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Abstract

Free-electron lasers (FELs) have been built ranging in wavelength from long-wavelength oscillators
using partial wave guiding through ultraviolet through hard x-ray that are either seeded or start from
noise. In addition, FELs that produce different polarizations of the output radiation ranging from
linear through elliptic to circular polarization are currently under study. In this paper, we develop a
three-dimensional, time-dependent formulation that is capable of modeling this large variety of FEL
configurations including different polarizations. We employ a modal expansion for the optical field,
i.e., a Gaussian expansion with variable polarization for free-space propagation. This formulation uses
the full Newton—Lorentz force equations to track the particles through the optical and magnetostatic
fields. As aresult, arbitrary three-dimensional representations for different undulator configurations
are implemented, including planar, helical, and elliptical undulators. In particular, we present an
analytic model of an APPLE-II undulator to treat arbitrary elliptical polarizations, which is used to
treat general elliptical polarizations. To model oscillator configurations, and allow propagation of the
optical field outside the undulator and interact with optical elements, we link the FEL simulation with
the optical propagation code OPC. We present simulations using the APPLE-II undulator model to
produce elliptically polarized output radiation, and present a detailed comparison with recent
experiments using a tapered undulator configuration at the Linac Coherent Light Source. Validation
of the nonlinear formation is also shown by comparison with experimental results obtained in the
Sorgente Pulsata Auto-amplificata di Radiazione Coerente SASE FEL experiment at ENEA Frascati, a
seeded tapered amplifier experiment at Brookhaven National Laboratory, and the 10 kW upgrade
oscillator experiment at the Thomas Jefferson National Accelerator Facility.

1. Introduction

While free-electron lasers (FELs) have been intensively studied since the 1970s, new developments and concepts
keep the field fresh. Intensive work is ongoing into new FEL-based light sources that probe ever shorter
wavelengths with a variety of configurations. There presently exists a large variety of FELs ranging from long-
wavelength oscillators using partial wave guiding to ultraviolet and hard x-ray FELs that are either seeded or
starting from noise (i.e., self-amplified spontaneous emission (SASE)). As these new light sources come on-line,
interest will grow in shorter pulses, new spectral ranges and higher photon fluxes. In addition, interest is growing
in producing photons with a variety of polarizations ranging from linear, through elliptical, to circular. Indeed,
novel configurations have been described for producing variable polarizations in synchrotron light sources and
FELs using a variety of different undulator designs including APPLE-II and Delta-type undulators [1-7].

In this paper, we develop a three-dimensional, time-dependent nonlinear formulation of the interaction that
is capable of modeling such alarge variety of FELs, in particular this represents the first presentation of a three-
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dimensional simulation of elliptically polarized radiation from a FEL. Particle dynamics are treated using the full
Newton—Lorentz force equations to track the particles through the optical and magnetostatic fields. The optical
field is described by a superposition of Gaussian modes, and the formulation tracks the particles and fields as
they propagate along the undulator line from the start-up through the (linear) exponential growth regime and
into the nonlinear post-saturation state. The formulation includes three-dimensional descriptions of linearly
polarized, helically polarized, and elliptically polarized undulators including the fringing fields associated with
the entry/exit transition regions. Additional magnetostatic field models for quadrupoles and dipoles are also
included. For convenience, we refer to the formulation and simulation code as MINERVA. It is important to
remark that the use of the full Newton—Lorentz orbit analysis allows MINERVA to treat self-consistently both
the entry/exit taper regions of undulators, and the generation of harmonics of the fundamental resonance.

In order to apply the formulation to the simulation of FEL oscillators, an interface has been written between
MINERVA and the optical propagation code OPC [8, 9]. Oscillator simulations proceed by tracking the output
optical pulse from the undulator as simulated by MINERVA, through the resonator and back to the undulator
entrance using OPC, after which the optical field is then imported into MINERVA for another pass through the
undulator. This process is repeated for as many passes through the undulator and resonator as required for the
oscillator to achieve a steady-state.

An important motivation in this development is the ability to describe the interaction in arbitrarily polarized
undulators including linear, elliptical, and helical polarizations. To that end, self-consistent, three-dimensional
representations of these undulator types are included in the formulation. This includes the first application of an
analytical model of an APPLE-II undulator.

Most of the FEL simulation codes in use at the present time can be categorized as either slowly-varying
envelope analyzes (SVEA) or particle-in-cell (PIC) simulations. In the SVEA, the field is optical field is
represented by a slowly-varying amplitude and phase in addition to a rapid sinusoidal oscillation. The field
equations are then averaged over the rapid sinusoidal time scale and, thereby, reduced to equations describing
the evolution of the slowly-varying amplitude and phase. Within the context of the SVEA, FEL simulation codes
fall into two main categories where the particle trajectories are found by first averaging the trajectories over an
undulator period (the so-called wiggler-averaged-orbit approximation), or by the direct integration of the
Newton—Lorentz equations. There is a further distinction between the SVEA codes based upon the optical field
representation, and codes have been written using either a grid-based field solver or a superposition of optical
modes. Simulation codes using the wiggler-averaged-orbit analysis in conjunction with a grid-based field solver
include GINGER [10], GENESIS [11] and FAST [12]. In contrast, codes that integrate the Newton—Lorentz
equations in conjunction with a Gaussian mode superposition for the optical fields include MEDUSA [13] and
MINERVA. One common feature of all the SVEA codes, however, is the way in which time-dependence is
treated. The fast time scale average results in a breakdown of the optical pulse into temporal ‘slices’ each of which
is one wave period in duration. The optical slices slip ahead of the electron slices at the rate of one wavelength per
undulator period. As a result, the SVEA codes integrate each electron and optical slice formz — z + Azand
then allow the optical slice to slip ahead of the electron slices. At the present time, the primary PIC code is
PUFFIN [14]. A PIC code makes no average over the rapid sinusoidal oscillation and integrates the Newton—
Lorentz equations for the particles. As a result, PIC codes require substantially more computational resources
than SVEA codes and are not so commonly in use.

The organization of the paper is as follows. General properties of the formulation are described in detail in
section 2. The field representations used for the undulator fields, quadrupole and dipole fields, and the Gaussian
optical fields are described in section 3 and the dynamical equations are discussed in section 4. Significant
numerical considerations are discussed in section 5. We demonstrate that the dynamical equations describe
vacuum diffraction in the limit in which the electron beam vanishes in section 6. A simulation showing the
application of the formulation for an elliptically polarized undulator is described in section 7, and a discussion of
the comparison of the simulation results with a generalization of the parameterization due to Ming Xie [15] to
include the elliptical undulator is also presented. Simulations of the Linac Coherent Light Source (LCLS) at the
Stanford Linear Accelerator Center (SLAC) [16, 17] are presented in section 8. In particular, we discuss the
comparison of the simulation with the first lasing experiment [16] and then go on to compare the simulation
with recent experiments on the LCLS using a strongly tapered undulator [17]. Comparisons with a variety of FEL
experiments are presented in sections 9—12 including another SASE FEL, a seeded and tapered amplifier, and an
oscillator in order to provide a more comprehensive validation of the formulation. The Sorgente Pulsata Auto-
amplificata di Radiazione Coerente (SPARC) SASE FEL [18] conducted at ENEA Frascati is discussed in
section 9. This is followed by a comparison of the simulation with a seeded, infrared, tapered-amplifier
experiment [19] at Brookhaven National Laboratory in section 10. Simulation of the IR-Upgrade FEL oscillator
experiment [20] at the Thomas Jefferson National Accelerator Facility (JLab) is presented in section 11. This
covers the three major configurations used in FEL experiments: SASE, oscillators, and seeded amplifiers. A
summary and discussion is given in section 12.
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2. General simulation properties

The formulation we develop describes the particles and fields in three spatial dimensions and includes time
dependence as well. Electron trajectories are integrated using the complete Newton—Lorentz force equations. No
wiggler-averaged-orbit approximation is made. The magnetostatic fields can be specified by analytical functions
for a variety of analytic undulator models (such as planar, elliptical, or helical representations), quadrupoles, and
dipoles. These magnetic field elements can be placed in arbitrary sequences to specify a variety of different
transport lines. As such, we can set up field configurations for single or multiple wiggler segments with
quadrupoles either placed between the undulators or superimposed upon the undulators to create a FODO
lattice. Dipole chicanes can also be placed between the undulators to model various optical klystron and/or
high-gain harmonic generation configurations. The fields can also be imported from a field map.

The electromagnetic field is described by a modal expansion. For free-space propagation, we use Gaussian
optical modes. The Gauss—Hermite modes are used for simulation of planar undulators, while Gauss—Laguerre
modes are used for elliptical or helical undulators.

The electromagnetic field representations are also used in integrating the electron trajectories, so that
harmonic motions and interactions are included in a self-consistent way. Further, the same integration engine is
used within the undulator(s) as in the gaps, quadrupoles, and dipoles, so that the phase of the optical field relative
to the electrons is determined self-consistently when propagating the particles and fields in the gaps between the
undulators.

Particle loading is done in a deterministic way using Gaussian quadrature that preserves a quiet start for both
the fundamental and all harmonics. Shot noise is included using a Poisson statistics algorithm [21] so that the
formulation is capable of simulating SASE FELs; however, provision is made for enhanced shot-noise due to
various levels of micro-bunching.

The FEL simulation has also been linked to the OPC [8, 9] for the simulation of FEL oscillators or
propagating an optical field beyond the end of the undulator line to a point of interest. OPC propagates the
optical field using either the Fresnel diffraction integral or the spectral method in the paraxial approximation
using fast discrete Fourier transforms (FFT). A modified Fresnel diffraction integral [22, 23] is also available and
allows the use of FFT's in combination with an expanding grid on which the optical field is defined. This method
is often used when diffraction of the optical field is large. Propagation can be done either in the time or frequency
domain. The latter allows for the inclusion of dispersion and wavelength dependent properties of optical
components. Currently, OPC includes mirrors, lenses, phase and amplitude masks, and round and rectangular
diaphragms. Several optical elements can be combined to form more complex optical component, e.g., by
combining a mirror with a hole element, extraction of radiation from a resonator through a hole in one of the
mirrors can be modeled. Phase masks can be used, for example, to model mirror distortions or to create non-
standard optical components like a cylindrical lens.

In a typical resonator configuration, OPC handles the propagation from the end of the gain medium to the
first optical element, applies the action of the optical element to the optical field and propagates it to the next
optical element and so on until it reaches the entrance of the gain medium. Diagnostics can be performed at the
planes where the optical field is evaluated. Some optical elements, specifically diaphragms and mirrors allow
forking of the optical path. For example, the reflected beam of a partial transmitting output mirror forms the
main intracavity optical path, while the transmitted beam is extracted from the resonator. When the intracavity
propagation reaches the output mirror, this optical propagation can be temporarily suspended and the extracted
beam can be propagated to a diagnostic point for evaluation. Then the intra-cavity propagation (main path) is
resumed.

The numerical procedure involves translating between the input/output required for the FEL simulation
and OPC. Initially, we run the FEL simulation to determine the optical output after the first pass through the
undulator, which then writes a file describing the complex field of the optical mode. OPC is then used to
propagate this field to the downstream mirror, which is partially transmissive in the current example. The
portion of the optical mode that is reflected is then propagated to the upstream mirror (which is a high reflector)
by OPC, and then back to the undulator entrance. The field at the undulator entrance is then reduced to an
ensemble of Gaussian modes that is used as input to the FEL simulation for the next pass. This process is repeated
for an arbitrary number of passes. While the example discussed in this paper relates to a concentric resonator,
OPC has also been used to simulate a regenerative amplifier with a ring resonator [24].

3. The field representations

The undulator field models are three-dimensional representations. Two planar undulator models are available
corresponding to flat-pole-faces and parabolic-pole-faces. The parabolic-pole-face model provides weak two-
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plane focusing. The elliptical undulator field is modeled by a representation of an APPLE-II undulator
consisting of two flat-pole-face undulators that are shifted in phase. In each case, however, the injection into and
ejection from the undulators is simulated by the particle tracking algorithms using smooth models for the
undulator transitions. The quadrupole and dipole field models used are curl- and divergence-free
representations with hard-edged field transitions.

3.1. The flat-pole-face undulator
The flat-pole-face undulator is represented by

cos sz dB,,

B, (x) = B, ink,z —
(x) (z)(sm z B, dz

)e), cosh k,y + B, (z)é, sinh k,,y cos k,,z, (1)
where B,,and k,, (= 27/ \,,, where A, is the undulator period) are the undulator amplitude and wavenumber
respectively.

This field is both curl- and divergence-free when the amplitude, B,,, is constant. The transitions at the ends of
each undulator segment are modeled via

. k
B0 sin? (4wz ); 0 <z< NeAy,
B, (2) = - " ) @)
— Z
B()COSZ(L); Le <z< Ly,
w 4Ntr ) N ~ w

where B,,q is the field amplitude in the uniform region, L,, is the undulator segment length, N, is the number of
undulator periods in the transition region, and L, (= L,, — Ny, A,,) is the start of the output transition. The field

in the transitions is divergence-free, and the z-component of the curl also vanishes. The transverse components
of the curl do not vanish, but are of the order of (k,,B,,) 'dB,,/dz, which are usually small.

3.2. The parabolic-pole-face undulator
The parabolic-pole-face field model is given by

B, (x) = B, (z)(cos knz + SZVI;WZ ddB; )eL (%, y) — V2B, (2)é, cosh(%) inh(kWsz)sin kwz,  (3)
where
e (x,y) =é smh(li/E )s h(]iﬁ) + & cosh(kWTZx) cosh(kWsz), 4)

and B,,(2) is given in equation (2). As in the case of the flat-pole-face model, this field is divergence-free and the z-
component of the curl also vanishes.

3.3. The helical undulator
The helical undulator model that is employed is of the form in cylindrical coordinates

sin x dB,, . cos x dB,,
B, (x) = 2B, I (kyr)é, — 2B, —
x) (Z)(cosx B, &z )1( wh)ér — (Z)(smx + B, &z )
w Bt o B ()] ke, sin Y (5)
wl

where x = k,z — 6,1, denotes the regular Bessel function of the first kind, and B,,(z) is given by equation (2).

3.4. The APPLE-II undulator model

An approximate representation of an APPLE-II undulator can be formed by the super-position of two flat-pole-
face undulator models that are oriented perpendicularly to each other and phase shifted with respect to the axis
of symmetry. As such, the field is represented in the form

cos(kyz + ¢) dB,,
k, By, dz

B, (x) = B,, (z)(sin(sz + ¢) — )Ax cosh k,,x + B,, (2)

cos k,,z dB,,
k,B, dz

X (sin knz — )ey cosh k,y + By (2)é, sinh k,,y[cos(k,z + ¢) + cos kyz], (6)

where, as before, B,,(2) is given by equation (2). This is an approximate representation of an APPLE-II undulator
that is valid near the axis of symmetry. The ellipticity is governed by the choice of the phase, ¢.
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Figure 1. The on-axis field contours for different phases ¢ = 7/8,7/4,7/2 and 37/4.

For0 < ¢ < m/2,theellipticity, u,, is given by
_1- cosg

71—|— cosqS’ @

e
for which the semi-major axis is oriented along 7/2. The choice of ¢ = 0 (7/2) corresponds to planar (helical)
polarization. When 7/2 < ¢ < m, the ellipticity is

1+ cos¢

11— cos ¢ ®

e
and the semi-major axis is oriented along —7/2.
lustrations of the on-axis field contours are shown in figure 1, where we plot the y-component of the field
versus the x-component (normalized to the amplitude) for ¢ = 7/8, /4, w/2 and 37 /4.
The choice of elliptical polarization for the Gaussian modes has the semi-major axis aligned along the x-axis,
so that this undulator field must be rotated in order to correspond to the polarization of the radiation field.

3.5. Quadrupole and dipole fields
The quadrupole field model used is

Bq = Bq(2)(yéx + xe)), 9)

where Bq(2) is the field gradient (constant) defined over arange z; < z < z,. This field is both curl- and
divergence-free over this range.

The dipole field model is described by a constant field oriented perpendicularly to the axis of symmetry over
somerangez; < z < 2.

3.6. The Gaussian optical modes
The Gauss—Hermite modes are used in simulating the interaction with planar undulators. In this case, the field
representation is

o0
OA(x, t) = é IZ eLnh (6Al(’2h sin ¢, + 6Al(,i),h oS ©y,), (10)
,n=0
h=1
where the indices (I, ) describe the transverse mode structure, the index k is the harmonic number, the field
amplitudes, 6Al(’i;’2h), vary slowly in (z, £),

e = 2 exp (—r2/ WD Hi(CO Hi(G,), (a
h
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describes the transverse mode structure where H;are the Hermite polynomials, {, = V' 2x/wp, G, = V. 29/ W,
and wy j, and wy, denote the waist size and spot size of the hth harmonic respectively. The spot size is assumed to

be a slowly-varying function of (z, f). The phase is
2
r
o = hkoz — wt) + an—, (12)
Wi
where ky = w/c, o, denotes the curvature of the phase front of the hth harmonic and which is assumed to be a
slowly-varying function of (z, £).
The Gauss—Laguerre modes are used when simulating elliptical and helical undulators. The field
representation is

o0
6A(x, t) = z eLnh {6Al(,ln),h(éx sin ¢, & U, cos ¢;;) + 6A,(,i),h(éx COS Yy, F ey Sin @)}, (13)
I=—c
n=0
h=1

where the transverse mode structure is given by

w
e = — 2 exp(=r?/wi) (ML), (14)
h

L} is the associated Laguerre polynomial, and ¢ = v/2r/wj, The phase is given by
2
r
o = hkoz — wt) + 10 + ap—. (15)
Wi
The total power carried in each mode, P;, 5, is given by integration of the Poynting vector over the cross
section. This is given by
2.5
Py = —”;e Sk wg, (6al, + 6a2,D), (16)
. ., .,
for the Gauss—Hermite modes, and

25 2
myc (Il +m)!'1+u 2 )
Seez | lny > “kiwon(8ay,),” + b)), 17)

Pron=

for the Gauss—Laguerre modes, where (5&11(,1;,2}3 (= eéAl(, }42;;) / m,c?) is the normalized field amplitude, and
my2c’/8e? =~ 1.089 GW .

4. The dynamical equations

The dynamical equations for the fields employ the source-dependent expansion [25] which is an adaptive
eigenmode algorithm in which the evolution of the spot size and curvature are determined self-consistently in
terms of the interaction with the electron beam. As such, the dynamical equations for the fields are of the form

1) ) (1)
d 5“1(,;1,;1 bay, Sinh
ls,@ |1 K o |7l | (18)
z\ bay,), —bay,y Simh
where Slf Lzh) are the source terms,
d o} 10
-, = (19)
dz 0z c Ot
is the convective derivative, and
d 1d 1+ a2
Ky = B[ 200 SO0 ha =3 (20)
wy, dz 2 dz kowij,

forF;,, =14+ 1+ n (=1 + |l| + 2n) for the Gauss—Hermite (Gauss—Laguerre) modes. The source terms are

given by
1
Sl(,n,h wi 1 1 1 . Uy ( cos ‘Ph) @
=——— 77— \lnh—| o ,
SI(,i),h koc? 217 [1n) W&h "Mlo, |\ sin g,
for the Gauss—Hermite modes, and
S(l) 2 ' .
Ln,h Wi, n! 1 2 eLnn | Ux COS @y F UV SIN
o |~ 72 2 2 . (22)
Sy koc? (Il + m)! wepy 1+ ug \ |uz] \ = Ux Sin @), F eV COs @y,
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for the Gauss—Laguerre modes, where wy, is the beam plasma frequency, and ((...) ) denotes an average over the
initial particle distribution and v; (i = x, y, z) are the Cartesian components of the velocity of an electron with z
taken along the axis of the undulator. A uniform distribution in initial phase and a Gaussian distribution in
coordinate and momentum space is assumed in the examples discussed in this paper. In this case

> diby dyo  expl—(0 — Ya)’/2A771 g dxody,
() J; f Vr/287 1+ erf(yag/2A7) f/m’f

dpxodpyo
x ff 2707 exp(—r?/207 — piy [205) (), (23)

where 7,5 and Ay denote the average energy and energy spread, and o, and o, describe the initial transverse
phase space. The averaging operator defines how the particle phase space is generated. The integral over each
degree of freedom is discretized using Gaussian quadrature to set the initial phase space coordinates and charge
weight of each electron in the simulation. Note that the various macro-electrons included in the simulation carry
avariety of different charge weights that are set initially by the Gaussian quadrature algorithm. Once the initial
phase space is generated, the coordinates and momenta for each macro-electron is tracked by integrating the
Newton—Lorentz equation simultaneously with the equations for the optical fields.

We remark that there are alternative ways of implementing this particle average and different distributions
can be used to initialize the electron phase space internally. However, MINERVA also has the ability to import
initial particle distributions from alternative sources such as electron beam dynamics simulations through
accelerators and magnetic transport lines.

The evolution of the spot size and curvature are governed by

2
dwn _ 200y (24)
dz hkowy,
1 1 2
day, _ LHap _ Xy — ap Y, (25)

2dz hkew}
where the source terms are defined as

(3(2) 8(2) )5a(2) _ (S(l) S(l) )(5(1(1)
Xh -9 0,2,h 0,h 0,0,h 0,2,h 0,h 0,0,k , (26)

2
5ao,o,h

(1) (1) (1) (2) (2) (2)
. (Sozh Syom 00005, + (Soop + Sion 004,
Y, = , (27)
5ao,o,h

for the Gauss—Hermite modes, and

(1) ) 2) (1)
301h5a00h Soi, h‘saooh

Xy = , (28)
5“0,0,11

(1) 1) (2) (2)
Y, — o100 + Son0%0n (29)
h — 6a2 h >
0,0,

for the Gauss—Laguerre modes, where (5[102)0) B = baly h2 + 5a(§2()> hZ.

These field equations are integrated together with the Newton—Lorentz force equations for the particles.

dx
z 7 — Ux 30
e, T (30)
dy
2T — > 31
e, — Y (31
d_w:k_i,_kw_i’ (32)
dz U,
where 1) is the ponderomotive phase,
d e
UV:—P = —ebE — —v x (Bstatic + 5B); (33)
dz c

where 0E and 0B correspond to the electric and magnetic fields of the complete super-position of Gaussian
modes, and By, is the magnetostatic fields (undulators, quadrupoles, and dipoles).
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5. Numerical considerations

MINERVA and MEDUSA [13] both employ the SVEA using a Gaussian modal superposition for the optical
fields and a non-wiggler-averaged orbit analysis. While the development of MINERV A benefits from lessons
learned in the development of MEDUSA, it goes about the process in significantly different ways and contains
many improvements in features, diagnostics, and computational efficiency. Rather than list all of the differences,
we note that the two most important differences are (1) the Gaussian modal representation has been changed
and significantly simplifies the dynamical equations for the fields and (2) the application of slippage has been
improved by implementing a higher order interpolator. These improvements preserve energy conservation to
within several parts in 10°, which is 1 to 2 orders of magnitude better than is achieved with full time-dependent
SASE simulations with MEDUSA.

MINERVA can treat steady-state simulation by the simple expedient of including a single temporal slice in
the simulation. Time dependence is treated by including multiple temporal slices and allowing the field slices to
advance relative to the electron slices at arbitrary integration intervals. Since the optical field slips ahead of the
electrons at the rate of one wavelength per undulator period, if this slippage operation is performed at shorter
intervals than the undulator period, then the field advance is interpolated between adjacent temporal slices based
on this slippage rate.

The total number of equations in each simulation is

Nequations = 1Vslices [6Nparticles + 2(I\]modes + Nharmonics)]y (34)

where N, is the number of slices in the simulation, and for each slice, Npaicies is the number of particles,
Ninodes 18 the number of modes in all the harmonics, and Nj,armonics 1 the number of harmonics. This complete
set of coupled nonlinear differential equations is solved numerically using a Runge—Kutta algorithm. A 4th order
Runge—Kutta integrator is typically used; however, since small spatial steps are required to resolve the wiggler
motion (20-30 steps per undulator period), it is sometimes possible to use a 2nd order Runge—Kutta algorithm
which halves the run times without a significant loss of accuracy. It should also be remarked that the Runge—
Kutta algorithms allow for changing the step size ‘on the fly’ so that different step sizes can be used in
quadrupoles, dipoles, or drift spaces between magnetic elements.

The number of Gaussian optical modes required to achieve numerical convergence is determined empirically
by adding modes until the desired level of convergence is obtained. The number of modes needed to achieve
convergence to within 1%-5% varies with the parameters of the simulation. In general, however, the number of
required modes depends upon the relative values of the gain length and the Rayleigh range, with fewer modes
needed for longer Rayleigh ranges. For all the examples discussed in this paper, 20—30 modes were used.

The particle averages in the source terms are implemented by converting the continuous integral over a
distribution function into a discrete set of macro-particles using Gaussian quadrature over each of the degrees of
freedom. Good accuracy typically requires using at least 8000 or so particles per slice, but significantly more
particles may be required when greater transverse resolution is desired or when simulating harmonic generation.

6. Vacuum propagation

That these equations recover vacuum propagation can be demonstrated by considering the case in which the
electron beam is not present and the sources (equations (21) and (22)) vanish. As a result, X;, = Y}, = 0 so that the
spot size and curvature satisfy the following equations

2
dWh _ ay (35)
dz k() wh
and
1 2
Ldoy 1+ h, (36)
2 dz kowij,
These equations have the well-known solutions for the spot size and curvature in vacuo where
2
z—z
wi(2) = won, |1 + % (37)
2R
and
z—z
an(2) = —, (38)

ZR

where zg = kowy,y, 2/2 is the Rayleigh range and z, denotes the position of the mode waist.
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Substitution of equations (35) and (36) into (20) shows that

F
Kinn=— bn (39)
2R

which is the derivative of the Gouy phase shift, ¢, ,, . If we now express the field components in the form
6Al(’}1)’ p = OApup cos @, and 6Al(,i), u = OAp . sin ¢, then the dynamical equations can be reduced to equations
for the derivatives of the amplitude 6A;,, , and phase @ as

iéAl,n,h =0, (40)
dz
which shows that the power is constant, and
d d
4,9, 41
dz 2 dz @l,n,h ( )

which indicates that the phase variation is described by the Gouy phase.
As aresult, the dynamical equations describe vacuum diffraction in the absence of an electron beam.

7. Elliptical undulators

We now describe the generation of elliptically polarized radiation using an elliptically polarized undulator. For
convenience, we consider the same beam, undulator and focusing configuration as used in the simulation of the
SPARC experiment (section 8), except that we now use the APPLE-II undulator model and elliptically polarized
radiation. In addition, we limit the simulation to the steady-state (i.e., a single temporal slice) regime since that is
sufficient to demonstrate the reliability of the formulation and allows us to compare the simulation results with
an analytic theory.

In order to compare the simulation results with an analytic theory, we make use of a description of the effect
of an elliptical undulator on the resonant wavelength and the usual JJ-coupling factor that has been given by
Henderson et al [26]. The generalized resonance condition varies with the ellipticity as follows

2
A= )\—W[l + 1+ uf)K—], (42)
22 2

Observe that this reduces to the usual expressions in the limits of planar (1, = 0) and helical (1, = 1) undulators.
The generalized JJ-factor is given by

_ 2
JJ =1+ uf%[mo - L—Z’;JI(O], (43)

where

O ug)K?/4
1+ (1 + ud)K/4

In [26], the authors compared the results of simulations for different choices of the ellipticity using (1) a one-
dimensional, orbit-averaged simulation code in which the generalized resonance condition and JJ-factor were
implemented and (2) the implementation of an elliptical undulator model in the one-dimensional PIC PUFFIN
[14] code. Since the PUFFIN code does not make use of the orbit average and does not explicitly include either
the resonance condition or the JJ-factor, it is expected that the ellipticity is included self-consistently. The
comparison of the two codes showed excellent agreement. Hence, we conclude that the generalized dynamical
equations constitute a reliable description of the ellipticity. As a result, we can obtain a three-dimensional
approximation of the interaction in an elliptical undulator by using these expressions for the resonant
wavelength and JJ-factor in the parameterization given by Ming Xie [15]. This generalized parameterization is
then compared with the results of three-dimensional simulations.

The undulator field amplitude (left axis in blue) associated with the generalized resonance and the
generalized JJ-factor (right axis in red) for the parameters of interest are shown in figure 2 as functions of the
ellipticity. We employed these undulator field amplitudes in performing the simulations for various choices of
the ellipticity. Note, however, that the simulation model does not employ a wiggler-averaged orbit integration;
hence, the physics associated with the J/-factor is implicitly included in the simulations. As a result, the JJ-factor
is only used in generalizing the parameterization developed by Ming Xie for comparison purposes.

Simulations have been performed for ellipticities ranging from zero (planar undulator) to unity (helical
undulator) using the APPLE-II undulator representation. In each case, the simulation was started from shot
noise using the same noise seed. No average over multiple noise seeds was performed; however, this is perfectly
adequate since our intention is to study the variation in performance due to different ellipticities and the initial

(44)
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Figure 3. The power along the undulator for various choices of the ellipticity.

phase space used in the different simulations is invariant with respect to the ellipticity. Results showing the
power growth along the undulator line are shown in figure 3 for ellipticities 0f 0, 0.15, 0.25, 0.50 and 1.0. As
shown in the figure, the distance to saturation tends to decrease with increasing ellipticity. This is
understandable since the JJ-factor increases with the ellipticity and this tends to increase the strength of the
interaction.

A comparison between the saturation distances found in simulations and the predictions based on the
generalized parameterization due to Ming Xie is shown in figure 4 where we plot the saturation distance versus
the ellipticity. It should be remarked that we have added the drift space between the undulators to the
predictions of the generalized parameterization. Since the simulation includes two extra undulator periods in
each undulator to model the transitions at the entrances and exits of the undulators, we have added these lengths
to the generalized parameterization as well. It is evident from the figure that the simulation is in good agreement
with the generalized parameterization.

8. The LCLS SASE FEL

The LCLS [16] is a SASE FEL user facility that became operational in 2009 operating ata 1.5 A wavelength. In this
paper, we first discuss a comparison with the initial results from the LCLS in order to validate the model. We
then present the first comparison showing substantial agreement between simulation and an experiment on the
LCLS that employed an aggressive taper to enhance the efficiency.

The best experimental estimates for the fundamental operating parameters for operation at 1.5 A are listed in
table 1. Itemploys a 13.64 Ge V/25 pC electron beam with a flat-top temporal pulse shape of 83 fs duration. The
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Table 1. Parameters of the LCLS FEL

experiment.

Electron beam
Energy

Bunch charge
Bunch duration
Peak current
Xx-emittance
y-emittance

rms energy spread
rms size (x)

aX

B

rms size (y)

@y
By
Undulators

Period

Length

Amplitude (1st segment)
Kims (1st segment)
Taper slope

Gap length

Quadrupoles

Length

Field gradient

13.64 GeV
250 pC

83 fs

3000 A (flat-top)
0.4 mm mrad
0.4 mm mrad
0.01%

21.5 pm

1.1

30.85 m

19.5 um
—0.82

25.38 m

33 segments
3.0cm

113 periods
12.4947 kG
2.4748
—0.0016 kG
0.48 m

7.4 cm
4.054 kG cm ™!

normalized emittance (xand y) is 0.4 mm mrad and the rms energy spread is 0.01%. The undulator line
consisted of 33 segments with a period of 3.0 cm and alength of 113 periods including one period each in entry
and exit tapers. A mild down-taper in field amplitude of —0.0016 kG/segment starting with the first segment
(with an amplitude of 12.494 kG and K., = 2.4748) and continuing from segment to segment was used. This is
the so-called gain taper. The electron beam was matched into a FODO lattice consisting of 32 quadrupoles each
having a field gradient of 4.054 kG cm ™' and a length of 7.4 cm. Each quadrupole was placed a distance of
3.96 cm downstream from the end of the preceding undulator segment. The Twiss parameters for this FODO
lattice are also shown in table 1.
The propagation of the beam through the LCLS undulator/quadrupole lattice as found in simulation is
shown in figure 5, where we plot the beam envelope in x (blue, left axis) and y (red, right axis) versus position.
Observe that the beam is well-confined over the 130 m of the extended lattice with an average beam size of

about 21 pm.

The LCLS produces pulses of about 1.8 m] at the end of the undulator line [16] and saturation is found after
about 65-75 m along the undulator line. A comparison between the measured pulse energies (red circles), as
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Figure 5. Simulated propagation of the LCLS beam.
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Figure 6. Comparison between the experimental data (red circles) from the LCLS (courtesy of P Emma and H-D Nuhn) and
simulation (blue) using the gain taper.

obtained by giving the electrons a kick to disrupt the FEL process, and the simulation (blue) is shown in figure 6.
The experimental data is courtesy of P Emma and H-D Nuhn at SLAC, and the simulation results represent an
average over an ensemble of 25 runs performed with different noise seeds. As shown in the figure, the
simulations are in good agreement with the measurements in the exponential growth region with close
agreement for the gain length. The simulation exhibits saturation at the same distance as the experiment in the
range of 65—75 m at a pulse energy of 1.5 m]J. After saturation, in view of the gain taper, the pulse energy grows
more slowly to about 2.02 m] at the end of the undulator line, which is approximately 8% higher than the
observed pulse energy. The agreement between simulation and experiment for the pulse energy is poorer during
the early stages of the interaction. This may be due to a variety of reasons. On the experimental side, as the pulse
energy grows by 5 to 6 orders of magnitude from the initial shot noise to saturation, it is difficult to calibrate the
detectors for the low pulse energies at the early stages of the interaction. Also, while kicking the electrons
provides a fast measurement method, it is accompanied by a larger background signal and the possibility of
restarting the FEL process downstream the undulator line when the kick is performed at the beginning of the
undulator line [17]. On the simulation side, there may be some inaccuracies in the shot noise algorithm that
underestimates the initial noise level.

Experiments have also been performed at the LCLS [17] to investigate enhancing the efficiency using a more
sharply tapered undulator. The LCLS configured with a stronger taper for the last segments has demonstrated
enhancements in the efficiency. This experiment employed an undulator in which the aforementioned mild
linear down-taper is enhanced by the addition of a more rapid down-taper starting at the 14th undulator
segment. This so-called saturation taper profile is shown in figure 7 (data courtesy of D Ratner).
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Figure 8. Comparison between the experimental (red) and simulations for a variety of emittances and energy spreads for the saturation
taper. Data courtesy of D Ratner.

In comparison with the undulator and electron beam properties employed in the first lasing experiments,
the tapered undulator experiment employed undulators tuned to somewhat different field strengths and
electron beam parameters that may have varied from the first lasing experiment. The pulse energies in the
experiment were obtained by measuring the energy loss in the electron beam. Simulations were conducted over
a parameter range including emittances of 0.40—0.45 mm mrad and energy spreads of 0.010%—0.015% that are
thought to characterize the electron beam.

A comparison between the measured pulse energies and simulations over the parameter range that most
closely agree with the experiment is shown in figure 8, where the experimental results are shown in red and have
been obtained by measuring the electron energy loss. The maximum pulse energy shown represents an
enhancement of the efficiency by a factor of 2—3 over what is found with the gain taper alone. As is evident from
the figure, the simulations for the three choices are all very similar and are in good agreement with the
measurements, indicating that the efficiency enhancement could be achieved for a variety of electron beam
parameters.

9. The SPARC SASE FEL

The SPARC experiment is a SASE FEL located at ENEA Frascati [18]. The best estimate for the experimental
parameters of SPARC are summarized in table 2 and are as follows. The electron beam energy was 151.9 MeV,
with abunch charge 0of 450 pC, and a bunch width of 12.67 ps. The peak current was approximately 53 A fora
parabolic temporal bunch profile. The x and y emittances were 2.5 mm mrad and 2.9 mm mrad respectively,
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Table 2. Parameters of the SPARC FEL

experiment.

Electron beam
Energy
Bunch charge
Bunch duration
Peak current
x-emittance
y-emittance
rms energy spread
rms size (x)
Qy

rms size ()
Qy
Undulators
Period
Length
Amplitude
Kims

Gap length
Quadrupoles
Length

Field gradient

151.9 MeV

450 pC

12.67 ps

53 A (parabolic)
2.5 mm mrad
2.9 mm mrad
0.02%

132 pm

0.938

75 pm

—0.705

6 segments

2.8 cm

77 periods
7.8796 kG
1.457

0.40 m
Centered in gaps
53 cm

0.9kG cm™!

and the rms energy spread was 0.02%. There were six undulators each of which was 77 periods in length (with
one period for the entrance up-taper and another for the exit down-taper) with a period of 2.8 cm and an
amplitude of 7.88 kG. In the simulation eight undulators were used to show saturation of the system. The gap
between the undulators was 0.4 m in length and the quadrupoles (0.053 m in length with a field gradient of
0.9 kG cm ™' forming a strong focusing lattice were located 0.105 m downstream from the exit of the previous
undulator. Note that the quadrupole orientations were fixed and did not alternate. The electron beam was
matched into the undulator/focusing lattice. The resonance occurred at a wavelength of 491.5 nm. The pulse
energies were measured in the gaps between the undulator segments.

Given the bunch charge available, the SASE interaction was unable to reach saturation over the six
undulators present. Hence, for the purposes of the simulation we shall add two extra undulators to bring the

interaction to saturation.

The propagation of the beam through the undulator/quadrupole lattice as found in simulation is shown in
figure 9, where we plot the beam envelope in x (blue, left axis) and y (red, right axis) versus position. Observe that
the beam is well-confined over the 20 m of the extended lattice with an average beam size of about 115 pim.

A comparison of the evolution of the pulse energy as found in simulation and as measured in the experiment
is shown in figure 10 where the simulation is indicated by the blue line and is an average taken over 20 simulation
runs with different noise seeds. The pulse energy was measured in the gaps between the undulators, and the
results for a sequence of shots are indicated by the red markers (data courtesy of L Giannessi). Observe that the
agreement between the simulation and the measured performance is excellent over the entire range of the
experiment. In addition, the simulation shows that saturation could have been reached after about 18—20 m with

two additional undulator segments.

This result is in substantial agreement with the parameterization developed by Ming Xie [15]. Using a 3-
function of about 2 m, we find that the Pierce parameter p ~ 2.88 x 10~ and that this parameterization
predicts a gain length of 0.67 m, and a saturation distance of 18.1 m (including the additional 3.2 m represented
by the gaps between the undulators). This is in reasonable agreement with the simulation.

A comparison between the evolution of the relative linewidth as determined from simulation and by
measurement (data courtesy of L Giannessi) is shown in figure 11 over the range of the installed undulators and
agreement between the simulation and the measured linewidth is within about 35% after 15 m. As shown in the
figure, the predicted linewidths are in substantial agreement.

The initial decrease in linewidth shown in figure 11 results from the development of temporal coherence as
can be seen in figures 12—14, where we plot the power versus time within the optical pulse. The time window
used in the simulation was chosen to be 14 ps in order to allow for slippage across the 12.67 ps electron bunch.
The optical pulse at the start-up of the SASE interaction is expected to contain a large number of ‘spikes’. This is

indeed what is found in simulation as shown in figure 12, where we plot the power in the pulse over the entire
time window. This pulse is near the start of the undulator line and exhibits a broad distribution of spikes
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Figure 10. Comparison of simulation results (blue) and the measured pulse energies (red) versus distance (data courtesy of L
Giannessi).
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Figure 11. Comparison of the measured relative linewidth in red (data courtesy of L Giannessi) with that found in simulation (blue).
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Table 3. Parameters for the BNL tapered wiggler

experiment.

Electron beam

Energy 100.86 MeV
Bunch charge 360 pC
Bunch duration 1.8 ps

Peak current 300 A (parabolic pulse)
Emittance 4 mm mrad
rms energy spread 0.1%

NISUS Undulator weak focusing
Period 3.89 cm
Amplitude (uniform) 3.03 kG

Kome 0.848

Length 10 m

Start taper point 7.0 m
Optimal taper —4%

Optical field

Wavelength 793.5 nm
Seed power 10 kW

Pulse duration 6 ps

HP Freund et al

coinciding roughly with the center of the electron bunch, which is located at the center of the time window. As
shown in figure 11, the linewidth narrows as the interaction proceeds and this corresponds to the development
of temporal coherence.

This evolution of temporal coherence is illustrated in figures 13 and 14, by comparison with figure 12, where
the temporal pulses are shown at z = 10.0 m and 15.0 m respectively. These two figures correspond to the
exponential gain region prior to saturation. It is clear in these figures that the early collection of a large number of
spikes has coalesced into a more sharply peaked distribution containing a smaller number of spikes. This
corresponds to the narrowing of the linewidth due to the development of coherence in the exponential gain
region. Comparing figures 10 and 11, we observe that the measured pulse energy is somewhat higher and the
relative linewidth somewhat lower than the simulation results, which may be due to a small difference in the
beam match.

10. The BNL tapered amplifier

A tapered-wiggler, seeded amplifier experiment was conducted at the Source Development Laboratory at BNL
[19] using a high brightness electron injector, a chicane bunch compressor feeding a 100 MeV, S-band SLAC
type traveling wave linac. The electron beam is then injected into the NISUS wiggler [27] that was built for
Boeing Aerospace. The NISUS wiggler is a 10 m long planar wiggler with a period of 3.89 cm and with weak, two-
plane focusing. The NISUS undulator consists of alinkage of 1 m segments, and a taper can be imposed by
choosing a segment and opening the jaws of the undulator starting at that point. This creates a linear downward
taper of the field. A Ti:sapphire laser was used both as the driver for the photo-cathode electron gun and as the
seed laser for the FEL amplifier operating at a wavelength of 793.5 nm. A 300% enhancement over the uniform
wiggler interaction was observed when the NISUS undulator was tapered.

The experimental parameters are given in table 3. The resonant electron beam energy is 100.86 MeV, and the
bunch charge is 360 pC over a bunch duration of 1.8 ps (full width), yielding a peak current of 300 A for a
parabolic pulse shape. The normalized emittance was 4.0 mm mrad and the rms energy spread was 0.1%. The
electron beam was matched into the weak focusing, NISUS undulator with a matched beam radius of about
212 pmanda2.23 m S-function. The amplitude of the NISUS wiggler in the uniform section was 3.03 kG (Kjns
= 0.848). The optical seed pulses provided by the Ti:Sapphire laser had peak powers of up to about 10 kW with a
pulse duration of 6 ps, which was wider than the electron bunch duration. Indeed, this ensures that the electron
beam experiences a relatively uniform seed laser intensity over the entire bunch at the outset.

The experiment was run at the resonant energy. While the simulation can be run unambiguously at the
resonant energy, finding the resonant energy in the experiment involved adjusting the electron beam energy
from the linac. Since there was insufficient bunch charge to reach saturation in SASE mode, and since the growth
rate peaks on-resonance, the unsaturated SASE interaction will yield maximum power when the beam energy is
tuned to the resonant energy. As a result, when this condition was realized, the linac was ‘locked down’ to this
beam energy and the seed laser was turned on.
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Figure 15. Comparison between simulation and measured pulse energies for a uniform undulator (data courtesy of X ] Wangand ] B
Murphy).

The pulse energy was measured by ‘kicking’ the beam to the wall at various axial positions and measuring the
output pulse energy that resulted. A comparison between the simulation and measured pulse energies for a
uniform undulator is shown in figure 15, where the data (courtesy of X ] Wang and ] B Murphy) is indicated in
red and the error bars indicate the standard deviation for a series of shots. It is evident that good agreement is
found between the simulation and the measurements. Saturation at about 113 + 28 pJ is found after about
7.0-7.5 m. The simulation result of 103 yJ is well within the range of uncertainty found in the experiment.

The NISUS undulator can be tapered in 1 m steps. Since the optimal taper is dependent upon both the start-
taper point and the taper slope, and since the start-taper point must be located prior to saturation in the uniform
undulator, finding the optimal taper configuration was an iterative process. The choice of 10 kW seed power was
made by trial and error to optimize the start-taper point at 7.0 m. Further optimization indicated that a down
taper of 4% over the final 3 m of the undulator yielded the maximum output power.

A comparison between the measured pulse energies for the tapered undulator (data courtesy of X ] Wang
and ] B Murphy) and the corresponding simulation results is shown in red in figure 16. The uniform undulator
results taken from figure 15 are also shown for comparison in blue. As evidenced in the figure, the agreement
between the simulation and the measurements is excellent. The measured output was 283 + 68 1], and the
simulation result of 296 pJ also falls well within the range of experimental uncertainty. This represents an
increase of almost 300% over the output of the uniform undulator.

The spectra as observed in the experiment and as found in simulation show similar agreement. Note that the
accuracy of the spectral measurements was limited by the bandwidth of the filter, and the experimental spectra
may be shifted by as much as 0.5 nm. The spectra as determined at z = 6.0 m are shown in figure 17 where the
measured spectrum is shown in red and the simulation result is shown in blue. Observe that the peaks and
spectral widths agree closely. The comparison between the observed (red) and simulation (blue) spectra at the
exit from the tapered undulator is shown in figure 18, and the agreement is very good at this point as well. The
shift in the simulation spectrum relative to that measured is only 0.45 nm, which is well within the sensitivity of
the spectrometer. In addition, the spectral widths are very close, and the sidebands indicated at about 796 nm are
also in good agreement between the measurement and the simulation. Although the simulation observed
somewhat more sideband growth than the experiment, sidebands do not seem to be an important component of
the output spectra.

11. The JLab IR-Upgrade FEL oscillator

To further investigate the simulation capabilities we also compared the simulation with the IR-Upgrade FEL
oscillator at JLab [20]. The basic experimental parameters were a kinetic energy of 115 MeV, an energy spread of
0.3%, abunch charge of 115 pC, a pulse length of 390 fs, a normalized emittance of 9 mm mrad in the wiggle
plane and 7 mm mrad in the plane orthogonal to the wiggle plane, and a repetition rate of 74.85 MHz for the
electron beam. The planar undulator was 30 periods long, had a period of 5.5 cm, and a peak on-axis magnetic
field of 3.75 kG. For proper electron beam transport through the undulator, we used a one period up- and down-
taper. The electron beam was focused into the undulator with the focus at the center of the device. The resonator
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Figure 16. Comparison between measured pulse energies and simulation results for the uniform (blue) and tapered (red) undulators
(data courtesy X ] Wang and ] B Murphy).
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Figure 19. The cavity detuning curve.

length was about 32 m and the cold-cavity Rayleigh length was 0.75 m. The total loss in the resonator was 21%
with about 18% out-coupled per pass from the downstream mirror. For these settings, the wavelength
was 1.6 pm.

To simulate the FEL oscillator, OPC takes the optical pulse at the exit of the undulator and propagates the
pulse through the resonator and back to the entrance of the undulator. The FEL simulation takes this optical
pulse and propagates it together with a fresh electron bunch through the undulator. This process repeats for a
predefined number of roundtrips. In this simulation, the number of particles was 5832 per slice, while the
separation between slices was 5.4 fs. The number of optical modes was dynamically adjusted each roundtrip to
accommodate the evolution of the optical field inside the resonator.

The length of the optical cavity must be selected so that the returning optical pulse is in synchronism with the
electron bunches. The roundtrip time for the optical pulses in the cavity is t;ounduip = 2Lcav/cand the separation
between electron bunches is e, = 1/f;cp, Where L, is the cavity length and f,, is the electron bunch repetition
rate. Perfect synchronism (referred to as zero-detuning) is obtained when t,undrip = Mtsep, where M is the
number of optical pulses in the cavity. In this case there were 16 optical pulses in the cavity and the zero-detuning
lengthis Ly = 32.041 946 079 m. The cavity detuning curve is shown in figure 19 as a function of the difference
between the cavity length L.,, and the zero-detuning length. We find that the maximum output power of
14.52 kW occurs for a positive detuning of 2 yum and is close to the measured value of 14.3 4= 0.72 kW [20]. Asa
result, the predicted extraction efficiency is about 1.4%, which is close to the theoretical value of 1/2N,, ~ 1.7%.
We remark that previous simulation of this experiment [28] yielded an average output power of 12.3 kW, and
the present formulation is in better agreement with the experiment than in the earlier simulation. As in the
previous simulation [28], the roughly triangular shape of the detuning curve is also in agreement with the
experimental observation.

The temporal profiles of the optical pulse at the undulator entrance and exit as well as that of the electron
bunch current are shown in figure 20 for the zero-detuning cavity length after pass 100 which corresponds to a
stable, saturated steady-state. Observe that the electron bunch is centered in the time window, which has a
duration of 1.4 ps. That this is at zero-detuning is indicated by the fact that the incoming optical pulse at the
undulator entrance is in close synchronism with the electron bunch. Itis also evident that the center of the
optical pulse advances by about 0.16 ps as it propagates through the undulator, and this is in good agreement
with the theoretical slippage estimate of N, A/c, where N,, is the number of periods in the undulator. Finally, it
should be remarked that this is in the steady-state regime where the losses in the resonator and the out-coupling
are compensated for by the gain in the undulator.

12. Summary and conclusion

In this paper, we have described a three-dimensional, time-dependent nonlinear formulation for the simulation
of a variety of FEL configurations utilizing helical, planar, and elliptical undulators. For future reference, we refer
to this formulation and simulation code as MINERVA. Along with the well-known three-dimensional
representations of helical and planar undulators, a three-dimensional model is described to simulate an APPLE-
[T undulator. The simulation is in substantial agreement with a generalized parameterization for elliptical
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Figure 20. Temporal profiles of the power in the optical pulse at the undulator entrance (green) and exit (blue) as well as the current in
the electron bunch (right axis, red).

undulators. Comparisons of the simulation with a seeded infrared FEL amplifier, an infrared FEL oscillator, and
SASE FELs operating at optical and x-ray wavelengths all showed good agreement with the experiments.
Consequently, we feel that the formulation captures the basic physics of the FEL interaction over a wide range of
parameters and can accurately, and with confidence, predict the performance of a large variety of FELs.

The Gaussian optical modes are not the ideal electromagnetic representation for all FELs. There is also
interest in the development of FELs at spectral ranges that approach mm wavelengths. At wavelengths longer
than 100 pm or so, the boundary conditions imposed by the walls of the drift tube cannot be satisfied using the
Gaussian optical modes. Instead, a waveguide mode decomposition is more appropriate. Future development of
this formulation will include a waveguide mode decomposition in addition to the Gaussian optical modes.
Indeed, it is also intended to include a mixed decomposition appropriate where the waveguide boundary
conditions are appropriate in one direction while the free-space modes are appropriate in the other direction.
This will permit the simulation of long wavelength THz FELs using a rectangular drift tube which is compressed
in one direction but relatively open in the other. These developments will be reported in future publications.

In addition, there is continuing and developing interest in short wavelength FELs with variable polarizations
that are formed using undulator lines composed of mixed undulator types and orientations (i.e., planar
undulators aligned along the x- or y-axes). At the present time, MINERVA is capable of setting up such a
complex undulator line. However, the polarization (planar, helical, or elliptical) is fixed at the initialization. In
order to self-consistently model such an undulator line where the polarization of the optical field can vary along
the axis of symmetry, the dynamical equations for the x- and y-components of the field must be treated
separately. The modifications to MINERVA needed to implement this field model are currently under study and
the results will be presented in a forthcoming paper.
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