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Abstract-An improved numerical technique was used in order to develop an absorption model with which 
it is possible to calculate rapidly absorption rates for the phenomenon of mass transfer accompanied by a 
complex reversible chemical reaction. This model can he applied for the calculation of the mass transfer rates 
(and enhancement factors) for a wide range of processes and conditions, for both film model and penetration 
model, complex kinetic expressions and equilibrium reactions. With the aid of this method it is 
demonstrated that reversibility has a substantial effect on the absorption rate. Approximate analytical 
solutions for the calculation of the mass transfer rates presented in literature are checked for their validity. 
All approximations are of restricted use and can be applied only for a limited number of reactions and it is 
desirable to check the approximation with the aid of a numerical solution before it is used for mass transfer 
calculations. The linearization method of Hikita and Asai (Kagaku Kogaku 11, 823-830, 1963) cannot be 
applied generally for reversible reactions and therefore can lead to erroneous results. Experimentally 
determined absorption rates of H,S and CO, in various aqueous alkanolamine solutions can be predicted 
satisfactorily for the several mass transfer regimes studied. 

1. INTRODUCTION 

In the process industry, operations involving mass 
transfer followed by reversible chemical reactions 
occur very frequently. Well known examples are the 
amine gas-treating processes where the acid gas corn- 
ponents H,S and/or CO, are consumed by a chemical 
reaction in the alkanolamine solution during the 
absorption and subsequently released by the reverse 
reaction during the regeneration of the rich solvent. 

For design purposes it is extremely important that 
models are available which can be used for the calcu- 
lation of the mass transfer rates for the various process 
conditions. Therefore the theoretical modelling of the 
phenomenon mass transfer followed by a chemical 
reaction has been studied intensively for the various 
types of mass transfer models, for instance the film 
theory and penetration theory. However, analytical 
solutions could be obtained for a few very special cases 
only. For the film theory Olander (1960) gave an 
analytical solution for the problem of mass transfer 
with a reversible chemical reaction which could be 
regarded as instantaneous with respect to mass trans- 
fer. Also analytical solutions for both film and pen- 
etration theory have been presented for first-order 
reversible and irreversible reactions (Sherwood and 
Pigford, 1952; Danckwerts and Kennedy, 1954; 
Huang and Kuo. 1965). For all other situations, with 
reactions different from the cases mentioned above, no 
analytical solution could be obtained and therefore 
numerical techniques must be used in solving these 

phenomena. 
An alternative approach in finding a method for the 

calculation of the mass transfer rate, i.e. the en- 
hancement factor, is by approximation and/or lineariz- 

ation. This was first introduced by van Kreveien and 
Hoftijzer (1948), who treated the reaction terms and 
approximated the concentration profiles, and so a 
solution for the film model could be obtained for mass 
transfer followed by a second-order bi-molecular irre- 
versible chemical reaction. This method was extended 
for (m, n)th-order irreversible chemical reaction by 
Hikita and Asai (1963) and, similarly, the surface 
renewal model for second-order irreversible chemical 
reactions was solved by DeCoursey (1974). In case 
reversible reactions occur, an approximate solution 
for the film model was developed by Onda et al. (1970), 
who linearized the reactions similar to the method 
proposed by Hikita and Asai (1963), and by Huang 
and Kuo (1965), but the solution of Huang is of 
restricted use. Onda et al. (1972) also developed in the 
same way a solution for the penetration model and 
DeCoursey (1982) developed the surface renewal de- 
scription but in both cases the diffusivity of all species 
have to be equal. Hikita et al. (1982) derived an 
approximate solution for the penetration model but 
for this approach it is necessary that the solute loading 
is close to zero. Although the restriction of equal 
diffusivities for all species was not imposed on this 
solution, the applicability seems to be very restricted 
because of the zero loading condition. 

Numerically solved descriptions of the mass tansfer 
rate for systems with mass transfer followed by a 
reversible reaction were also presented (Perry and 
Pigford, 1953; Secor and Beutler, 1967; Cornelisse et 
al., 1930). They all applied the finite-difference sol- 
ution method on the set of differential equations of the 
penetration theory. The work of Perry and Pigford 
(1953) can be regarded as a first introduction in 
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calculating mass transfer rates numerically. The other 
publications are of restricted use because a limited 
range of conditions has been studied and the influence 
of solute loading and the behaviour under desorption 
conditions has been omitted (Secor and Beutler, 1967), 
or the applicability has been restricted to a few 
stoichiometric schemes (Cornelisse et al., 1980). 
DeCoursey (1982) questioned the solutions of Secor 
and Beutler for the special case where the chemical 
equilibrium constant was equal to one. Moreover, 
Secor and Beutler presented no results of calculations 
of enhancement factors above a value of eight which 
may lead to the conclusion that probably for some of 
the solutions presented numerical problems occurred. 

In this paper a numerical method is presented for 
the calculation of mass transfer rates for the phenom- 
enon mass transfer followed by a complex reversible 
chemical reaction for both. film and penetration 
theory. The applied numerical technique was funda- 
mentally the same as the method used by Cornelisse et 
al. (1980). However, several refinements of this tech- 
nique were introduced to increase the accuracy and 
minimise the computational time. In order to obtain a 
generally applicable model the kinetics of the rcac- 
tions considered were of a general form and could be 
varied easily. Furthermore the approximate solutions, 
which were mentioned before, were verified and the 
boundaries of the validity will be presented. Finally, 
the presented model is tested experimentally for the 
absorption of H,S or CO, into several aqueous amine 
solutions in a model reactor (stirred vessel). 

In near future this model will be extended to the 
case of several parallel liquid-phase reactions and to 
the case of the simultaneous absorption of two gas- 
phase components in the liquid phase where also 
several parallel reactions occur. 

2.1. Introduction 

2. THEORY 

The problem considered is mass transfer followed 
by a reversible chemical reaction ofgeneral order with 
respect to both reactants and products: 

A(g)+@(1) +Yy,c(O+Y,WU 

with the following reaction rate equation: 

(1) 

R,=k ,,.,~,sc~1”c~1”c~1’c~1” 

-k,,s.,, .C~I’CBI”C’3C~I”. (2) 
Other expressions for the reaction rate like for in- 
stance Langmuir-Hinschelwood kinetics and the 
zwitterion-mechanism for the reaction between CO, 
and alkanolamines (Blauwhoff et al., 1984) can easily 
be included in the model developed in the present 
study. However, most reactions for gas-liquid systems 
can be expressed sufficiently accurate with a reaction 
rate expression similar to eq. (2) and therefore this 
expression was used in this model. 

The mass transfer in the gas phase was described 
with the stagnant film model while for the liquid phase 
both the stagnant film and the penetration model were 

used. For the liquid phase both models were applied 
because these two can be considered as the two 
extremes of all theoretical models developed as far as 
concerning the influence of the diffusivity. Further- 
more the penetration model is expected to be the most 
realistic one in gas-liquid absorption in stirred vessels 
to be discussed later on (Versteeg et al., 1987). 

2.2 Penefration model 
For the penetration model the material balances for 

each species for the phenomenon mass transfer fol- 
lowed by a chemical reaction yields the following set of 
equations: 

ar4 =D ~‘CAI _R 
at n a2 a 

3CBl =D ew 
at bxF -vYaR 

acc1 =D a2Ccl 
at 

~ -+YA 
c dx’ 

aco3 =D azcw 
at dF +Y~R, 

(5) 

These four non-linear partial differential equations 
must be solved numerically because an analytical 
solution method is not available. Before solving this 
set of equations uniquely, one initial condition and 
two boundary conditions are necessary. As initial 
condition it is assumed that the system considered is in 
equilibrium for a given solute loading: 

t=O and ~20, [A]=[Alo, [B]=[SlO, 

ccl=cclo~ [W=Cm3 (7) 

where the concentrations [A],,, [B],, [Cl0 and CD],, 
satisfy R, = 0 in eq. (2). The boundary condition for x 
= rr, can also be derived with the assumption of 
chemical equilibrium for the bulk of the liquid for a 
given solute loading: 

t>O and .x=a3, [A]=[A],, [B]=[B],, 

cc1 = ccl,> cm = cm. (8) 

In case of irreversible chemical reactions (K = cu) eq. 
(8) can be used only for situations where [A], =O (or 
[B] =0 which is identical to physical absorption), 
because for concentrations of A different from zero the 
liquid bulk is not in equilibrium and a reaction will 
occur. In the latter case boundary condition (8) is not 
valid and a material balance over the liquid bulk must 
be used instead. Note that the application of eqs (7) 
and (8) is only valid if the equilibrium composition is 
used. 

The second boundary condition is obtained by 
assuming that the species B, C and D are non-volatile 
and that the flux of component A in the gas phase is 
equal to the flux in the liquid phase. T’he use of the latter 
assumption instead of [A] = [Ali at x=0 is convenient 
in view of the applicability of the model for absorber 
calculations especially for those cases where a part of 
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the resistance against mass transfer is situated in the 
gas phase: 

(~),=, = (F)_ =(~)_=O. VW 

2.3. Infinite reaction rate constants 

In case of infinite reaction rate constants the bound- 
ary condition (9) is no longer valid and the gradients of 
[B], [C] and [D] are not necessarily zero in order to 
take into account that these components are non- 
volatile. 

To derive the appropriate boundary conditions one 
may return to the mass balances over a small layer Ax 
adjacent to the gas-liquid interface, depicted in Fig. 1. 
For the four components one finds: 

For finite reaction rate constants and finite time 
derivatives all integrals vanish when Ax approaches 
zero and eq. (9) is recovered. In the limit situation that 
the reaction rate constants have infinite values, the 
reaction rate, R,, becomes indefinite and therefore the 
integrals are also indefinite. The way to proceed is first 
to eliminate R, by adding and subtracting among the 
eqs (10) and then to take the limit that Ax + 0, by 
which the accumulation terms vanish under the as- 
sumption that the time derivatives of all concen- 

J* 

0 AX 

-x- 

k-;lg. I. Eluxes at the interface. 

trations remain bounded. In this way one finds (for the 
situation that all stoichiometric coefficients are equal): 

This elimination process gives three independent 
eqs (1 I), therefore the fourth equation to achieve the 
complete boundary conditions has to express the 
value of the quantity R, which just has been elim- 
inated. In case of infinite reaction rate constants and 
with the assumption that at the gas-liquid interface 
equilibrium is maintained this fourth equation will be 
the equilibrium condition. 

In view of applicability it is desirable to obtain one 
general solution for the phenomenon mass transfer 
followed by a reversible chemical reaction. Therefore 
the set of eqs (3), (4), (5) and (6) will be solved with 
boundary condition (9). For the limit situation where 
the reaction rate constants become infinite, the de- 
scription will be approximated by extremely high 
values of km,n,p,q and k,,,,,“. Afterwards this approxi- 
mation has to be verified which is possible with the aid 
of the analytical solution of Olander (1960). In case 
that for the description of the phenomenon mass 
transfer accompanied by complex chemical reaction 
besides the eqs (3), (4), (5) and (6) also equilibrium 
equations are used (Cornelisse et al., 1980) boundary 
condition (11) must be used instead of condition (9). 

2.4. Film model 

For the film model the phenomenon mass transfer 
followed by a chemical reaction can be represented 
with the following set of equations: 

D am 
__ -ybR,=O 

b ax2 

D a2tc1 
c ax2 

+y,R,=O (34 

a2 CD1 
Dd--- 

&x2 
+y,,R,=O (34 

and the following boundary conditions: 

U2d 

at x=6: [A]=[A],,, [Bl=[&, 

[C] =[Cl,, CD1 = CDlo- (13) 
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For infinite reaction rate constants the boundary 
conditions (11) derived in Section 2.3 should be used. 

2.5. Enhancement factor 
The enhancement factor, E,, defined as the ratio of 

the mass flux of component A through the interface 
with chemical reaction and driving force ([Ali- [A],,) 
to the mass flux through the interface without chemi- 
cal reaction, but with the same driving force, can be 
obtained for both models from the calculated concen- 
tration profiles. The enhancement factor, E,, is defined 
by: 

-penetration model: 

k,UCKli-IAl,)= (A) j: -Da(d$)=, dt (14) 

-film model: 

k,Ea(CAli_CAl0)= --Da (151 
X=0 

However, these concentration profiles are calcu- 
lated with boundary conditions (9a) and (12a) for the 
penetration model and the film model respectively and 
therefore the value of the numerically calculated en- 
hancement factor, as defined above, has only a physi- 
cal meaning in those situations where the gas-phase 
mass transfer resistance can be neglected completely 

(i.e. [Al,. 0 = [Al,. iI* 

J. NUMERICAL TREATMENT 

3.1. Introduction 
In the film model the main goal of a numerical 

approach is to produce the concentration profiles as 
solution of a system of coupled non-linear ordinary 
differential equations with two point boundary con- 
ditions. From the concentration profiles obtained 
after solving this set ofequations the mass transfer rate 
(e.g. the enhancement factor) can be calculated easily. 
From the numerical point of view the film model can 
be regarded as a special case of the penetration model. 
Therefore the numerical technique used for solving 
these differential equations will not be discussed separ- 
ately. 

In the penetration (Higbie) model the concentration 
profiles are time-dependent: they develop as solution 
of a system of coupled non-linear parabolic partial 
differential equations subject to specified initial and 
two point boundary conditions. The approach used to 
solve these models is mainly based on the method 
presented by Cornelisse et al. (1980) however, some 
new numerical features are introduced in order to 
increase the accuracy and minimise the computational 
time. 

3.2. Discretization 
The discretization itself follows mainly the lines by 

Cornelisse et ~2. (1980). Therefore only a few ad- 
ditional remarks are presented. 

The distribution of spatial grid points in the x, r- 

plane can be manipulated by defining a (sufficiently 
differentiable) transformation function x = @(.z). In 
order to move the grid points towards the interface the 
derivative of Q near z= 0 should be small compared 
with elsewhere. So an uniform mesh size in z now 
automatically generates a higher concentration of grid 
points near the interface (see Fig. 2). 

The same can be done with respect to the time 
variable, t. Also here the grid spacing near the origin is 
refined, as the steepest time-derivatives occur for small 
t, being induced by the concentration jump between 
gas and liquid at the start of the contact period. 

An example for the spatial (place) transformation is: 

x=pz+(l -p)z4 (16) 

with parameter p between 0 and 1, controlling the grid 
deformation. For p= I the identity x = z is obtained 
and for lower p-values the grid deformation increases. 
[It should be avoided that p = 0, in order to retain the 
one-to-one correspondence between the derivatives 
(dc/dx) and (dc/dz) given by the formula (dc/dz) 
= (dc/dx) . (dx/dz).l 

For the time coordinate a quadratic trans- 
formation: 

t=wZ (17) 

is a suitable choice. A typical grid in the x, t-plane is 
depicted in Fig. 3 and from this figure it can be seen 
that near the interface (small x) and at the start (short t) 
the concentration of grid points is higher than else- 
where. Discretizing (partial) differential equations in a 
transformed coordinate system is somewhat more 
complicated then in the original variables because of 
the transformation derivatives that occur in the differ- 
ential operators. For instance, transforming the sec- 
ond x-derivative in terms of z, z being given by x 
= Q(z), leads to: 

x 

Fig. 2. Effect of transformation on the spatial variable. 

(18) 
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r 

Fig. 3. A typical grid in the x, t-plane. 

where @’ is the derivative of Q(z), which is known 
analytically. Now in a point zm( = mAz), on a grid with 
uniform mesh size AZ and subscript m indicating the 
place level, the discretization of eq. (18) becomes: 

CA1 =+I-CAL 
AZ 

For the time derivative a three-point backward dis- 
cretization is used (with superscript j indicating the 
time level) leading to: 

8 CA1 3[A]‘,“-4[A]j,,+[A]” 

at’ 2At 
(20) 

The finite difference form of the penetration (Higbie) 
model thus leads to relations between concentrations 
in five grid points, clustered as a “molecule” shown in 
Fig. 4. Only for j=O this molecule is impossible, 
because grid points with time index - 1 do not exist. 
Therefore in the first step a two-point backward 
discretization (Euler) is used leading to: 

(21) 

at the cost of a lower order truncation error in this 
time step. 

3.3. Special transformation 
In the present approach a special transformation of 

the independent variables has been introduced taken 
from the analytical solution of the well known one- 
dimensional diffusion problem: 

(22) 

t=O and x20 CA1 = CAlo (234 

t>O and x=0 CA1 = C4i Wb) 

t>O and x=a3 CA1 = [Alo. (23~) 

Fig. 4. Discretization scheme. 

The solution of eq. (22) is given by: 

CA1 - CAlo =erfc 
[Ali - C4o 

(24) 

Concentration profiles according to eq. (24) are shown 
in Fig. 5, illustrating the well known phenomenon of 
penetration depth. At any time, say t*, the significant 
behaviour of the concentration profile is restricted 
within an interval 0 <.x < x*, where x* is a function of 
t*. In view of eq. (24) this function between x* and t* is 
chosen usually as: 

x* = constant _,/4D,t* (25) 

with a value of the constant depending on what one is 
inclined to call “significant behaviour”. 

Now in numerical calculations it looks worthwhile 
to restrict the calculational domain to the interval 
given by the penetration depth, and to spend no grid 
points on the remaining part of the x-axis where 
almost nothing occurs. This adaptive grid point dis- 
tribution is most easily accomplished if a coordinate- 
transformation according to eq. (26) is employed: 

(26aI 

J t 7= S’ Wb) 

In Fig. 6 the effect of the transformation is illustrated 
starting with a uniform grid in r, r-space. For short 
contact times the spacing is very fine, leading to a high 
concentration of grid points and so to a high resol- 
ution near the spot where the sharpest gradients occur. 

Besides the above mentioned feature, several ad- 
ditional advantageous properties concerning the nu- 
merical treatment are introduced with the trans- 
formation of the independent variables as specified by 
eq. (26). Firstly, the semi-infinite x-domain is mapped 
in the r-domain on the finite interval [0, 11. Secondly, 
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Fig. 5. Concentration profile for the physical absorption for several contact times. 

in the r, z-domain the r-derivative of the concentration 
eq. (24) at the gas-liquid interface is bounded when T 
approaches the value zero whereas the x-derivative is 
unbounded for t=O: 

= [Ali. W’b) 

Finite domains and finite derivatives are highly desir- 
able if not necessary for reliable numerical results. 
When applying this transformation on the system of 

aC-4 
7-z 

a7 
- 2r%R, 

(284 

while the equations for the other components are 
affected with more complicated expressions, e.g. for 
component C: 

with: 
four co$led partial differential equations [eqs (3), (41, 
(5) and (6)], the maximum diffusion coefficient, D,, of 
the components involved should be taken in eq. (25) in and 
order to assure that this component will not run out of 
the picture. The equation for this component, say A, 

becomes: 

t(r) =inverse erf {r} 

&= ;. 
m 

(291 

(30) 

t t 

0 1 0 
r x 

Fig. 6. Effect uf transformation according to eq. (26) on the spatial and time variable. 
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The boundary conditions (8) are now located at I = 1: 

r>O, r=l: [_4]=[A10, [B]=[B],, 

ccl=ccl,~ c~l=c% (31) 

and the boundary condition (9) at the interface be- 
comes: 

- CAL. A Wa) 

Wb) 

It is interesting to note that this transformation has 
given the physical phenomena a chronological order. 
Under the assumption that R, and all the derivatives 
of concentrations with respect to z and r are bounded, 
the terms in eq. (28) can be distinguished by the powers 
of r. 

The diffusion operator is independent of 7 and for 
z=O it is the only term present in the differential 
equation. Then for T > 0 the accumulation term, which 
is linear in 7, becomes important because it has to take 
into account the incoming flux generated by the 
boundary condition (32a), which by itself is coming up 
also linearly in t. This is the phenomenon of purely 
physical absorption. 

Finally, with increasing 7, the reaction term be- 
comes effective, it acts on the concentration profiles 
built up by the physical absorption and is trying to 
turn them back to equilibrium values, which exist 
already at the boundary r= 1 [see eq. (31)]. So, in fact, 
after the physical absorption, coming in from the 
gas-liquid interface (r =O), the reaction term is a kind 
of response from the liquid bulk. Being quadratic in T 
this effect will predominate in the end, pressing the 
concentration profiles back to the left and filling up 
the whole interval with the equilibrium values. 

So for t--r cc this coordinate system {I, 7} may 
become inadequate, but it is advantageous in the 
beginning, when the most rapid changes occur, due to 
the sudden onset of the interface condition (9a). Es- 
pecially the Newton-Raphson linearization of the 
non-linear reaction term, eq. (2), using estimates of a 
previous time level may be awkward just because of 
the large changes from one time level to another. In 
this new coordinate system, however, the onset of the 
interface conditions is not abrupt but gradual, starting 
from zero and rising linearly in 7, so in the interior all 
the differences will be gradual. Accordingly the esti- 
mates in the linearization of the reaction term will be 
much more accurate. Besides, the reaction term itself is 
small, of order ?. 

3.4. Remarks on the initial condition 
The boundary conditions for the r, r-description are 

easily transferred from the original problem, the inter- 
face (x = 0) coincides with r = 0 and the bulk (x = to) 
with r= 1. 

The initial conditions, however, require special at- 
tention because of the topological consequences of the 
transformation. In view of eq. (26) the initial line (t =0 
and x > 0) is mapped upon one point r = 0, r = 1, so the 
initial condition (7) in the X, t-plane is moved to that 
one point: 

t=O, r=l: [A]=[A],, [BJ=[B&,, 

Ccl = CCL,, CD1 = CDlo- (33) 

In the meanwhile the origin in the X, r-plane seems to 
be stretched upon the whole interval z =0, O<rt 1, 
and it is not obvious beforehand what kind of initial 
condition is originating from this point. 

The answer to this question is a differential problem 
itself, consisting of ordinary differential equations 
along the r-axis, together with two point boundary 
conditions. It is the differential problem that turns up 
when the limit 7 -+O is taken in the partial differential 
problem [eq. (28)]. In the differential equations only 
the diffusion operators mentioned earlier are retained 
[see eq. (28)]: 

(3kd) 

and 

x ((c(r))’ y)]=O (34b) 

and also for the components 5 and D. The boundary 
conditions at r =0 follow from eq. (32) for 7 + 0: 

t=O, r=O: ($),=,= r+),=,= (F)rC, 

a CD1 = (4 ar (35) 
r=Cl 

whiie the boundary conditions at r= 1 where already 
given by eq. (3 I), which again is the limit of eq. (33) for 
r + 0. The solution of the differential problem eqs (33), 
(34) and (35) is: 

z=O,Otr< 1: LA1 = II&~ CSI = [No, CC1 = Ccl, 
and [D] = [DJe (36) 

and therefore this is the initial condition in the r, 
z-plane. 

In this case the r, z-initial condition eq. (36) is quite 
similar to the x, r-initial-condition eq. (7). However, 
this section is meant to warn the reader not to copy it 
from eq. (7) but to realise the consequences of the 
transformation. In fact the model problem [eqs (22) 
and (23)] is a non-trivia1 example. In the r, z-plane the 
formulation is: 

(374 

r>O and r=O: [A]=[A]i 

7>0 and r=l: [A]=[A],, 

(37b) 

(374 
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while the initial condition is found from the ordinary 
differential problem: 

d2iIAl =. 
ar2 

r=O: [A] = [AJ 

r=l: [A]=[A-jo. 

The solution of this differential problem is: 

z=O, O<r< 1: [A]= [A];-( [A];-[A&,)*r (37d) 

This initial condition is clearly quite different from eq. 
(23a). [In this case the expression (376) satisfies eq. 
(37a) and so it is identical with the solution of the 
partial differential problem (37), given by eq. (24).] 

4. APPROXIMATE SOLUTIONS 

4.1. DeCoursey approach 

DeCoursey (1982) derived an approximate analyti- 
cal solution for the set of eqs (3), (4), (5) and (6) with 
initial and boundary conditions (7), (8) and (9). He 
obtained this solution by changing the instantaneous 
concentrations to time mean concentrations accord- 
ing to the Danckwerts’ surface renewal model by 
taking “s-multiplied” Laplace transforms. In order to 
obtain an integrable set linear differential equations 
with constant coefficients he made the following as- 
sumptions: 

--the diffusivities of all species are equal, 
--the equilibrium at any point can be expressed by 

CM, = cc1 CW(KE~l)~ 
-[B] is equal to [Rli near the interface according 

to van Krevelen and Hoftijzer (19481, 
-the reaction rate can be described with R,=K, 

( CA1 - CAlI3 1 +_I; (XL 
--the reaction rate at x = 00 can be expressed by R, 

=k2[B],([A]-[A]__)=0 and at x=0 by R, 

=kzCBli(CAI- CAL). 

At t > 0 and x = cu the concentrations of A, 5, C and 
D are in equilibrium according to: 

4.3. Hikita approach 
The enhancement factor can be calculated accord- Hikita et 01. (1982) presented an approximate sol- 

mg to DeCoursey’s set of eqs (33), (34) and (35). ution for the penetration model and for the reaction: 
This approximate solution was checked in that 

work for three limit situations, K= ~‘a and [A],,=O, 

R, = co, and M * 0, and the agreement with the ana- 
lytical solutions was extremely good. 

A+B%C+D 

according to the set of eqs (3). (4), (5) and (6) with initial 
and boundary conditions (7), (8) and (9). The following 
assumptions have been made: 

4.2. Onda approach 

Onda et al. (1970, 1972) presented approximate 
solutions for both film model and penetration model. 
For the film model the set of eqs (3a), f3b), (3~) and (3d) 
were solved with boundary conditions (12) and (13) 
and for the penetration model the set of eqs (3), (4), (5) 
and (6) with initial and boundary conditions (7), (8) 
and (9). In order to obtain an analytical solution for 

--the concentrations of the species 5, C and Din the 
liquid near the gas-liquid interface were assumed 
to be constant and equal to their interfacial 
concentrations and independent of the exposure 
time of the liquid to the gas (Hikita and Asai, 
1963), 

-the chemical equilibrium has been established 

this set of equation, he linearized the reaction rate 
expressions according to the method proposed by 
Hikita and Asai (1963) leading to: 

[Z?]=[Bli for O<.x<6 

The enhancement factor can be calculated with his 
eqs (9), (1 I), (12), (21) and (22) but it should be noted 
that for the trial and error method the enhancement 
factor, E,, should be taken as iteration parameter 
instead ofe,, as was proposed originally by the author, 
in order to obtain a stable solution method over a 
wide range of conditions. However, the enhancement 
factor calculated in this way is not comparable with 
the enhancement factor defined according to eq. (14) 
or (15) and the enhancement factor calculated accord- 
ing to the Onda approximation should be multiplied 
with [A$/( [Ali- [A],,). The approximate solution of 
the penetration model has the additional restriction 
that the diffusivity of all species must have the same 
value. 

It should be noted also that Onda treated the 
reaction products E and F in a different way in the 
linearization step which led to his somewhat strange 
eq. (19) in which the expression for the equilibrium 
constant is a function of the reaction orders m and p. 
Furthermore, the reaction rate expression, R,, should 
be zero at x=6 indicating that in the liquid bulk the 
equilibrium composition is maintained. For the lin- 
earized rate expression used by Onda, R, can have 
values different from zero at x= 6 and only for the very 
special case that [Alo= [E&=0 is this condition 
always fulfilled. 

The approximate solutions has deen compared in 
that work with numerical solutions; however, this has 
been restricted to situations with [A],=0 and low 
values of E,. 
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according to: reaction and “infinite” reaction rate constant, k,: 

K=k,lk-,=(CcloCulo)/(CAloCBlo)- 
The enhancement factor can be estimated with their 
implicit eq. (11) for the situation that [A]e= [Cl0 
=[D]e=O. This latter condition implies that this 
approximation can be applied only to situations 
where the conversion of the reactants is very low. 

Hikita’s approximate solution was well in line with 
the numerical solution obtained by Secor and Beutler 
(1967) the maximum deviation being about 6%. 

AtB)-+ACU 

A(I)+ZB(++P(I) with &=L,[A] [B]. 

As an illustration of the performance the calculated 
enhancement factors are presented in Table 1. 

5. RESULTS 

5.1. Numerical results 
In order to check the influence of the analytical 

transformation according to eq. (26). runs of the 
numerical solution method with and without trans- 
formation (26) respectively have been carried out on 
three examples. Both numerical solutions are also 
compared with the analytical solutions for the same 
three runs to check the validity of the numerical 
method used and to investigate the accuracy of the 
solutions. The two numerical methods applied are: 

(A) transformations (16) and (17): 

From Table 1 it can be concluded that with the 
implementation of an additional transformation ac- 
cording to eq. (26) the accuracy of the numerical 
solutions can be improved drastically, even at a small 
number of grid points. Especially for highly reactive 
gas-liquid systems (e.g. example 3) transformation (26) 
is an extremely powerful method to minimise the 
computational time necessary to calculate the mass 
transfer rate and the enhancement factor. For example 
3, the decrease of the required computational time due 
to the new method is roughly about a factor 9, for 
equal accuracy of the calculated enhancement factor, 
as it can be derived from Table 1. 

The differences between analytical and numerical 
solutions are very small (see Table 1) and therefore 
with the numerical technique applied in the present 
study it is possible to calculate the mass transfer rate 
for the phenomenon mass transfer accompanied by 
reversible chemical reactions. 

-fix the bulk values on a finite z, far enough to be of 
no influence on the results 

-number of w-steps (time grid) equal to the number 
of z-steps (spatial grid) equal to N 

-take p=O.Ol, eq. (16). 

(B) transformation (26), followed by trans- 
formations (16) and (17):. 

-take equal number of w-steps and z-steps (= N), 
-take p=O.Ol. 

The examples are: 
(I) physical absorption: A(g)+A(1), 
(2) absorption and first order irreversible chemical 

reaction: 

A(g)-+A(l) 

A(I)+B(I) with R,=kl[A] 

(3) absorption and bimolecular irreversible chemical 

The boundary condition defined by eq. (9) is not 
valid for those situations where the reaction can be 
regarded as an equilibrium reaction with infinite 
reaction rate constants, indicating that equilibrium is 
maintained at all places in the liquid, and so the 
numerical model used, strictly spoken, cannot be 
applied for this type of reactions. However, in order to 
check the applicability of the model, the equilibrium 
reactions are approximated by means of extremely 
high reaction rate constants and this approximation is 
verified by means of a comparison with the analytical 
solution presented by Secor and Beutler (1967) for the 
film model. In Table 2 the results are presented of this 
comparison for a reaction [see eq. (l)] with all 
stoichiometric coefficients equal to one (y, = yb = y, = yd 
= I) and both forward and reverse reaction overall 
second order respectively. From Table 2 it can be 

concluded that for equilibrium reactions the mass 
transfer rate (and the enhancement factor) can be 
calculated with satisfactory accuracy with the ap- 
proximation applied. 

The influence of the reversibility of the reaction on 

Table 1. Comparison of numerical solutions with analytical solutions 

Example I Example 2 Example 3 
N A B A 3 A B 

20 0.9906 1.0075 101.078 100.675 636.14 141.85 
40 0.9927 1.0013 101.203 100.096 152.81 142.58 
60 0.9948 I .ooo5 100.082 100.033 141.95 142.80 
80 0.9960 10003 100.044 1cKTot7 140.99 142.82 

Exact value of 1.0000 100.004 142.82 
analytical solution 
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Table 2. Comparison of numerical solutions with analytical solutions for 
“infinite” reaction rate constants 

K,=W3 K,=llP K,= 103 
a E ““In E P” E ll”rn E an E ““In E a” 

10-S 1.264 I.264 10.42 10.41 92.54 92.51 
10-Z 1.170 1.170 9.61 9.60 91.64 91.61 
10-l 1.078 1.078 5.44 5.64 82.73 82.70 
0.50 1.040 1.039 2.52 2.52 44.86 44.84 
0.80 1.032 1.032 2.01 2.01 18.35 18.34 
0.99 1.029 1.029 1.83 1.83 4.02 4.00 

Physical constants: D.=D,=D,=D,=l x 10-9mZs-‘. He=lmol 
molt I. 
Concentrations: [I?],= 1000 mol rne3. [A],= 10 mol mm3. 

10-l 10' lo2 10" lo4 IO' '06 

K 

Fig. 7. Enhancement factor as function of the equilibrium constant, K, for various solute loadings. The 
dashed line represents the conditions where no net mass transfer occurs, under this line desorption prevails. 

the enhancement factor is demonstrated in the Figs 7 
and 8 for k Sh co. In Fig. 7 the enhancement factors 
according to the film model, the results for the pen- 
etration model are similar, are presented as a function 
of the chemical equilibrium constant for several 
solute loadings for the reaction: 

A+B+C+D 

with “infinite” reaction rate constants and reaction 
rate equation: 

For high valuesof K( =k,, I,o,o/k,,,, 1, 1) this situation 
is identical to absorption followed by an instanta- 
neous irreversible reaction with respect to mass trans- 
fer and the enhancement factor, E,, can be calculated 
for this particular reaction with the analytically de- 
rived expression for this regime: 

E,=l+ D,EBI,. 
DoCAl, 

(39) 

From Fig. 7 it can be concluded that the enhancement 
factor increases with the equilibrium constant because 
the reverse reaction rate constant decreases and there- 
fore the effect of the reverse reaction. However, with 
increasing solute loadings the enhancement factor 
shows a maximum and decreases for higher values of 
the equilibrium constant. For these conditions, high 
solute loading and high equilibrium constant, the bulk 
concentration of B further decreases for higher equi- 
librium constants. After the equilibrium composition 
of the liquid remains constant the enhancement factor 
can be calculated with eq. (39). In Fig. 7 two regimes 
are shown, the dashed area represents the conditions 
where desorption prevails and the area above the 
absorption regime. At the boundary of the two areas 
no net mass transfer occurs. A similar plot was 
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Fig. 8. Enhancement factor as function of the Ha-number for various equilibrium constants. 

produced by Cornelisse et al. (1980) for the penetra- 
tion model but due to the lower solvent loadings used 
in their calculations no optimum in the enhancement 
factor was found. 

In Fig. 8 the enhancement factors according to the 
penetration model, the results according to the film 
model are similar, are presented as function of the Ha- 
number for several equilibrium constants and a rela- 
tiveIy low solute loading, a= 10w3, for the same reac- 
tion as mentioned above. In Fig. 8 can be seen that the 
reversibility also has a pronounced effect on the 
enhancement factor for reactions with finite reactton 
rate constants. It should be noted that the deviation 
from the line E,= Ha, indicating that diffusion limit- 
ation of component B occurs, is starting at lower 
Hatta-numbers with decreasing equilibrium constant. 
This effect is extremely important for the determin- 
ation of the reaction kinetics of reactions with small 
equilibrium constants by means of absorption exper- 
iments and the assumption of pseudo first order 
reaction conditions (see Danckwerts, 1970), because it 
is certainly possible that this latter assumption is not 
fulfilled, even for low solute loadings, although the 
Hatta-number is greater than 2 and much smaller than 
E rr,m calculated according to eq. (39). Therefore the 
influence of reversibility on the mass transfer rates 
should always be studied if the kinetics of a reaction 
are to be determined by means of absorption measure- 
ments in order to avoid erroneous results. 

5.2. DeCoursey approach 
The DeCoursey approximate solution was checked 

with the numerical solution of the Higbie penetration 
theory although this approximate solution was de- 
rived for the surface renewal theory. The difference 
between both theoretical models e.g. for a first order 
irreversible reaction is always less than 2%. The 

reaction considered was: 

A+B*C+D 

with reaction rate equation: 

R,=k 1,1,o,oCAlCBl--k,,,,,,CCICDl 
and the conditions used for the comparison with the 
present numerical solutions are summarized in Table 
3. The deviation with the numerical solutions is always 
less than 10%. 

With the DeCoursey approximation the en- 
hancement factor can be calculated accurately for the 
surface renewal model over a wide range of process 
conditions. However, the condition that the dif- 
fusivities of all species considered must have equal 
values is a substantial restriction for the applicability 
of this approximation. Nevertheless, the linearization 
of the reaction equation developed by DeCoursey 
seems to be a good alternative for the method of 
Hikita and Asai (1963). 

5.3. Onda approach 
The approximate solutions of Onda were checked 

with the present numerical solutions for four different 
reaction types (film model) and three types (penetra- 
tion theory) respectively as is summarized in Table 4, 
and Table 5 gives the process conditions studied. 

Table 3. Conditions for the comparison of the 
DeCoursey approximation 

Diffusivity (all species) 
CBI, 
CAli 
Equilibrium constant 
Solute loading 
Hti-number 

10d9 m* s-l 
1000molm~3 
10molm-3 
10-3<K<104 
10-3~a<0.999 
O.lO<Ha< 106 
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Table 4. Reaction types for the comparison of the Onda approximation with the corresponding 
numerical solutions 

Film model 
Type 1 Att2E 

Type 2 A+B++CfD 

Type 3 A+2BeC+D 

Type 4 A+2Bw2C+D 

Penetration model 

Type 1 A+B++CfD 

Type 2 A+ZBwC+D 
Type 3 A+2B-2C+D 

R,=kl[A]--k,[EJZ mOlm~‘s~* 

Ra = k, CA1 CBI -k~Ccl CD1 molm-3s-’ 

R, = k, CA1 CBI’ -k- 1 Ccl CD1 molm-3s-’ 

R,=k,CAlCBlZ-~~CC12CDl molm-3s-’ 

R,=k,CAlCBl-&CCICDl mol me3 5-l 
R,=k,C~lC~12-~-~C~lC~l mol m-3 s-’ 
R,=k,[A][B]2-k_3[C]Z[D] mol m-3s-1 

Table 5. Conditions for the comparison of the 
Onda approximation 

Diffusivity (all species) lO-9 m’s11 

CBI, IOOOmol mM3 

[Al, 10molm~3 
Equilibrium constant 10-3SK$lo4 
Ha-number O.lO<Ha< IO6 

Solute loading 
F11m model: type 1 10~3~cc~o.999 

type 2 10~3Ga<0.999 

type 3 10~3<ai0.499 

type 4 lo-3GZG0.499 

Penetration model: 

tyl-Je 1 lO-~<a<0.999 

type 2 lo-3<a<0.499 

type 3 lo-“GLzG0.499 

From the comparison of reaction types I, 2 and 3 for 
the film model it could be concluded that the maxi- 
mum deviation from the numerical model is always 
less than 2%. However, for reaction type 4 the Onda 
approxlmatlon is not able to obtain realistic values for 
the enhancement factor (i.e. > 1) in case the reverse 
reaction can not be neglected (i.e. solute loadings 
which substantially differ from zero and/or low equi- 
librium constants). This is a remarkable result and 
may be caused by the linearization of the reaction term 
by Onda where the two reaction products are treated 
in a different way (and led to the somewhat strange 
expression for the equilibrium constant, Onda’s rela- 
tion (19) (Onda ef al., 1970)). This may result in an 
overestimation of the reverse reaction and can lead to 
a net reverse reaction according to Onda’s reaction 
rate eq. (13) (Onda ei crl., 1970) although in view of the 
equilibrium a net forward reaction should occur or an 
overall reaction rate equal to zero. Therefore the Onda 

approximation for the film mode1 can only be applied 
satisfactorily if the values for m and t are the same and 
if p = q = r = s = 0 in the reaction rate expression [eq. 
(2)]. In case only one product is formed, e.g. reaction 
type I, this approximation can be applied satisfac- 
torily without the restriction that m=t. 

For the penetration theory approximation the same 
conclusions are relevant and the maximum deviation 
for both reaction types 1 and 2 is always less than 7%. 
it should be noted that this approximation can only be 
used in case all the diffusivities are the same which 
restricts its applicability. 

From the comparison of the outcome of the calcu- 
lations for the Onda approach with the numerical 
solutions it can be concluded that the linearization of 
the reaction term according to Hikita and Asai (1963) 
cannot be applied uniformly to reversible reactions 
and that Onda’s eq. (13) (Onda et al., 1970) is not able 
to describe correctly all possible types of reactions due 
to the fact that the products were treated in different 
ways in the linearization of the reaction rate ex- 
pression. 

5.4. Hikita approach 

This approximation was studied for reaction type 1 
only (see Table 4, penetration theory) and the process 
conditions are summarized in Table 6. The maximum 
deviation with numerical solutions was always less 
than 6%. Although the diffusivities of the various 
components need not to be equal as in the Onda and 
DeCoursey approach, the applicability is severely 
restricted because the solute loading should be virtu- 
ally zero. Moreover, as the same linearization tech- 
nique as Onda et al. (1970) was used it is likely that an 
extension of this approach to solute loadings different 
from zero will not lead to a more general applicable 
approximation. 

Table 6 Conditions for the comparison of the Hikita 
approximation 

Diffusivlty component A tO-ym*s-1<D,<2x 10m9m2s- 
Diffusivity other components 10-9m’s-’ 
CSI, 1000 mol md3 
CAli 10 mol mm3 
Equilibrium constant 10-3<K< 104 
Ha-number 0.10<Ha<106 
Solute loading ‘x1 10-3 
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5.5. Experimental verification 

5.5.1. Introduction. The numerical models developed 
in the present study have been experimentally tested 
by means of the absorption of CO, or H,S into 
various aqueous alkanolamine solutions. Commercial 
grade amines of 98+ % purity were used (Versteeg and 
van Swaaij, 1988b). The experiments were carried out 
at 298 K in a stirred vessel similar to the one used by 
Blauwhoff and van Swaaij (1985) under conditions 
that the gas-liquid interface appeared to the eye 
to be completely smooth and therefore was well 
defined. The absorption rates were determined for 
several gas-phase and liquid-phase mass transfer coef- 
ficients as a function of the gas-phase concen- 
tration (0.40 mol m- ’ <gas-phase concentration 
G41.0 mol mm 3). Tn this way it was possible to study 
several kinetics regimes (e.g. slow reaction, fast reac- 
tion, instantaneous reaction and the intermediate 
regimes). Before the experiments could be simulated 
several assumptions had to be made in order to obtain 
enough information on the parameters which were 
necessary for the calculations. 

The solubility of both CO, and H,S were obtained 
by means of the CO,-N,O analogy (Laddha et al., 
1981) and for alkanolamines these solubilities were 
summarized by Versteeg and van Swaaij (1988a). A 
similar analogy was applied for the estimation of the 
diffusivity of the reactive solutes, and the actual value 
of both the diffusivity of the solute and the compo- 
nents already present in the liquid were calculated 
with a modified Stokes-Einstein relation (Versteeg 
and van Swaaij, 1988a). For the ionic products, the 
diffusivity has been given the same value in order to 
assure overall electroneutrality in the liquid and the 
values were taken equal to the component with the 
lowest diffusion coefficient. 

Gas-phase and liquid-phase mass transfer coefiic- 
ients of the stirred vessel were measured by means of 
physical absorption of high purity N,O into the 
solution for k,, and by the absorption of very diluted 
H,S into the amine solution under conditions such 
that the mass transfer was gas phase controlled (see 
Danckwerts, 1970) for k,, respectively. For the simu- 
lation the penetration theory has been applied be- 
cause, according to Versteeg et al. (1987), for the 
experimental conditions used here this is the most 
realistic model. 

The forward reaction between H,S and the various 
alkanolamines was regarded as instantaneous with 
respect to mass transfer and has been approximated 
by very high (> 1O8) reaction rate constants with y,, 
=~,,=~~=y~=l, m=n=t=~=l and p=q=r=s=O. 
The reaction rate constant for the reverse reaction was 
estimated by the assumption that at equilibrium for- 
ward and reverse reaction rates are equal, leading to: 

k m,n,p.q K= ~ 
k 

(40) 
I, S. t , P 

The forward reaction rate expression of CO, with the 
various alkanolamines is rather complex (Blauwhoff et 
al., 1984) and therefore approximated by eq. (2). This 

approximation was allowed because the deviation of 
the approximate rate expression from the actual ex- 
pression could be neglected for small variations of the 
amine concentrations, i.e. low solute loadings. The 
reverse reaction rate was calculated, similar as for 
H,S, according to eq. (40). The reaction constant of 
eonoethanolamine (MEA) ([MEA] =450 
mol m _ j) was calculated according to Hikita et al. 
(1977) with yo=yc=yd=l, yb=2, m=n=t=u=l, s= 
- 1 and p = 9 = r = 0 and for &thanolamine (DEA) 
([DEA] = 2000 mol rnm3) according to Blauwhoff et 
al. (1984), however, his results were reevaluated with 
improved data on the physical constants (Versteeg et 
al., 1987),withy,=y,=y,=1,yh=2,m=n=t=o=l,s 
= -1 and p=q=r=O. 

For the calculation of the equilibrium composition 
of the liquid the reader is referred to Blauwhoff and 
van Swaaij (1980). 

5.5.2. DEA-H,O. The kinetic regimes studied were 
instantaneous reaction (for H,S) and fast reaction 
changing to instantaneous (for CO,). In Fig. 9 the 
measured absorption rates for two liquid-phase mass 
transfer coefficients, as a function of the gas-phase 
concentration, arc presented together with the calcu- 
lated rates for the absorption of H,S. From this figure 
it can be concluded that the model predicts the 
absorption rates of H,S reasonably well. In Fig. 10 the 
measured rates are compared with the calculated rates 
and besides the H,S rates also the absorption rates for 
CO, are presented. The model is able to predict all 
absorption rates with a maximum deviation of 20%. 
However, for high experimental absorption rates a 
shift to somewhat higher experimental rates in com- 
parison to the rates calculated was observed. For both 

Fig. 9. Absorption rate of H,S as a function of the gas-phase 
concentration in an aqueous DEA solution at 298 K. 
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oCO,,k,~063x10‘~ ms' 

o !I$, k,=O 63 x IV5 m-s-' 

r~ H$, k,=092 ~1O~~rn.i' 

I I I 
5 1o'4 10-3 1P 

J.,, 
mole - 
m’s 

Fig. 10. Comparison between measured and calculated absorption rates of H,S and CO, in an aqueous 
bEA solution at 298 K. 

the absorption of H,S and CO, this increase is more 
pronounced for the instantaneous reaction regime and 
in this regime the reaction products are formed near 
the gas-liquid interface As the products arc ionic 
interfacial turbulence may occur and possibly the 
mass transfer rate was increased at this extreme con- 
dition by Marangoni effects. 

5.53. MEAPH,O. For this system the instan- 
taneous reaction regime was studied for H,S. For CO, 
the absorption also occurred in the instantaneous 
reaction regime as can be calculated from the exper- 
imental conditions and the physico-chemical con- 
stants. However, it should be noted that the difference 
in reaction rates between both components is sub- 
stantial. In Fig. 11 the results of the comparison are 
presented and for this system the measured absorption 
rates can be predicted with the model with a maximum 
deviation of 40%. 

For this system also an increasing deviation be- 
tween the measured and calculated rates was observed 
for higher absorption rates. These deviations were 
much larger than for the system DEA-H,O which may 
be attributed to the lower amine concentration and 
therefore to a relative higher increase of the concen- 
tration of ionic products near the gas-liquid interface. 

55.4. Conclusions on the comparison with the 
experiments. Overall a good agreement is found over 
an extreme wide variation of the experimental con- 
ditions. The deviations between the experimental and 
the calculated rates may be induced by three effects: 

-Uncertainties in the physical constants necessary 
for the numerical calculation of the rates, espec- 
ially the determination of the diffusion coeffic- 
ients may lead to a deviation of the calculated 
absorption rate of about 10%. 

-The accuracy of the experimental method applied 
is about 10% which is due to low conversions of 
gas-phase concentration needed for the calcu- 
lation of the absorption rates. 

~ lo-' 
1 / 

o CO,,k,= 0 81 x10.' m 2' 

D CO,k,= 143x105m 8.’ 

Fig. 11. Comparison between measured and calculated 
absorption rates of H,S and CO, in an aqueous MEA 

solution at 298 K. 
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-Marangoni effects at high absorption rates in- 
duced by high concentrations of ionic reaction 
products near the gas-liquid interface especially 
for the instantaneous reaction regime. 

6. CONCLUSIONS 

The absorption rates for the phenomenon mass 
transfer accompanied by a complex reversible reaction 
can be calculated over wide range of conditions with 
the numerical solution method presented in this study. 
From comparison of the numerical results with ana- 
lytical asymptotic solutions it was concluded that the 
deviations could be neglected. Due to an additional 
transformation it was possible to improve the accu- 
racy and minimise the computational time drastically. 
For reactions with “infinite” reaction rate constants it 
is possible to calculate the mass transfer rates with the 
present model in combination with the approximation 
of extremely high rate constants without a significant 
loss of accuracy. 

The application of relations for the description of 
mass transfer accompanied by a chemical reaction 
derived for irreversible reactions cannot be applied to 
reversible systems. Even for systems with extremely 
low solute loadings the reversibility may have a sub- 
stantial effect on the outcome of the calculations. 

The approximate solutions for the phenomenon 
mass transfer followed by a chemical reaction pre- 
sented in literature can be used to calculate the 
absorption rates for some specific situations but none 
of them can be applied generally and therefore are of 
restricted use. The linearization of the reaction term 
according to Hikita and Asai (1963) for reversible 
reactions as used by Onda et al. (1970) can lead to 
erroneous results and should always be used with care. 
Before the approximation can be applied it is necess- 
ary to check the approximation with the aid of a 
numerical solution. It seems interesting to develop an 
approximate solution for the film model according to 
the linearization technique presented by DeCoursey 
( 1982). 

Experimentally measured absorption rates in a 

stirred vessel with a flat interface of H,S or CO, in 
various aqueous alkanolamine solutions can be pre- 
dicted fairly well with the numerically solved mass 
transfer model over a wide range of process con- 
ditions. However, for high absorption rates a sub- 
stantial higher molar flux was measured than the 
calculated absorption rates which may be due to the 
occurrance of Marangoni effects, specifically for situ- 
ations with relative high concentrations of ionic pro- 
ducts near the gas-liquid interface. 
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NOTATION 

component A 

component B 

component C 
component D 

diffusivity, mr s-l 
ratio of diffusivities defined by eq. (30), 1 
component E 
enhancement factor defined by eq. (14) or 
(1% 1 
infinite enhancement factor defined by 
cq. (39), 1 
component F 
function defined by DeCoursey (1982) 
gas phase 
Hatta-number defined 

(k m.n.p,PCAlm- ‘C~1”CClpC~14~,~o~SIkl~ y’ 
dimensionless solubility defined as 
CA1 I /[Al,> 1 
molar flux, mol m-* s-l 

discrete time index 
equilibrium constant, mol~-‘~-‘~+‘~+C’d’ 
mm3(-% --Th+rc+r‘il 

gas-phase mass transfer coefficient, m s-l 
liquid-phase mass transfer coefficient, 
ms-’ 
reaction rate constant, m3(m+n+p+q-1) 
mol-(m+n+p+q-r) s- 1 or m3v+s+t+Y-l) 

mo,-“+S+‘+“~‘) s- I 

constant used by DeCoursey (1982) 
liquid phase 
Hatta-number defined by DeCoursey 
(1982), 1 
reaction order, 1 
discrete space index 
number of grid points 
reaction order, 1 
transformation parameter defined by 
eq. (16) 
reaction order, 1 
reaction order, 1 
reaction rate, mol m 3 s - l 
place variable after transformation de- 

fined by eq. (26a), 1 
reaction order, 1 
reaction order I 
time variable, s 
reaction order, 1 
reaction order, 1 
transformed time variable, so.5 
grid distance for time variable 
dimensionless place variable, 1 
transformed place variable, 1 

grid distance for place variable. 
liquid-phase concentration, mol m 3 

m 

Greek letters 
u solute loading defined by [A],/[Bll, 1 
6 film thickness according to the film mo- 

del, m 
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contact time according to the penetration 
model, s 
time variable after transformation de- 
fined by eq. (26b), 1 
function defined by eq. (29) 
transformation function of place variable 

Subscripts 

a component A 
an analytical solution 
b component B 

butk concentration at bulk conditions 

: 
component C 
component D 

e equilibrium 

4 gas phase 
i interface or species i 
m maximum value 
m number indication of place step in dis- 

cretization scheme 

num numerical solution 

0 equilibrium composition 

t total 

Superscripts 

derivative of function 
0 initial value 

1 first value 

j number indication of time step in dis- 
cretization scheme 
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