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Abstract
Free-electron lasers (FELs) have been built ranging inwavelength from long-wavelength oscillators
using partial wave guiding through ultraviolet through hard x-ray that are either seeded or start from
noise. In addition, FELs that produce different polarizations of the output radiation ranging from
linear through elliptic to circular polarization are currently under study. In this paper, we develop a
three-dimensional, time-dependent formulation that is capable ofmodeling this large variety of FEL
configurations including different polarizations.We employ amodal expansion for the opticalfield,
i.e., a Gaussian expansionwith variable polarization for free-space propagation. This formulation uses
the full Newton–Lorentz force equations to track the particles through the optical andmagnetostatic
fields. As a result, arbitrary three-dimensional representations for different undulator configurations
are implemented, including planar, helical, and elliptical undulators. In particular, we present an
analyticmodel of anAPPLE-II undulator to treat arbitrary elliptical polarizations, which is used to
treat general elliptical polarizations. Tomodel oscillator configurations, and allowpropagation of the
opticalfield outside the undulator and interact with optical elements, we link the FEL simulationwith
the optical propagation codeOPC.We present simulations using the APPLE-II undulatormodel to
produce elliptically polarized output radiation, and present a detailed comparisonwith recent
experiments using a tapered undulator configuration at the LinacCoherent Light Source. Validation
of the nonlinear formation is also shownby comparisonwith experimental results obtained in the
Sorgente Pulsata Auto-amplificata di Radiazione Coerente SASE FEL experiment at ENEAFrascati, a
seeded tapered amplifier experiment at BrookhavenNational Laboratory, and the 10 kWupgrade
oscillator experiment at the Thomas JeffersonNational Accelerator Facility.

1. Introduction

While free-electron lasers (FELs)have been intensively studied since the 1970s, new developments and concepts
keep thefield fresh. Intensive work is ongoing into new FEL-based light sources that probe ever shorter
wavelengths with a variety of configurations. There presently exists a large variety of FELs ranging from long-
wavelength oscillators using partial wave guiding to ultraviolet and hard x-ray FELs that are either seeded or
starting fromnoise (i.e., self-amplified spontaneous emission (SASE)). As these new light sources come on-line,
interest will grow in shorter pulses, new spectral ranges and higher photonfluxes. In addition, interest is growing
in producing photonswith a variety of polarizations ranging from linear, through elliptical, to circular. Indeed,
novel configurations have been described for producing variable polarizations in synchrotron light sources and
FELs using a variety of different undulator designs including APPLE-II andDelta-type undulators [1–7].

In this paper, we develop a three-dimensional, time-dependent nonlinear formulation of the interaction that
is capable ofmodeling such a large variety of FELs, in particular this represents the first presentation of a three-
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dimensional simulation of elliptically polarized radiation from a FEL. Particle dynamics are treated using the full
Newton–Lorentz force equations to track the particles through the optical andmagnetostatic fields. The optical
field is described by a superposition ofGaussianmodes, and the formulation tracks the particles and fields as
they propagate along the undulator line from the start-up through the (linear) exponential growth regime and
into the nonlinear post-saturation state. The formulation includes three-dimensional descriptions of linearly
polarized, helically polarized, and elliptically polarized undulators including the fringingfields associatedwith
the entry/exit transition regions. Additionalmagnetostatic fieldmodels for quadrupoles and dipoles are also
included. For convenience, we refer to the formulation and simulation code asMINERVA. It is important to
remark that the use of the full Newton–Lorentz orbit analysis allowsMINERVA to treat self-consistently both
the entry/exit taper regions of undulators, and the generation of harmonics of the fundamental resonance.

In order to apply the formulation to the simulation of FEL oscillators, an interface has beenwritten between
MINERVA and the optical propagation codeOPC [8, 9]. Oscillator simulations proceed by tracking the output
optical pulse from the undulator as simulated byMINERVA, through the resonator and back to the undulator
entrance usingOPC, after which the optical field is then imported intoMINERVA for another pass through the
undulator. This process is repeated for asmany passes through the undulator and resonator as required for the
oscillator to achieve a steady-state.

An importantmotivation in this development is the ability to describe the interaction in arbitrarily polarized
undulators including linear, elliptical, and helical polarizations. To that end, self-consistent, three-dimensional
representations of these undulator types are included in the formulation. This includes thefirst application of an
analyticalmodel of anAPPLE-II undulator.

Most of the FEL simulation codes in use at the present time can be categorized as either slowly-varying
envelope analyzes (SVEA) or particle-in-cell (PIC) simulations. In the SVEA, the field is optical field is
represented by a slowly-varying amplitude and phase in addition to a rapid sinusoidal oscillation. Thefield
equations are then averaged over the rapid sinusoidal time scale and, thereby, reduced to equations describing
the evolution of the slowly-varying amplitude and phase.Within the context of the SVEA, FEL simulation codes
fall into twomain categories where the particle trajectories are found by first averaging the trajectories over an
undulator period (the so-calledwiggler-averaged-orbit approximation), or by the direct integration of the
Newton–Lorentz equations. There is a further distinction between the SVEA codes based upon the optical field
representation, and codes have beenwritten using either a grid-based field solver or a superposition of optical
modes. Simulation codes using thewiggler-averaged-orbit analysis in conjunctionwith a grid-based field solver
includeGINGER [10], GENESIS [11] and FAST [12]. In contrast, codes that integrate theNewton–Lorentz
equations in conjunctionwith aGaussianmode superposition for the opticalfields includeMEDUSA [13] and
MINERVA.One common feature of all the SVEA codes, however, is theway inwhich time-dependence is
treated. The fast time scale average results in a breakdown of the optical pulse into temporal ‘slices’ each of which
is onewave period in duration. The optical slices slip ahead of the electron slices at the rate of onewavelength per
undulator period. As a result, the SVEA codes integrate each electron and optical slice form z→z+Δz and
then allow the optical slice to slip ahead of the electron slices. At the present time, the primary PIC code is
PUFFIN [14]. A PIC codemakes no average over the rapid sinusoidal oscillation and integrates theNewton–
Lorentz equations for the particles. As a result, PIC codes require substantiallymore computational resources
than SVEA codes and are not so commonly in use.

The organization of the paper is as follows. General properties of the formulation are described in detail in
section 2. Thefield representations used for the undulatorfields, quadrupole and dipole fields, and theGaussian
opticalfields are described in section 3 and the dynamical equations are discussed in section 4. Significant
numerical considerations are discussed in section 5.We demonstrate that the dynamical equations describe
vacuumdiffraction in the limit inwhich the electron beamvanishes in section 6. A simulation showing the
application of the formulation for an elliptically polarized undulator is described in section 7, and a discussion of
the comparison of the simulation results with a generalization of the parameterization due toMingXie [15] to
include the elliptical undulator is also presented. Simulations of the Linac Coherent Light Source (LCLS) at the
Stanford Linear Accelerator Center (SLAC) [16, 17] are presented in section 8. In particular, we discuss the
comparison of the simulationwith the first lasing experiment [16] and then go on to compare the simulation
with recent experiments on the LCLS using a strongly tapered undulator [17]. Comparisons with a variety of FEL
experiments are presented in sections 9–12 including another SASE FEL, a seeded and tapered amplifier, and an
oscillator in order to provide amore comprehensive validation of the formulation. The Sorgente Pulsata Auto-
amplificata di RadiazioneCoerente (SPARC) SASE FEL [18] conducted at ENEAFrascati is discussed in
section 9. This is followed by a comparison of the simulationwith a seeded, infrared, tapered-amplifier
experiment [19] at BrookhavenNational Laboratory in section 10. Simulation of the IR-Upgrade FEL oscillator
experiment [20] at the Thomas JeffersonNational Accelerator Facility (JLab) is presented in section 11. This
covers the threemajor configurations used in FEL experiments: SASE, oscillators, and seeded amplifiers. A
summary and discussion is given in section 12.
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2.General simulation properties

The formulationwe develop describes the particles and fields in three spatial dimensions and includes time
dependence aswell. Electron trajectories are integrated using the completeNewton–Lorentz force equations. No
wiggler-averaged-orbit approximation ismade. Themagnetostatic fields can be specified by analytical functions
for a variety of analytic undulatormodels (such as planar, elliptical, or helical representations), quadrupoles, and
dipoles. Thesemagnetic field elements can be placed in arbitrary sequences to specify a variety of different
transport lines. As such, we can set upfield configurations for single ormultiple wiggler segments with
quadrupoles either placed between the undulators or superimposed upon the undulators to create a FODO
lattice. Dipole chicanes can also be placed between the undulators tomodel various optical klystron and/or
high-gain harmonic generation configurations. Thefields can also be imported from afieldmap.

The electromagnetic field is described by amodal expansion. For free-space propagation, we useGaussian
opticalmodes. TheGauss–Hermitemodes are used for simulation of planar undulators, whileGauss–Laguerre
modes are used for elliptical or helical undulators.

The electromagnetic field representations are also used in integrating the electron trajectories, so that
harmonicmotions and interactions are included in a self-consistent way. Further, the same integration engine is
usedwithin the undulator(s) as in the gaps, quadrupoles, and dipoles, so that the phase of the opticalfield relative
to the electrons is determined self-consistently when propagating the particles and fields in the gaps between the
undulators.

Particle loading is done in a deterministic way usingGaussian quadrature that preserves a quiet start for both
the fundamental and all harmonics. Shot noise is included using a Poisson statistics algorithm [21] so that the
formulation is capable of simulating SASE FELs; however, provision ismade for enhanced shot-noise due to
various levels ofmicro-bunching.

The FEL simulation has also been linked to theOPC [8, 9] for the simulation of FEL oscillators or
propagating an opticalfield beyond the end of the undulator line to a point of interest. OPCpropagates the
opticalfield using either the Fresnel diffraction integral or the spectralmethod in the paraxial approximation
using fast discrete Fourier transforms (FFT). Amodified Fresnel diffraction integral [22, 23] is also available and
allows the use of FFTs in combinationwith an expanding grid onwhich the opticalfield is defined. Thismethod
is often usedwhen diffraction of the opticalfield is large. Propagation can be done either in the time or frequency
domain. The latter allows for the inclusion of dispersion andwavelength dependent properties of optical
components. Currently, OPC includesmirrors, lenses, phase and amplitudemasks, and round and rectangular
diaphragms. Several optical elements can be combined to formmore complex optical component, e.g., by
combining amirrorwith a hole element, extraction of radiation from a resonator through a hole in one of the
mirrors can bemodeled. Phasemasks can be used, for example, tomodelmirror distortions or to create non-
standard optical components like a cylindrical lens.

In a typical resonator configuration,OPChandles the propagation from the end of the gainmedium to the
first optical element, applies the action of the optical element to the optical field and propagates it to the next
optical element and so on until it reaches the entrance of the gainmedium.Diagnostics can be performed at the
planeswhere the opticalfield is evaluated. Some optical elements, specifically diaphragms andmirrors allow
forking of the optical path. For example, the reflected beamof a partial transmitting outputmirror forms the
main intracavity optical path, while the transmitted beam is extracted from the resonator.When the intracavity
propagation reaches the outputmirror, this optical propagation can be temporarily suspended and the extracted
beam can be propagated to a diagnostic point for evaluation. Then the intra-cavity propagation (main path) is
resumed.

The numerical procedure involves translating between the input/output required for the FEL simulation
andOPC. Initially, we run the FEL simulation to determine the optical output after thefirst pass through the
undulator, which thenwrites a file describing the complex field of the opticalmode. OPC is then used to
propagate thisfield to the downstreammirror, which is partially transmissive in the current example. The
portion of the opticalmode that is reflected is then propagated to the upstreammirror (which is a high reflector)
byOPC, and then back to the undulator entrance. Thefield at the undulator entrance is then reduced to an
ensemble ofGaussianmodes that is used as input to the FEL simulation for the next pass. This process is repeated
for an arbitrary number of passes.While the example discussed in this paper relates to a concentric resonator,
OPChas also been used to simulate a regenerative amplifierwith a ring resonator [24].

3. Thefield representations

The undulatorfieldmodels are three-dimensional representations. Two planar undulatormodels are available
corresponding toflat-pole-faces and parabolic-pole-faces. The parabolic-pole-facemodel provides weak two-
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plane focusing. The elliptical undulatorfield ismodeled by a representation of anAPPLE-II undulator
consisting of twoflat-pole-face undulators that are shifted in phase. In each case, however, the injection into and
ejection from the undulators is simulated by the particle tracking algorithms using smoothmodels for the
undulator transitions. The quadrupole and dipole fieldmodels used are curl- and divergence-free
representations with hard-edged field transitions.

3.1. Theflat-pole-face undulator
Theflat-pole-face undulator is represented by

( ) ( ) ˆ ( ) ˆ ( )= - +
⎛
⎝⎜

⎞
⎠⎟e eB z k z

k z

k B

B

z
k y B z k y k zB x sin

cos d

d
cosh sinh cos , 1w w w

w

w w

w
y w w z w w

whereBw and kw (= 2π/λw, whereλw is the undulator period) are the undulator amplitude andwavenumber
respectively.

This field is both curl- and divergence-free when the amplitude,Bw, is constant. The transitions at the ends of
each undulator segment aremodeled via
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whereBw0 is the field amplitude in the uniform region, Lw is the undulator segment length,Ntr is the number of
undulator periods in the transition region, and Ltr (= Lw–Ntrλw) is the start of the output transition. Thefield
in the transitions is divergence-free, and the z-component of the curl also vanishes. The transverse components
of the curl do not vanish, but are of the order of (kwBw)

−1dBw/dz, which are usually small.

3.2. The parabolic-pole-face undulator
The parabolic-pole-face fieldmodel is given by
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andBw(z) is given in equation (2). As in the case of the flat-pole-facemodel, thisfield is divergence-free and the z-
component of the curl also vanishes.

3.3. The helical undulator
The helical undulatormodel that is employed is of the form in cylindrical coordinates
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whereχ=kwz–θ, I1 denotes the regular Bessel function of the first kind, andBw(z) is given by equation (2).

3.4. TheAPPLE-II undulatormodel
An approximate representation of anAPPLE-II undulator can be formed by the super-position of twoflat-pole-
face undulatormodels that are oriented perpendicularly to each other and phase shiftedwith respect to the axis
of symmetry. As such, thefield is represented in the form
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where, as before,Bw(z) is given by equation (2). This is an approximate representation of anAPPLE-II undulator
that is valid near the axis of symmetry. The ellipticity is governed by the choice of the phase,f.
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For 0�f �π/2, the ellipticity, ue, is given by
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for which the semi-major axis is oriented alongπ/2. The choice off=0 (π/2) corresponds to planar (helical)
polarization.Whenπ/2�f�π, the ellipticity is
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and the semi-major axis is oriented along−π/2.
Illustrations of the on-axis field contours are shown infigure 1, wherewe plot the y-component of thefield

versus the x-component (normalized to the amplitude) forf= π/8,π/4,π/2 and 3π/4.
The choice of elliptical polarization for theGaussianmodes has the semi-major axis aligned along the x-axis,

so that this undulatorfieldmust be rotated in order to correspond to the polarization of the radiationfield.

3.5.Quadrupole and dipolefields
The quadrupolefieldmodel used is
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whereBQ(z) is the field gradient (constant) defined over a range z1�z�z2. This field is both curl- and
divergence-free over this range.

The dipole fieldmodel is described by a constantfield oriented perpendicularly to the axis of symmetry over
some range z1�z�z2.

3.6. TheGaussian opticalmodes
TheGauss–Hermitemodes are used in simulating the interactionwith planar undulators. In this case, the field
representation is
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Figure 1.The on-axis field contours for different phasesf=π/8,π/4,π/2 and 3π/4.
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describes the transversemode structure whereHl are theHermite polynomials, ζx=√2x/wh, ζy=√2y/wh,
andw0,h andwh denote thewaist size and spot size of the hth harmonic respectively. The spot size is assumed to
be a slowly-varying function of (z, t). The phase is

( ) ( )j w a= - +h k z t
r

w
, 12l h h

h
, 0

2

2

where k0=ω/c,αh denotes the curvature of the phase front of the hth harmonic andwhich is assumed to be a
slowly-varying function of (z, t).

TheGauss–Laguerremodes are usedwhen simulating elliptical and helical undulators. Thefield
representation is
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The total power carried in eachmode,Pl,n,h, is given by integration of the Poynting vector over the cross
section. This is given by
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4. The dynamical equations

The dynamical equations for the fields employ the source-dependent expansion [25]which is an adaptive
eigenmode algorithm inwhich the evolution of the spot size and curvature are determined self-consistently in
terms of the interactionwith the electron beam. As such, the dynamical equations for the fields are of the form
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for Fl,n= 1+l+n(= 1+|l|+2n) for theGauss–Hermite (Gauss–Laguerre)modes. The source terms are
given by
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for theGauss–Laguerremodes, whereωb is the beamplasma frequency, and ( )á ¼ ñdenotes an average over the
initial particle distribution and υi (i=x, y, z) are theCartesian components of the velocity of an electronwith z
taken along the axis of the undulator. A uniformdistribution in initial phase and aGaussian distribution in
coordinate andmomentum space is assumed in the examples discussed in this paper. In this case
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where γavg andΔγ denote the average energy and energy spread, andσr andσp describe the initial transverse
phase space. The averaging operator defines how the particle phase space is generated. The integral over each
degree of freedom is discretized usingGaussian quadrature to set the initial phase space coordinates and charge
weight of each electron in the simulation.Note that the variousmacro-electrons included in the simulation carry
a variety of different chargeweights that are set initially by theGaussian quadrature algorithm.Once the initial
phase space is generated, the coordinates andmomenta for eachmacro-electron is tracked by integrating the
Newton–Lorentz equation simultaneously with the equations for the optical fields.

We remark that there are alternative ways of implementing this particle average and different distributions
can be used to initialize the electron phase space internally. However,MINERVA also has the ability to import
initial particle distributions from alternative sources such as electron beamdynamics simulations through
accelerators andmagnetic transport lines.

The evolution of the spot size and curvature are governed by
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where the source terms are defined as
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These field equations are integrated togetherwith theNewton–Lorentz force equations for the particles.
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where δE and δB correspond to the electric andmagneticfields of the complete super-position ofGaussian
modes, andBstatic is themagnetostatic fields (undulators, quadrupoles, and dipoles).
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5.Numerical considerations

MINERVA andMEDUSA [13] both employ the SVEAusing aGaussianmodal superposition for the optical
fields and a non-wiggler-averaged orbit analysis.While the development ofMINERVAbenefits from lessons
learned in the development ofMEDUSA, it goes about the process in significantly different ways and contains
many improvements in features, diagnostics, and computational efficiency. Rather than list all of the differences,
we note that the twomost important differences are (1) theGaussianmodal representation has been changed
and significantly simplifies the dynamical equations for thefields and (2) the application of slippage has been
improved by implementing a higher order interpolator. These improvements preserve energy conservation to
within several parts in 103, which is 1 to 2 orders ofmagnitude better than is achievedwith full time-dependent
SASE simulationswithMEDUSA.

MINERVA can treat steady-state simulation by the simple expedient of including a single temporal slice in
the simulation. Time dependence is treated by includingmultiple temporal slices and allowing the field slices to
advance relative to the electron slices at arbitrary integration intervals. Since the opticalfield slips ahead of the
electrons at the rate of onewavelength per undulator period, if this slippage operation is performed at shorter
intervals than the undulator period, then the field advance is interpolated between adjacent temporal slices based
on this slippage rate.

The total number of equations in each simulation is

[ ( )] ( )= + +N N N N N6 2 , 34equations slices particles modes harmonics

whereNslices is the number of slices in the simulation, and for each slice,Nparticles is the number of particles,
Nmodes is the number ofmodes in all the harmonics, andNharmonics is the number of harmonics. This complete
set of coupled nonlinear differential equations is solved numerically using a Runge–Kutta algorithm. A 4th order
Runge–Kutta integrator is typically used; however, since small spatial steps are required to resolve thewiggler
motion (20–30 steps per undulator period), it is sometimes possible to use a 2nd order Runge–Kutta algorithm
which halves the run timeswithout a significant loss of accuracy. It should also be remarked that the Runge–
Kutta algorithms allow for changing the step size ‘on thefly’ so that different step sizes can be used in
quadrupoles, dipoles, or drift spaces betweenmagnetic elements.

The number ofGaussian opticalmodes required to achievenumerical convergence is determined empirically
by addingmodes until the desired level of convergence is obtained. The number ofmodes needed to achieve
convergence towithin 1%–5%varieswith the parameters of the simulation. In general, however, thenumber of
requiredmodesdepends upon the relative values of the gain length and theRayleigh range,with fewermodes
needed for longerRayleigh ranges. For all the examples discussed in this paper, 20–30modeswere used.

The particle averages in the source terms are implemented by converting the continuous integral over a
distribution function into a discrete set ofmacro-particles usingGaussian quadrature over each of thedegrees of
freedom.Good accuracy typically requires using at least 8000 or soparticles per slice, but significantlymore
particlesmay be requiredwhen greater transverse resolution is desired orwhen simulating harmonic generation.

6. Vacuumpropagation

That these equations recover vacuumpropagation can be demonstrated by considering the case inwhich the
electron beam is not present and the sources (equations (21) and (22)) vanish. As a result,Xh= Yh= 0 so that the
spot size and curvature satisfy the following equations
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These equations have thewell-known solutions for the spot size and curvature in vacuowhere
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where =z k w , 2hR 0 0
2 is the Rayleigh range and z0 denotes the position of themodewaist.
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Substitution of equations (35) and (36) into (20) shows that
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which is the derivative of theGouy phase shift,jl,n,h. If we now express thefield components in the form
( )d d j=A A cos ,l n h l n h, ,
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2

, , then the dynamical equations can be reduced to equations
for the derivatives of the amplitude δAl,n,h and phasej as
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which shows that the power is constant, and
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which indicates that the phase variation is described by theGouy phase.
As a result, the dynamical equations describe vacuumdiffraction in the absence of an electron beam.

7. Elliptical undulators

Wenowdescribe the generation of elliptically polarized radiation using an elliptically polarized undulator. For
convenience, we consider the same beam, undulator and focusing configuration as used in the simulation of the
SPARC experiment (section 8), except that we nowuse the APPLE-II undulatormodel and elliptically polarized
radiation. In addition, we limit the simulation to the steady-state (i.e., a single temporal slice) regime since that is
sufficient to demonstrate the reliability of the formulation and allows us to compare the simulation results with
an analytic theory.

In order to compare the simulation results with an analytic theory, wemake use of a description of the effect
of an elliptical undulator on the resonant wavelength and the usual JJ-coupling factor that has been given by
Henderson et al [26]. The generalized resonance condition varies with the ellipticity as follows
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Observe that this reduces to the usual expressions in the limits of planar (ue=0) andhelical (ue=1)undulators.
The generalized JJ-factor is given by
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In [26], the authors compared the results of simulations for different choices of the ellipticity using (1) a one-
dimensional, orbit-averaged simulation code inwhich the generalized resonance condition and JJ-factorwere
implemented and (2) the implementation of an elliptical undulatormodel in the one-dimensional PICPUFFIN
[14] code. Since the PUFFIN code does notmake use of the orbit average and does not explicitly include either
the resonance condition or the JJ-factor, it is expected that the ellipticity is included self-consistently. The
comparison of the two codes showed excellent agreement. Hence, we conclude that the generalized dynamical
equations constitute a reliable description of the ellipticity. As a result, we can obtain a three-dimensional
approximation of the interaction in an elliptical undulator by using these expressions for the resonant
wavelength and JJ-factor in the parameterization given byMingXie [15]. This generalized parameterization is
then comparedwith the results of three-dimensional simulations.

The undulator field amplitude (left axis in blue) associatedwith the generalized resonance and the
generalized JJ-factor (right axis in red) for the parameters of interest are shown infigure 2 as functions of the
ellipticity.We employed these undulator field amplitudes in performing the simulations for various choices of
the ellipticity. Note, however, that the simulationmodel does not employ awiggler-averaged orbit integration;
hence, the physics associatedwith the JJ-factor is implicitly included in the simulations. As a result, the JJ-factor
is only used in generalizing the parameterization developed byMingXie for comparison purposes.

Simulations have been performed for ellipticities ranging from zero (planar undulator) to unity (helical
undulator) using the APPLE-II undulator representation. In each case, the simulationwas started from shot
noise using the same noise seed.No average overmultiple noise seeds was performed; however, this is perfectly
adequate since our intention is to study the variation in performance due to different ellipticities and the initial
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phase space used in the different simulations is invariant with respect to the ellipticity. Results showing the
power growth along the undulator line are shown in figure 3 for ellipticities of 0, 0.15, 0.25, 0.50 and 1.0. As
shown in the figure, the distance to saturation tends to decrease with increasing ellipticity. This is
understandable since the JJ-factor increases with the ellipticity and this tends to increase the strength of the
interaction.

A comparison between the saturation distances found in simulations and the predictions based on the
generalized parameterization due toMingXie is shown infigure 4wherewe plot the saturation distance versus
the ellipticity. It should be remarked that we have added the drift space between the undulators to the
predictions of the generalized parameterization. Since the simulation includes two extra undulator periods in
each undulator tomodel the transitions at the entrances and exits of the undulators, we have added these lengths
to the generalized parameterization aswell. It is evident from the figure that the simulation is in good agreement
with the generalized parameterization.

8. The LCLS SASE FEL

The LCLS [16] is a SASE FEL user facility that became operational in 2009 operating at a 1.5 Åwavelength. In this
paper, we first discuss a comparisonwith the initial results from the LCLS in order to validate themodel.We
then present thefirst comparison showing substantial agreement between simulation and an experiment on the
LCLS that employed an aggressive taper to enhance the efficiency.

The best experimental estimates for the fundamental operating parameters for operation at 1.5 Å are listed in
table 1. It employs a 13.64 Ge V/25 pC electron beamwith aflat-top temporal pulse shape of 83 fs duration. The

Figure 2.The generalized resonant undulator field (left) and JJ-factor (right) versus the ellipticity.

Figure 3.The power along the undulator for various choices of the ellipticity.
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normalized emittance (x and y) is 0.4 mmmrad and the rms energy spread is 0.01%. The undulator line
consisted of 33 segments with a period of 3.0 cm and a length of 113 periods including one period each in entry
and exit tapers. Amild down-taper infield amplitude of−0.0016 kG/segment startingwith the first segment
(with an amplitude of 12.494 kG andKrms=2.4748) and continuing from segment to segmentwas used. This is
the so-called gain taper. The electron beamwasmatched into a FODO lattice consisting of 32 quadrupoles each
having afield gradient of 4.054 kG cm−1 and a length of 7.4 cm. Each quadrupole was placed a distance of
3.96 cmdownstream from the end of the preceding undulator segment. The Twiss parameters for this FODO
lattice are also shown in table 1.

The propagation of the beam through the LCLS undulator/quadrupole lattice as found in simulation is
shown infigure 5, wherewe plot the beam envelope in x (blue, left axis) and y (red, right axis) versus position.
Observe that the beam iswell-confined over the 130 mof the extended lattice with an average beam size of
about 21 mm.

The LCLS produces pulses of about 1.8 mJ at the end of the undulator line [16] and saturation is found after
about 65–75 malong the undulator line. A comparison between themeasured pulse energies (red circles), as

Figure 4.Variation in the distance to saturation versus the ellipticity.

Table 1.Parameters of the LCLS FEL
experiment.

Electron beam

Energy 13.64 GeV

Bunch charge 250 pC

Bunch duration 83 fs

Peak current 3000 A (flat-top)
x-emittance 0.4 mm mrad

y-emittance 0.4 mm mrad

rms energy spread 0.01%

rms size (x) 21.5 mm
αx 1.1

βx 30.85 m

rms size (y) 19.5 mm
αy −0.82

βy 25.38 m

Undulators 33 segments

Period 3.0 cm

Length 113 periods

Amplitude (1st segment) 12.4947 kG

Krms (1st segment) 2.4748

Taper slope −0.0016 kG

Gap length 0.48 m

Quadrupoles

Length 7.4 cm

Field gradient 4.054 kG cm−1
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obtained by giving the electrons a kick to disrupt the FEL process, and the simulation (blue) is shown infigure 6.
The experimental data is courtesy of P Emma andH-DNuhn at SLAC, and the simulation results represent an
average over an ensemble of 25 runs performedwith different noise seeds. As shown in the figure, the
simulations are in good agreement with themeasurements in the exponential growth regionwith close
agreement for the gain length. The simulation exhibits saturation at the same distance as the experiment in the
range of 65–75 m at a pulse energy of 1.5 mJ. After saturation, in view of the gain taper, the pulse energy grows
more slowly to about 2.02 mJ at the end of the undulator line, which is approximately 8%higher than the
observed pulse energy. The agreement between simulation and experiment for the pulse energy is poorer during
the early stages of the interaction. Thismay be due to a variety of reasons. On the experimental side, as the pulse
energy grows by 5 to 6 orders ofmagnitude from the initial shot noise to saturation, it is difficult to calibrate the
detectors for the low pulse energies at the early stages of the interaction. Also, while kicking the electrons
provides a fastmeasurementmethod, it is accompanied by a larger background signal and the possibility of
restarting the FEL process downstream the undulator linewhen the kick is performed at the beginning of the
undulator line [17]. On the simulation side, theremay be some inaccuracies in the shot noise algorithm that
underestimates the initial noise level.

Experiments have also been performed at the LCLS [17] to investigate enhancing the efficiency using amore
sharply tapered undulator. The LCLS configuredwith a stronger taper for the last segments has demonstrated
enhancements in the efficiency. This experiment employed an undulator inwhich the aforementionedmild
linear down-taper is enhanced by the addition of amore rapid down-taper starting at the 14th undulator
segment. This so-called saturation taper profile is shown infigure 7 (data courtesy ofDRatner).

Figure 5. Simulated propagation of the LCLS beam.

Figure 6.Comparison between the experimental data (red circles) from the LCLS (courtesy of P Emma andH-DNuhn) and
simulation (blue) using the gain taper.
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In comparisonwith the undulator and electron beamproperties employed in the first lasing experiments,
the tapered undulator experiment employed undulators tuned to somewhat different field strengths and
electron beamparameters thatmay have varied from the first lasing experiment. The pulse energies in the
experiment were obtained bymeasuring the energy loss in the electron beam. Simulationswere conducted over
a parameter range including emittances of 0.40–0.45 mmmrad and energy spreads of 0.010%–0.015% that are
thought to characterize the electron beam.

A comparison between themeasured pulse energies and simulations over the parameter range thatmost
closely agreewith the experiment is shown infigure 8, where the experimental results are shown in red and have
been obtained bymeasuring the electron energy loss. Themaximumpulse energy shown represents an
enhancement of the efficiency by a factor of 2–3 over what is foundwith the gain taper alone. As is evident from
thefigure, the simulations for the three choices are all very similar and are in good agreement with the
measurements, indicating that the efficiency enhancement could be achieved for a variety of electron beam
parameters.

9. The SPARCSASE FEL

The SPARC experiment is a SASE FEL located at ENEAFrascati [18]. The best estimate for the experimental
parameters of SPARC are summarized in table 2 and are as follows. The electron beam energy was 151.9 MeV,
with a bunch charge of 450 pC, and a bunchwidth of 12.67 ps. The peak current was approximately 53 A for a
parabolic temporal bunch profile. The x and y emittances were 2.5 mmmrad and 2.9 mmmrad respectively,

Figure 7.The experimentally applied saturation taper profile.

Figure 8.Comparison between the experimental (red) and simulations for a variety of emittances and energy spreads for the saturation
taper. Data courtesy of DRatner.
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and the rms energy spreadwas 0.02%. Therewere six undulators each of whichwas 77 periods in length (with
one period for the entrance up-taper and another for the exit down-taper)with a period of 2.8 cm and an
amplitude of 7.88 kG. In the simulation eight undulators were used to show saturation of the system. The gap
between the undulators was 0.4 m in length and the quadrupoles (0.053 m in lengthwith afield gradient of
0.9 kG cm−1 forming a strong focusing lattice were located 0.105 mdownstream from the exit of the previous
undulator. Note that the quadrupole orientations were fixed and did not alternate. The electron beamwas
matched into the undulator/focusing lattice. The resonance occurred at awavelength of 491.5 nm. The pulse
energies weremeasured in the gaps between the undulator segments.

Given the bunch charge available, the SASE interactionwas unable to reach saturation over the six
undulators present. Hence, for the purposes of the simulationwe shall add two extra undulators to bring the
interaction to saturation.

The propagation of the beam through the undulator/quadrupole lattice as found in simulation is shown in
figure 9, wherewe plot the beam envelope in x (blue, left axis) and y (red, right axis) versus position.Observe that
the beam iswell-confined over the 20 mof the extended latticewith an average beam size of about 115 mm.

A comparison of the evolution of the pulse energy as found in simulation and asmeasured in the experiment
is shown infigure 10where the simulation is indicated by the blue line and is an average taken over 20 simulation
runswith different noise seeds. The pulse energywasmeasured in the gaps between the undulators, and the
results for a sequence of shots are indicated by the redmarkers (data courtesy of LGiannessi). Observe that the
agreement between the simulation and themeasured performance is excellent over the entire range of the
experiment. In addition, the simulation shows that saturation could have been reached after about 18–20 mwith
two additional undulator segments.

This result is in substantial agreementwith the parameterization developed byMingXie [15]. Using aβ-
function of about 2 m,wefind that the Pierce parameter ρ≈2.88×10−3 and that this parameterization
predicts a gain length of 0.67 m, and a saturation distance of 18.1 m (including the additional 3.2 m represented
by the gaps between the undulators). This is in reasonable agreement with the simulation.

A comparison between the evolution of the relative linewidth as determined from simulation and by
measurement (data courtesy of LGiannessi) is shown infigure 11 over the range of the installed undulators and
agreement between the simulation and themeasured linewidth is within about 35% after 15 m. As shown in the
figure, the predicted linewidths are in substantial agreement.

The initial decrease in linewidth shown infigure 11 results from the development of temporal coherence as
can be seen infigures 12–14, wherewe plot the power versus timewithin the optical pulse. The timewindow
used in the simulationwas chosen to be 14 ps in order to allow for slippage across the 12.67 ps electron bunch.
The optical pulse at the start-up of the SASE interaction is expected to contain a large number of ‘spikes’. This is
indeedwhat is found in simulation as shown infigure 12, wherewe plot the power in the pulse over the entire
timewindow. This pulse is near the start of the undulator line and exhibits a broad distribution of spikes

Table 2.Parameters of the SPARCFEL
experiment.

Electron beam

Energy 151.9 MeV

Bunch charge 450 pC

Bunch duration 12.67 ps

Peak current 53 A (parabolic)
x-emittance 2.5 mm mrad

y-emittance 2.9 mm mrad

rms energy spread 0.02%

rms size (x) 132 mm
αx 0.938

rms size (y) 75 mm
αy −0.705

Undulators 6 segments

Period 2.8 cm

Length 77 periods

Amplitude 7.8796 kG

Krms 1.457

Gap length 0.40 m

Quadrupoles Centered in gaps

Length 5.3 cm

Field gradient 0.9 kG cm−1
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Figure 9. Simulated propagation of the beam.

Figure 10.Comparison of simulation results (blue) and themeasured pulse energies (red) versus distance (data courtesy of L
Giannessi).

Figure 11.Comparison of themeasured relative linewidth in red (data courtesy of LGiannessi)with that found in simulation (blue).
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Figure 12.Temporal pulse shape at z=5.0 m.

Figure 13.Temporal pulse shape at z=10.0 m.

Figure 14.Temporal pulse shape at z=15.0 m.
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coinciding roughlywith the center of the electron bunch, which is located at the center of the timewindow. As
shown infigure 11, the linewidth narrows as the interaction proceeds and this corresponds to the development
of temporal coherence.

This evolution of temporal coherence is illustrated infigures 13 and 14, by comparisonwithfigure 12, where
the temporal pulses are shown at z= 10.0 m and 15.0 m respectively. These twofigures correspond to the
exponential gain region prior to saturation. It is clear in thesefigures that the early collection of a large number of
spikes has coalesced into amore sharply peaked distribution containing a smaller number of spikes. This
corresponds to the narrowing of the linewidth due to the development of coherence in the exponential gain
region. Comparing figures 10 and 11, we observe that themeasured pulse energy is somewhat higher and the
relative linewidth somewhat lower than the simulation results, whichmay be due to a small difference in the
beammatch.

10. TheBNL tapered amplifier

A tapered-wiggler, seeded amplifier experiment was conducted at the SourceDevelopment Laboratory at BNL
[19] using a high brightness electron injector, a chicane bunch compressor feeding a 100MeV, S-band SLAC
type travelingwave linac. The electron beam is then injected into theNISUSwiggler [27] that was built for
BoeingAerospace. TheNISUSwiggler is a 10 m long planar wiggler with a period of 3.89 cm andwithweak, two-
plane focusing. TheNISUS undulator consists of a linkage of 1 m segments, and a taper can be imposed by
choosing a segment and opening the jaws of the undulator starting at that point. This creates a linear downward
taper of thefield. ATi:sapphire laser was used both as the driver for the photo-cathode electron gun and as the
seed laser for the FEL amplifier operating at awavelength of 793.5 nm. A 300%enhancement over the uniform
wiggler interactionwas observedwhen theNISUS undulatorwas tapered.

The experimental parameters are given in table 3. The resonant electron beam energy is 100.86 MeV, and the
bunch charge is 360 pCover a bunch duration of 1.8 ps (full width), yielding a peak current of 300 A for a
parabolic pulse shape. The normalized emittance was 4.0 mmmrad and the rms energy spreadwas 0.1%. The
electron beamwasmatched into theweak focusing,NISUS undulatorwith amatched beam radius of about
212 mmand a 2.23 mβ-function. The amplitude of theNISUSwiggler in the uniform sectionwas 3.03 kG (Krms

=0.848). The optical seed pulses provided by the Ti:Sapphire laser had peak powers of up to about 10 kWwith a
pulse duration of 6 ps, whichwaswider than the electron bunch duration. Indeed, this ensures that the electron
beam experiences a relatively uniform seed laser intensity over the entire bunch at the outset.

The experiment was run at the resonant energy.While the simulation can be run unambiguously at the
resonant energy,finding the resonant energy in the experiment involved adjusting the electron beam energy
from the linac. Since therewas insufficient bunch charge to reach saturation in SASEmode, and since the growth
rate peaks on-resonance, the unsaturated SASE interactionwill yieldmaximumpowerwhen the beam energy is
tuned to the resonant energy. As a result, when this conditionwas realized, the linacwas ‘locked down’ to this
beam energy and the seed laserwas turned on.

Table 3.Parameters for the BNL taperedwiggler
experiment.

Electron beam

Energy 100.86 MeV

Bunch charge 360 pC

Bunch duration 1.8 ps

Peak current 300 A (parabolic pulse)
Emittance 4 mm mrad

rms energy spread 0.1%

NISUSUndulator weak focusing

Period 3.89 cm

Amplitude (uniform) 3.03 kG

Krms 0.848

Length 10 m

Start taper point 7.0 m

Optimal taper −4%

Optical field

Wavelength 793.5 nm

Seed power 10 kW

Pulse duration 6 ps

17

New J. Phys. 19 (2017) 023020 HPFreund et al



The pulse energywasmeasured by ‘kicking’ the beam to thewall at various axial positions andmeasuring the
output pulse energy that resulted. A comparison between the simulation andmeasured pulse energies for a
uniformundulator is shown infigure 15, where the data (courtesy of X JWang and J BMurphy) is indicated in
red and the error bars indicate the standard deviation for a series of shots. It is evident that good agreement is
found between the simulation and themeasurements. Saturation at about 113± 28 μJ is found after about
7.0–7.5 m. The simulation result of 103 μJ is well within the range of uncertainty found in the experiment.

TheNISUS undulator can be tapered in 1 m steps. Since the optimal taper is dependent upon both the start-
taper point and the taper slope, and since the start-taper pointmust be located prior to saturation in the uniform
undulator,finding the optimal taper configurationwas an iterative process. The choice of 10 kW seed powerwas
made by trial and error to optimize the start-taper point at 7.0 m. Further optimization indicated that a down
taper of 4%over the final 3 mof the undulator yielded themaximumoutput power.

A comparison between themeasured pulse energies for the tapered undulator (data courtesy of X JWang
and J BMurphy) and the corresponding simulation results is shown in red infigure 16. The uniformundulator
results taken fromfigure 15 are also shown for comparison in blue. As evidenced in the figure, the agreement
between the simulation and themeasurements is excellent. Themeasured outputwas 283± 68 μJ, and the
simulation result of 296 μJ also falls well within the range of experimental uncertainty. This represents an
increase of almost 300%over the output of the uniformundulator.

The spectra as observed in the experiment and as found in simulation show similar agreement. Note that the
accuracy of the spectralmeasurements was limited by the bandwidth of thefilter, and the experimental spectra
may be shifted by asmuch as±0.5 nm. The spectra as determined at z= 6.0 m are shown infigure 17where the
measured spectrum is shown in red and the simulation result is shown in blue. Observe that the peaks and
spectral widths agree closely. The comparison between the observed (red) and simulation (blue) spectra at the
exit from the tapered undulator is shown infigure 18, and the agreement is very good at this point as well. The
shift in the simulation spectrum relative to thatmeasured is only 0.45 nm,which is well within the sensitivity of
the spectrometer. In addition, the spectral widths are very close, and the sidebands indicated at about 796 nmare
also in good agreement between themeasurement and the simulation. Although the simulation observed
somewhatmore sideband growth than the experiment, sidebands do not seem to be an important component of
the output spectra.

11. The JLab IR-Upgrade FEL oscillator

To further investigate the simulation capabilities we also compared the simulationwith the IR-Upgrade FEL
oscillator at JLab [20]. The basic experimental parameters were a kinetic energy of 115MeV, an energy spread of
0.3%, a bunch charge of 115 pC, a pulse length of 390 fs, a normalized emittance of 9 mmmrad in thewiggle
plane and 7 mmmrad in the plane orthogonal to thewiggle plane, and a repetition rate of 74.85 MHz for the
electron beam. The planar undulatorwas 30 periods long, had a period of 5.5 cm, and a peak on-axismagnetic
field of 3.75 kG. For proper electron beam transport through the undulator, we used a one period up- and down-
taper. The electron beamwas focused into the undulatorwith the focus at the center of the device. The resonator

Figure 15.Comparison between simulation andmeasured pulse energies for a uniformundulator (data courtesy of X JWang and J B
Murphy).
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Figure 16.Comparison betweenmeasured pulse energies and simulation results for the uniform (blue) and tapered (red) undulators
(data courtesy X JWang and J BMurphy).

Figure 17.Measured (red) and simulated (blue) spectra in the uniformundulator section (data courtesy of X JWang and J BMurphy).

Figure 18.Measured (red) and simulated spectra (blue) at the end of the tapered undulator (data courtesy of X JWang and J B
Murphy).
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lengthwas about 32 m and the cold-cavity Rayleigh lengthwas 0.75 m. The total loss in the resonatorwas 21%
with about 18%out-coupled per pass from the downstreammirror. For these settings, thewavelength
was 1.6 μm.

To simulate the FEL oscillator, OPC takes the optical pulse at the exit of the undulator and propagates the
pulse through the resonator and back to the entrance of the undulator. The FEL simulation takes this optical
pulse and propagates it together with a fresh electron bunch through the undulator. This process repeats for a
predefined number of roundtrips. In this simulation, the number of particles was 5832 per slice, while the
separation between slices was 5.4 fs. The number of opticalmodeswas dynamically adjusted each roundtrip to
accommodate the evolution of the optical field inside the resonator.

The length of the optical cavitymust be selected so that the returning optical pulse is in synchronismwith the
electron bunches. The roundtrip time for the optical pulses in the cavity is troundtrip=2Lcav/c and the separation
between electron bunches is tsep=1/frep, where Lcav is the cavity length and frep is the electron bunch repetition
rate. Perfect synchronism (referred to as zero-detuning) is obtainedwhen troundtrip=Mtsep, whereM is the
number of optical pulses in the cavity. In this case therewere 16 optical pulses in the cavity and the zero-detuning
length is L0=32.041 946 079 m. The cavity detuning curve is shown infigure 19 as a function of the difference
between the cavity length Lcav and the zero-detuning length.Wefind that themaximumoutput power of
14.52 kWoccurs for a positive detuning of 2 μmand is close to themeasured value of 14.3± 0.72 kW [20]. As a
result, the predicted extraction efficiency is about 1.4%,which is close to the theoretical value of 1/2Nu≈1.7%.
We remark that previous simulation of this experiment [28] yielded an average output power of 12.3 kW, and
the present formulation is in better agreementwith the experiment than in the earlier simulation. As in the
previous simulation [28], the roughly triangular shape of the detuning curve is also in agreement with the
experimental observation.

The temporal profiles of the optical pulse at the undulator entrance and exit as well as that of the electron
bunch current are shown infigure 20 for the zero-detuning cavity length after pass 100which corresponds to a
stable, saturated steady-state. Observe that the electron bunch is centered in the timewindow,which has a
duration of 1.4 ps. That this is at zero-detuning is indicated by the fact that the incoming optical pulse at the
undulator entrance is in close synchronismwith the electron bunch. It is also evident that the center of the
optical pulse advances by about 0.16 ps as it propagates through the undulator, and this is in good agreement
with the theoretical slippage estimate ofNwλ/c, whereNw is the number of periods in the undulator. Finally, it
should be remarked that this is in the steady-state regimewhere the losses in the resonator and the out-coupling
are compensated for by the gain in the undulator.

12. Summary and conclusion

In this paper, we have described a three-dimensional, time-dependent nonlinear formulation for the simulation
of a variety of FEL configurations utilizing helical, planar, and elliptical undulators. For future reference, we refer
to this formulation and simulation code asMINERVA. Alongwith thewell-known three-dimensional
representations of helical and planar undulators, a three-dimensionalmodel is described to simulate anAPPLE-
II undulator. The simulation is in substantial agreement with a generalized parameterization for elliptical

Figure 19.The cavity detuning curve.
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undulators. Comparisons of the simulationwith a seeded infrared FEL amplifier, an infrared FEL oscillator, and
SASE FELs operating at optical and x-raywavelengths all showed good agreement with the experiments.
Consequently, we feel that the formulation captures the basic physics of the FEL interaction over awide range of
parameters and can accurately, andwith confidence, predict the performance of a large variety of FELs.

TheGaussian opticalmodes are not the ideal electromagnetic representation for all FELs. There is also
interest in the development of FELs at spectral ranges that approachmmwavelengths. At wavelengths longer
than 100 μmor so, the boundary conditions imposed by thewalls of the drift tube cannot be satisfied using the
Gaussian opticalmodes. Instead, a waveguidemode decomposition ismore appropriate. Future development of
this formulationwill include awaveguidemode decomposition in addition to theGaussian opticalmodes.
Indeed, it is also intended to include amixed decomposition appropriate where thewaveguide boundary
conditions are appropriate in one directionwhile the free-spacemodes are appropriate in the other direction.
This will permit the simulation of longwavelength THz FELs using a rectangular drift tubewhich is compressed
in one direction but relatively open in the other. These developments will be reported in future publications.

In addition, there is continuing and developing interest in short wavelength FELswith variable polarizations
that are formed using undulator lines composed ofmixed undulator types and orientations (i.e., planar
undulators aligned along the x- or y-axes). At the present time,MINERVA is capable of setting up such a
complex undulator line.However, the polarization (planar, helical, or elliptical) isfixed at the initialization. In
order to self-consistentlymodel such an undulator linewhere the polarization of the optical field can vary along
the axis of symmetry, the dynamical equations for the x- and y-components of the fieldmust be treated
separately. Themodifications toMINERVAneeded to implement this fieldmodel are currently under study and
the results will be presented in a forthcoming paper.
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