in their information, i.e., a direct
counterpart of the result of [21] will hold true for the continuous-time
problem also. A verification of this result, however, will require an
analysis quite different from the one employed in Section IV of this
paper, since Lemma 5 has no counterpart in a game situation. Details of
this analysis, as well as the expressions for the unique equilibrium
strategies, will be presented in a forthcoming paper.
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APPENDIX

Proof of Theorem 2: We first assume that Xq=0. With the Gaussian
assumption,

E[xolo']=E[xoy" W ELy'y"]) ' y'=3Ziy",

where =7 is given by expression (25). From the discussion prior to the
statement of Theorem 2, we see that, when x,=0, the optimal uﬁo are
linear functions of y’, i=1,2. Thus, we can write u!"=Pi(¢)y* where
Pi(t) are 10 be determined. Using this form in (16a) and (16b), we get
(23a) and (23b). An obvious iterations scheme is to start with P2(¢)=0,
determine P'(¢), and iterate. The itcration converges on account of the
convergence of the second guessing scheme. We now want to extend this
result to the case when x,520. For this, we first take another look at the
criterion. The system state evolves according to (1) and the criterion to
be minimized is (4). Let

B(r)=[B'(+), B*(1)],

i=1,2

1
u,= [ :'2 ] and S(¢) be the unique solution of the Riccati equation

S‘(t)+A(t)'S(t)+S(r)A(t)+Q(t)—S(t)B(t)B(t)’S(x)=0,

Then J can be expressed in an alternate form
J=E[ f Nu, +B(tYS(t)x, |2 dt+ f Ui S(¢)F(1)F(tY dit+x45(0)xq |.
fo to

This follows from the standard completion of squares argument [13] (see
Lemma 3). Since only the first term depends on u,, the solution obtained
is also the solution for the team problem with the criterion

g ?
J=Ef Nu,+B(2YS(t)x,||2 dt.
to

We now study the case when X,5=0. The observations y'=Cixy+ o’ may
be converted into zero mean quantities by defining

Pli=pi—CiRyg=Ci{(x—Xp)+0', i=1,2.
Let X, be the unique solution of

X =A()Z+B()u,, X, =X,
Then,
u,+B(:)'S(z)f,=u,+B(:)'S(z)f’q>(:,s)B(s)u,ds

‘o
+B(1YS(£)P(¢, 8)%,.
Let
u,=u,~—m(t) where m(¢) is yet to be chosen. Then,
u,+B(tyYS()X,=u,+m(t)

+B(yS() [ ‘@(¢, s)B(s)[ #,+m(s)] ds+B(tyS(1)®(t, 15)%,.

Choose m(¢) so that
m(:)+B(z)'S(z)f‘q>(z,s)B(s)m(s)¢s= —B(2Y'S(£)®(t, o) %o
‘o
‘We can solve this integral equation in m(?) to obtain

m(t)= —B(t)’S(:)[(I)(t, to)—f"l’(t,s)B(s)B(s)’S(s)(I)(s,to)dr X0
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where ¥(¢, 5) is the fundamental matrix for the system
x=(A()—-B(t)B(t)S(1))=x.
Then, clearly

(2, 10) - f; "W(1,5)B(s)B(sYS(5)D(s, to) ds="¥(t, 1)

and
m(t)=—B(tYS(2)¥(t,15)%p-

With &, as the decision vector, we may write

J'=E{ N u,+B(:)'S(r)f,+B(t)'su)(x,—f,)uzd:}

= &{ [+ BGYSOz 2 ar)

where
—f,+f‘q>(z,s)13'(s)&;¢s
o
+/ ‘®(1, 5)B2(s)i2 ds,
‘o
and
=1
= 'f'z , so that
Uy
dz,=A(t)z,dt+ B (2)u} di+ B2(¢)u? dt+ F(t) dw,,

2,,=X¢—¥q with E[z, ]=0.

But this is the minimization problem with zero mean initial condition,
which has already been solved. In fact, the optimal solution is

=P'(1)5",

where Pi(t), i=1,2, satisfy the pair (23a), (23b). This yields

i=1,2

ui=P () y'—C'xy |+ m(2)

m'(z)

where we have split m(¢) as
m? (1)

%o ] — B (1) S(£)¥(1, 15)%o;

]. We have, then,

wi=Pi()]y' - i=1,2.

ACKNOWLEDGMENT

It is a pleasure to acknowledge the stimulating discussions the authors
had with Prof. M. Vlach of Charles University, Prague, Czechoslovakia,
on integral equations and operator theory during the preparation of this
paper.

REFERENCES

[1] J. Marschak and R. Radner, Economic Theory of Teams. New Haven, CT: Yale
Univ. Press, 1972,

[2] R. Radner, “Team decision problems,” Ann. Math. Statist., vol. 33, no. 3, pp.
857-881, 1962.

[3] Y. C. Ho and K. C. Chu, “Team decision theory and information structures in
optimal control problems—Part 1,” IEEE Trans. Automat. Contr., vol. AC-17, no.
1, pp. 15-22, 1972,

f4] K. C. Chu, “Team decision theory and information structures in optimal control
problems—Part IL”* IEEE Trans. Automat. Contr., vol. AC-17, no. 1, pp. 22-28,
1972.

[5] N. R. Sandell, Jr. and M. Athans, “Solution of some nonclassical LQG hasti
decision problems,” IEEE Trans. Automat. Contr., vol. AC-19, no. 2, pp. 108-116,
1974,

[6] T. Yoshikawa, “Dynamic programming approach to decentralized control prob-
lems,” JEEE Trans. Automat. Contr., vol. AC-20, no. 6, pp. 796-797, 1975,

1161

{71 B.-Z. Kurtaran, “A concise derivation of the LQG one-step-delay sharing problem
soluuon, IEEE Trans. Automat. Contr., vol. AC-20, no. 6, pp. 808 810 1975.

[8] T. Basar, “Decentralized multicriteria optimization of linear ic systems,”
IEEE Trans. Automat. Contr., vol. AC-:B no. 2, pp. 234-243, 1978.

[9] W. H. Fleming and M. Nisio, “On the existence of optimal stochastic controls,” J.
Math. and Mech., vol. 15, pp. 777-794, 1966.

[10] A.V. Bnlaknshna.n, Functional Analy.m' New York Spnnger-Vcrlag, 1976.

[11] M. Toda and M. Aoki, “Second-g for h linear lator
problems with delayed information shanng, IEEE Trans. Automat. Comr., vol.
AC-20, no. 2, pp. 260-262, 1975.

[12] J. F. Rudge, “Series solutions to static team control problems,” Math. of Operations
Res., vgl. 1, no. 1, pp. 67-81, 1976.

[13] K. J. Astrom, Introduction to Stochastic Control Theory. New York: Academic,
1970.

[14] H. Witsenh “S of and control for discrete-time systems,”
Proc. IEEE, vol. 59, no 11, pp. 1557-1566, 1971.

{15] T. Basar, “Information structures and equilibria in dynamic games,” in New Trends
in Dynamic System Theory and Economics, M. Aoki and A. Marzollo, Eds. New
York: Aca.demxc, P 3—55.

{16] A.H. inski, Pr.
1970,

[17] A. Bagchi and T. Basar, “An extension of Radner’s theorem to continuous-time
systems,” Proc. 18th IEEE Conf. Decision and Contr., 1979, pp. 667-671.

[18] A. Segall, “Centralized and decentralized control schemes for Gauss-Poisson
processes,” IEEE Trans. Automat. Contr., vol. AC-23, no 1, Pp- 47-57, 1978.

alized

and Filtering Theory. New York: Academic,

[19] S. M. Barta, “On linear t of d " Lab. for
Inform. and Decision Syst., Mass. Inst. Technol., Cambridge, MA, ESL-TH-830,
1978.

{20] K. Uchida and E. Shimemura, “On the existence of the unique Nash equilibrium
point in linear-quadratic stochastic differential games,” in Proc. 3rd Conf. Inform.,
Decision and Contr. in Dynamic Socio-Economics, Nagoya City University, Japan,
1978, p. 3.

[21] T. Basar, “Two-criteria LQG decision problems with one-step-delay observation
sharing pattemn,” Inform. Contr., vol. 38, no. 1, pp. 21-50, 1978.

[22] A Bagchi and T. Basar, “Team decision theory for linear continuous-time systems,”
Dep. Applied Math., Twente Univ. of Technol., Enschede, The Netherlands, Memo.
274, 1979.

An Adaptive d-Step Ahead Predictor Based on Least
Squares

KWAI SANG SIN, GRAHAM C. GOODWIN, AND
ROBERT R. BITMEAD

Abstract—This paper examines the asymptotic properties of a least
squares algorithm for adaptively calculating a d-step abead prediction of a
time series. It is shown that, with probability one, the sample mean-square
difference between the recursive prediction and the optimal linear predict-
ion converges to zero. Relatively weak assumptions are required regarding
the underlying model of the time series.

I. INTRODUCTION

There is a growing literature on the question of convergence of
recursive algorithms for parameter estimation in time series models; see,
for example, [4]-[8). In most of this work, the emphasis has been on
establishing consistency and other asymptotic properties for the esti-
mated parameters.

In [1] an alternative approach was described in which emphasis was
placed on the performance of a predictor designed using the estimated
parameters rather than the properties of the estimated parameters them-
selves, The advantages of this approach are that it is not necessary to
consider the predictor performance as a separate issue and it is possible
to weaken the assumptions on the model and experimental conditions.
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