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ABSTRACT 

Analysis of the dynamics of colloids in shear flow can be challenging because of the superposition of 
diffusion and advection. We present a method that separates the two motions, starting from the time-
dependent particle coordinates. Restriction of the tracking to flow lanes and subtraction of estimated 
advective displacements are combined in an iterative scheme that eventually makes the spatial 
segmentation redundant. Tracking errors due to neglect of lateral diffusion are avoided, while drifts 
parallel and perpendicular to the flow are eliminated. After explaining the principles of our method, 
we validate it against both computer simulations and experiments. A critical overall test is provided 
by the Mean Square Displacement function at high Peclet numbers (up to 50). We demonstrate via 
simulations how the measurement accuracy depends on diffusion coefficients and flow rates, 
expressed in units of camera pixels and frames. Also sample-specific issues are addressed: inaccuracies 
in the velocity profile for dilute suspensions (Volume Fraction ≤ 0.03), and tracking errors for 
concentrated ones (VF ≥ 0.3). Analysis of experiments with colloidal spheres flowing through micro 
channels corroborates these findings, and indicates perspectives for studies on transport, mixing or 
rheology in microfluidic environments.  
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1. INTRODUCTION 

The behavior of colloidal particles in microscopic geometries is of interest for a growing number of 
applications like their synthesis in droplets [1] or microfluidic channels [2], their use as (bio)sensors in 
microfluidic chips [3], assembly in confined geometries [4], and transport through capillaries [5, 6] or 
porous networks [7]. Also from a fundamental point of view these systems are interesting, an 
important reason being that geometrical confinement can strongly influence both the spatial 
distribution and the dynamics of the particles [8-12]. The recent emergence of microfluidics has 
further enhanced this interest by adding shear flow as an additional dimension to the problem. The 
combination of confinement and spatially varying flow has been addressed at the level of the 
advective velocity and concentration profiles [5, 6, 13-17]. However data on the diffusive dynamics in 
flow are scarce, especially for Brownian particles. One reason for this could be the difficulties in 
analyzing the behavior of particles that show both diffusion and advection.  

In the flow of colloidal suspensions, two types of motion are superimposed onto each other. On one 
hand the particles tend to follow the streamlines of the overall material, but on the other they also 
deviate from it, due to collisions with either solvent molecules or other particles. From a scientific 
point of view, both types of motion are of interest. The advective (average) motion as characterized 
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by the flow profile reflects the nonlinear rheological behavior of the material [18-20]. Knowing the 
driving force (e.g. a pressure drop) and the geometry (e.g. a capillary or a rectangular channel), the 
measured velocity profile can be either inverted or fitted to a flow curve (e.g. [18]). The deviatoric 
(stochastic) motions of the colloids contain complementary information. Depending on the fulfilment 
of certain assumptions about the probe-matrix interactions, they can reveal local viscoelastic 
properties of the material surrounding the particles [21-27] . 

However the problem is how to separate the two types of motion from each other (in a video 
microscopy experiment). The stochastic motion adds ‘noise’ which should be properly ‘averaged out’ 
before the advective motion can be found. Conversely, the average motion provides a background 
signal which has to be subtracted before the fluctuations can be quantified. This problem is not 

exclusive to colloids; it is also encountered in flow of suspensions of much bigger particles [28-30] 
and dry granular flows [31], where the diffusion is not Brownian but collision-induced. For non-
colloidal particles in a homogeneous shear flow, the diffusive dynamics could be extracted using a 
correlation technique [29, 30, 32]. More recently also flows with gradients in shear have been 
considered. Besseling et al [33] describe the combination of image correlation and particle tracking 
to find velocity profiles of concentrated suspensions flowing through micro channels.  

In spite of these significant achievements, there are still regimes of relevance for fundamental and 
applied studies, in which decomposition of the particle motions into advection and diffusion remains 
challenging. A good example is the case of colloids flowing at high Peclet numbers, where it has been 
found that concentration gradients can develop as a consequence of shear induced diffusion [5, 6, 
34]. However measurements of the diffusion coefficients themselves were not presented for this 
case. It is clear why these are difficult: the stochastic displacements are relatively very small.  

In this paper we present a method that tackles this problem by combining a careful tracking of 
particle displacements with a precise subtraction of the local advective motion. Tracking erratically 
moving particles in high speed flow is a well-recognized problem. The standard routine for micro-
rheological applications at rest [35] tries to find the new position of each particle in the next video 
image by searching within a circle. Use of the same method in flow, presents a challenge. In case of 
directional motion with velocity v detected with a time resolution ∆t, the search radius needs to be 
(at least) v*∆t. If this radius becomes so large that other particles are found inside the same circle, 
ambiguities occur, leading to (very detrimental) misidentifications. Clearly one remedy could be to 
diminish ∆t via the speed of the camera. But regardless of the success of the latter, the desire to 
‘stretch’ the range of addressable flow speeds via an improved data analysis will always remain.  

One such improvement consists of subtracting the estimated advective displacement prior to the 
tracking, and applying this in an iterative scheme. This approach has been successfully used but a 
remaining issue, called ‘accumulated strain’ was identified for high shear flows [33]. Also other 
(potential) issues of tracking in high shear flows exist, which have not been addressed sofar. Scarcity 
of the particles is a notable one, with implications for the study of dilute systems (e.g. use of the 
colloids as diffusive tracers). In this regime, accurate measurement of the velocity profile requires an 
experiment of long duration, which in turn can generate (more prominent) issues with fluctuations in 
the flow or drift of the microscope table. We will present mitigations to each of these issues.  

Regarding the measurement of diffusive behavior, it is important to note that (near) absence of 
particle misidentifications is required but not necessarily sufficient. Even if the tracking is flawless, 
the mentioned issues with noise or velocity drifts may cause significant inaccuracies in the apparent 
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diffusive behavior. For this reason we will consider the measured Mean Squared Displacement (MSD) 
function as the benchmark of our analysis. 

After explaining the principles of our method, we will first validate it by comparison to computer 
simulations in which an isotropic Brownian diffusion is superimposed onto a parabolic flow profile. 
Tagging of particles is used to quantify the proportion of tracking errors, as a function of particle 
concentration, flow rate and diffusivity. Additional analysis of the apparent diffusion coefficients a 
function of these parameters, then allows a certain disentanglement of the contributions of tracking 
errors and velocity errors to the (in)accuracy of the MSDs. Further, also analysis of experiments in 
microchannel flow will be presented. Here we will highlight the difference between the analysis at 
high and low particle concentrations, and demonstrate the effect of corrections for drift.  
 

2. EXPERIMENTS 

Rectangular microchannels were fabricated by bonding a PDMS slab containing the side walls and 
ceiling onto a 170 µm thick glass coverslip. Particle-laden fluids were pumped through by setting a 
difference in hydrostatic pressure between inlet and outlet (see [36] for details). All suspensions 
consisted of 1 µm diameter silica spheres with fluorescent cores (see [37, 38] for synthesis and 
characterization details) dispersed in a refractive-index matching mixture of water and glycerol with 
a viscosity of ≈100 mPa.s. Fluids were prepared at volume fractions φ of 0.03 and 0.3.  
All channels (see Fig. 1) had a length of 2 cm, while their (width x height) cross sections were 30x22 
µm2. One additionally explored channel had a cross section of 55x22 µm2. Observations were made at 
X=1 cm, with the channel placed on an inverted microscope (Nikon), with a 100x /oil objective 
offering a (X,Y) field of view of 87x 66 µm2. An UltraView Confocal Laser Scanning system (Perkin 
Elmer) was used to visualize the fluorescent particles. The focal Z-plane was chosen halfway between 
floor and ceiling to ensure the absence of velocity gradients in the vertical direction. The number of 
localized particles per image was approximately 130 for φ= 0.03 and 1500 for φ= 0.3, respectively. 

 

Figure 1: Schematic of the 3D channel geometry and coordinate 

system with X (horizontal, flow), Y (horizontal, perpendicular to 
flow) and Z (vertical). Respective dimensions of the channel: 2 
cm, 30 μm and 22 μm. Video recordings were taken in (X,Y) 
planes at Z=11 μm (for reasons of symmetry).  

 

Typical movie stills for the suspension at low and high volume fractions are shown in Fig. 2. Due to 
the refractive index matching, particles are well resolved, even at Z=11 µm and φ= 0.3. Particle 
localization was performed with the publicly available software written in IDL language [39]. The 
spatial resolution was approximately 0.1 pixel length, for effective pixels of 135x135 nm2. Smearing 
of the intensity profiles (as in [40]) turned out to be modest even at the highest explored flow rate. 
Movies consisted of 500 frames for φ= 0.3, and 1500 for φ= 0.03. Images were acquired at 15 fps 
(∆t=0.067 s). During data analysis we discovered that incidentally (once per 10-20 frames) images had 
not been stored. These errors were identified via the occurrence of instantaneous flow velocities that 
were twice as high as most others, and repaired by reassignment of the time array, followed by 
interpolation of the affected trajectories. In subsequent calculations of MSDs these interpolated data 
were taken out again.  
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 Figure 2: Typical images of particles flowing through channels at φ= 0.03 (left) and φ= 0.3 (right).The 
channel width is 30 μm. 

3. SIMULATIONS 

To mimic experimental data, particles were generated and displaced inside a box of 600, 200 and 10 
pixels along X, Y and Z respectively. Each particle was modeled as an object of 8x8 (x,y) pixels to allow 
excluded area interactions, and a mass center at a certain (x,y,z) location to enable tracking. The total 
area fraction (AF) in the (x,y) plane was set via the number of particle centers Npc in the (x,y) range of 
the box: AF ≈ (64/1.2 105)*Npc. Before each time step, particles had to be added: initially to fill the 
box with Npc particles, and in the next steps to make up for particles that had left the box. Particles 
were introduced one-by-one using uniform random generators for the (x,y,z) coordinates, and were 
rejected if (x,y) area overlap (at pixel level) occurred with existing ones. In each time step, particles 
were displaced via diffusive steps in the X, Y and Z directions using a Gaussian random generator with 
imposed standard deviations σx, σy and σz, plus a advective step in the x-direction using the imposed 
parabolic velocity profile vx(y). Disappearance of particles (centers) occurred via (x) flow and/or 
(x,y,z) diffusion.  

A systematic variation was made of the diffusion coefficient and the maximum advective velocity, 
varying σx=σy=σz from 0.2 to 1.0 pixel, and choosing vmax between 0 and 8.0 pixel/frame. This upper 
limit is already beyond practical values for 8 pixel sized particles (it would give a severely smeared 
image). Explored area fractions were 0.032, 0.32 and 0.43. To enable direct comparisons, the product 
of Npc and the number of time steps was kept constant at 106. Data were generated in the matrix 
format as required by the standard tracking software [39], replacing of one of the unused columns to 
give each particle a unique identifier.  

4. DATA ANALYSIS  

In our analysis, particle trajectories are obtained in a coordinate system attached to the laboratory. 
Relative to this system the microscope table exhibits a (slow) motion. The aim of the measurement is 
to find the motions of the particles relative to the table. Some of the concepts that we used, like the 
division into flow-lanes and subtraction of estimated advection prior to tracking, show similarity to 
those described in an excellent review paper [33]. However the here presented ‘iterative masking’ 
method that uses particle coordinates only (Sec. 4.1.1-3) is new. Furthermore our approach involves 
specific choices and details which need to be specified in order to fully appreciate the analysis. 
Operations will be described both verbally and mathematically to facilitate implementation.   
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4.1 Tracking particle displacements 

The procedure starts with localizing all particles in each video frame, as usual in particle tracking 

microrheology [41, 42]. Taking the list of coordinates and times as input, iterative tracking is used to 
find the time-averaged velocity profile and the particle trajectories. Thereafter it is possible to correct 
separately for transients in flow rate and for table drift perpendicular to the flow. Subtraction of the 
instantaneous advective displacements from the ‘real’ trajectories produces so-called ‘residual’ 
trajectories, from which MSDs in the X and Y directions are calculated. This procedure is illustrated in 
Fig. 3 and explained in more detail below. 

 

 

 

Figure 3: Schematic of the procedure to find the particle trajectories. Dotted arrows indicate optional 
corrections for different types of drift (see text). 

4.1.1. Identifying particle displacements  

To identify the particle displacements, the standard method for materials in the quiescent state [35] 

is modified. An iterative procedure is used, in which tracking is initially restricted to Regions Of 
Interest which are aligned along X (see Fig. 4). These ROIs will be called Y-bins since they are specific 
for a certain Y (range). The length of each Y-bin is given by the X-range (xmax-xmin) in which particles 
are detected, while its width ∆Y is defined by the total Y-range and the chosen number of bins Ny:  

∆𝑌𝑌 = (𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦min )/(𝑁𝑁𝑦𝑦 − 1)           (1) 

Particles that remain in the same Y-bin during a time step are then identified by standard tracking 
[39] within a search radius ∆rmax corresponding to the maximum allowed displacement: 

(∆𝑥𝑥)2 + (∆𝑦𝑦)2 ≤ (∆𝑟𝑟max )2          (2) 

where ∆x and ∆y are the distances between a particle at time tk and a particle (in the same Y-bin) at 
time tk+1. When dealing with high number densities and large x-displacements, an appropriate 
combination of ∆Y and ∆rmax has to be chosen for the tracking to be successful. Else the search-area 
around a given particle at time tk will be contaminated by other particles at time tk+1 due to the 
advective transport. To avoid the ensuing correlation problem (leading to crashes of the algorithm) 
the Y-bins have to be chosen narrow, but still wide enough to allow measuring a few displacements. 
This works because the most probable diffusive displacements in the y-direction are the smallest 
ones (illustrated in Fig. 13). 
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Figure 4: Cartoon of the first step of the tracking procedure. The box is aligned with the flow direction 
(X). In the left panel, arrows indicate the local flow velocities. The middle panel shows how the 
particle configuration changes over a unit time step ∆t (mainly due to advection). To find the 
displacement of the green particle, the tracking algorithm needs a minimum search radius as 
indicated. Other candidate-particles are filtered out by the judicious masking as shown in the right 
panel. The non-masked flow-lane is called a Y-bin. 

 

To allow a widening of the bins, and hence a more complete detection of the displacements in the 
next iteration, use is made of the best available knowledge about the velocity profile. Initial estimates 
for vx(y) are used to modify the x-coordinates of the particles at time tk+1 before comparing them to 
the coordinates at time tk: 

𝑥𝑥𝑖𝑖′(𝑡𝑡𝑘𝑘+1) = 𝑥𝑥𝑖𝑖(𝑡𝑡𝑘𝑘+1) − 𝑣𝑣𝑥𝑥(𝑦𝑦𝑖𝑖(𝑡𝑡𝑘𝑘))∆𝑡𝑡         (3) 

where i labels a particle, ∆t is the unit time-step and vx(y) is interpolated at y=yi. This operation, 
which ‘biases’ the search towards finding the correct displacements and also allows use of a smaller 
∆rmax , is illustrated in Fig. 5. After finding which coordinates (x ,y) at time tk and (x’ ,y’) at time tk+1 
belong to the same particle, the advection correction of the x-coordinates at time tk+1 is undone to 
enable a similar comparison between times tk+1 and tk+2. We remark that this ‘pairwise tracking’ is the 
most rigorous way to remove the affine motion; algorithms that assume an average local velocity 
over multiple time steps could introduce errors, especially if trajectories are long and/or velocity 
gradients are large [43]. The obtained first estimate of vx(y) (see Sec. 4.1.2) is then used in the next 
iteration, and so on. 

4.1.2. Finding the velocity profile 

The advective velocity profile is estimated after dividing the y-range into bins as defined in Sec. 4.1.1: 

𝑦𝑦𝑠𝑠 =  𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑖𝑖𝑠𝑠∆𝑌𝑌   with  𝑖𝑖𝑠𝑠 = 0 …𝑁𝑁𝑦𝑦 − 2       (  4) 

With ys the lower boundary of a Y-bin, and ys + ∆Y the corresponding upper boundary. Standard 
tracking [39] is used to identify the displacements of those particles that remain in the same bin 
during a unit time step. Averaging over all particles and time steps then produces the mean local 
velocity in the x-direction:  

𝑣𝑣𝑥𝑥(𝑦𝑦) = ∑ 𝛥𝛥𝑥𝑥𝑖𝑖(𝑡𝑡𝑘𝑘) 
𝑖𝑖,𝑘𝑘∈{𝑌𝑌𝑠𝑠} /∑ ∆𝑡𝑡 

𝑖𝑖,𝑘𝑘∈{𝑌𝑌𝑠𝑠}     where     𝑖𝑖, 𝑘𝑘 ∈ {𝑌𝑌𝑠𝑠}    if  ys < {yi(tk), yi(tk+1) }  < ys+ΔY         (5) 

Here ∆xi(tk) is the displacement of particle i between tk and tk+1. To make the measurement of vx(y) 
slightly more accurate, the y-value assigned to vx(y) is set equal to the average y-position of the 
tracked particles (rather than the midpoint y-value of the bin).  
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Depending on the experiment and the iteration stage, the measured velocity profile may look noisy, 
due to the finite number of observations. In the first iteration, the Y-bins are usually chosen narrow. 
A relatively large fraction of the particles may then remain undetected because lateral diffusive steps 
take them into another Y-bin. Other reasons for poor statistics are a low particle concentration or a 

short duration of the experiment. Noise is removed by a judicious smoothening. Velocity profiles are 
very often gradual, as required by the spatial continuity of the mechanical stress in the fluid. 

 
Figure 5: Cartoon of the second step of the tracking procedure. Particle configurations are compared 
before and after a unit time step ∆t. The left and middle panels are similar to Fig. 4. The right panel 
shows that after correction for local advection, the residual displacements are much smaller. This 
allows use of a smaller search radius in the tracking step (compare the faded and non-faded dots). In 
this example the estimated vx(y) is already quite accurate. 

4.1.3. Ending the iterations 

Repeating operations as described in Secs. 4.1.1 and 4.1.2, results in progressively better estimates 
of the velocity profile and hence in more reliable tracking. The reason is that subtraction of the 
advective displacements before tracking, diminishes the probability of misidentifications. This was 
illustrated in Fig. 5 (right panel): locations of the same particle in subsequent frames will be closer, 
making it less likely that another particle happens to be even closer. The improved correction for 
affine motion also allows choosing a smaller ∆rmax per iteration step. Ultimately, the smallest value 
for ∆rmax will be dictated by the need to capture all the diffusive displacements. As long as the latter 
are smaller than the typical interparticle distance in the fluid, tracking should be possible [33]. Since 
the chance of finding a ‘ghost particle’ within the search radius strongly diminishes, also the need for 
restricting the tracking to Y-bins vanishes. Therefore in a typical iteration path, ∆rmax is gradually 
reduced, while the bin with ∆Y is increased. The (evolutions of the) values of these parameters are 
manually set.   

4.1.4. Constructing trajectories 

Trajectories are obtained by linking together all steps that were taken by the same particle: 

𝑥𝑥𝑖𝑖�𝑡𝑡𝑗𝑗� = 𝑥𝑥𝑖𝑖(𝑡𝑡𝑖𝑖0) + ∑ 𝛥𝛥𝑥𝑥𝑖𝑖(𝑡𝑡𝑘𝑘)𝑗𝑗
𝑘𝑘=𝑖𝑖0    with    𝛥𝛥𝑥𝑥𝑖𝑖(𝑡𝑡𝑘𝑘) = 𝑥𝑥𝑖𝑖(𝑡𝑡𝑘𝑘+1) − 𝑥𝑥𝑖𝑖(𝑡𝑡𝑘𝑘)    (6) 

and likewise for displacements in the y-direction. In this (standard) expression, ti0 is the real time at 
the beginning of the particular trajectory. Specific for our method is that, because of the pairwise 
tracking (Sec. 4.1.1), the starting point of the linking operation is a set of single-step trajectories that 
contain (inherent) redundancies. Many particle-time records (xi,yi,tk) occur twice: as the end point of 
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the step from tk-1 to tk and as the starting point of the step from tk to tk+1. The trajectory labels lt are 
different however. This problem is tackled by assigning an additional label lk to each data record, so it 
will contain (xi,yi,tk,lk,lt). Multi-step trajectories are then created by a clustering operation that first 

groups all records that have either lk  or lt in common, and subsequently eliminates the redundancies 
and assigns a new trajectory label. Optionally, this clustering operation can be aborted at a set 
maximum trajectory length; remaining locations of the involved particle are then analyzed as if they 
belong to a new particle. This option can be useful in the calculation of y-dependent MSDs (Secs. 4.3 
and 5.3.2). 

 

Figure 6: ‘Real’ and ‘residual’ trajectories. The latter are obtained from the former by subtraction of 
the instantaneous advective motion.  

4.2. Removing advection 

For statistical analysis of the stochastic displacements, the advection needs to be removed from the 
trajectories. This is achieved by subtracting from each ∆xi(tk), the measured average displacement in 
the x-direction, at the instantaneous y-location yi(tk) :  

𝑥𝑥𝑖𝑖′�𝑡𝑡𝑗𝑗� = 𝑥𝑥𝑖𝑖�𝑡𝑡𝑗𝑗� −� 𝑣𝑣𝑥𝑥(𝑦𝑦𝑖𝑖(𝑡𝑡𝑘𝑘))∆𝑡𝑡𝑗𝑗
𝑘𝑘=𝑖𝑖0         (7) 

where vx(yi) is interpolated from the measured velocity profile (as before). This operation keeps the 
trajectories intact, but the displacement steps ∆x’i(tk) = ∆xi(tk)-v(yi(tk))∆t should now become purely 
stochastic. Note that displacements in the y-direction remain unaffected. The difference between the 
‘real’ trajectories ri(tk …tj) and the ‘residual’ trajectories r’i(tk …tj) obtained using Eq. 7 is illustrated in 
Fig. 6. 

In case of a time-dependent flow, the following extension is made: 

𝑣𝑣𝑥𝑥(𝑦𝑦, 𝑡𝑡) = 𝑣𝑣𝑥𝑥(𝑦𝑦) ∗ 𝑓𝑓(𝑡𝑡)         (8) 

where 

𝑓𝑓(𝑡𝑡𝑘𝑘) = ∑ 𝑣𝑣𝑥𝑥(𝑦𝑦(𝑖𝑖𝑖𝑖),𝑡𝑡)
𝑣𝑣𝑥𝑥(𝑦𝑦(𝑖𝑖𝑖𝑖))

𝑁𝑁𝑦𝑦
𝑖𝑖𝑖𝑖=1 𝑁𝑁𝑦𝑦�      with     𝑦𝑦(𝑖𝑖𝑖𝑖) = 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 + (𝑖𝑖𝑖𝑖 − 1)∆𝑌𝑌    (9) 

Here the ΔY corresponds to a new binning of the Y-range (optimized for measuring fluctuations in 
flow rate). The idea behind this binning is to reduce the sensitivity of f(t) to dis/appearances of 
particles in/from flow lanes with low or high speeds. In words, Eq. 8 means that the flow rate is 
considered time-dependent, but the shape of the velocity profile assumed to remain the same.  
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4.3. Calculating Mean Squared Displacements 

Given the advection-free trajectories, calculation of the Mean Squared Displacements in the x- and y-
directions is straightforward. In channel flow the MSDs may depend on the y-location, due to 
possible influences of walls and velocity gradients [36]. Measurement of this dependence is done by 
calculating for each trajectory i the average y-location <y>I , and using the distribution of the found 
<y> values as a basis for making a new binning of the Y-range (now optimized for measuring MSDs). 
In equation form:  

〈𝑦𝑦〉𝑖𝑖 = ∑ 𝑦𝑦𝑖𝑖(𝑡𝑡𝑘𝑘)/𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘𝑘𝑘0 ∑  𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑘𝑘𝑘𝑘0          (10) 

where kI labels the real time (or frame number): ki0 is the beginning of the particular trajectory while 
kimax+1 - ki0 +1 is its length. The local x-MSD in a particular Y-bin is then given by: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑥𝑥′(𝑦𝑦, 𝑛𝑛∆𝑡𝑡) = ∑ ∑ [𝑥𝑥𝑖𝑖′(𝑡𝑡𝑘𝑘+𝑛𝑛) −𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑛𝑛
𝑘𝑘=𝑖𝑖0𝑖𝑖<𝑦𝑦>∈{𝑌𝑌𝑠𝑠} 𝑥𝑥𝑖𝑖′(𝑡𝑡𝑘𝑘)]2/∑ ∑  𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑛𝑛

𝑘𝑘=𝑖𝑖0𝑖𝑖<𝑦𝑦>∈{𝑌𝑌𝑠𝑠}   (11) 

where n∆t is lagtime, and the y-locations have to fall between the boundaries of the bin: 

𝑖𝑖<𝑦𝑦> ∈ {𝑌𝑌𝑠𝑠}    if  ys < <y>i  < ys+ΔY        (12) 

The y-position of the bins itself is taken at the midpoint between the boundaries. In the calculation of 
the y-MSD, x’i has to be replaced by y’I in Eq. 11.  

While the calculation of the MSDs according to Eqs. 10-12 is fairly simple, and can be achieved with 
the standard routine [39], there are two specific points of attention. Firstly, the Y-binning (or Y-
resolution of the MSD) has to be chosen judiciously: this is a matter of the number of displacements 
steps and possibly also the distribution of the latter over the entire y-range. Secondly, for long 
trajectories, <y>i may no longer be completely representative for the Y-bin as assigned via Eq. 12: the 
particle might have visited neighboring Y-bins as well. Compromises in the y-resolution of the MSD 
arising from this effect can be mitigated by segmentation of trajectories into fragments with a preset 
maximum length (Sec. 4.1.4).  

5. RESULTS AND DISCUSSION 

5.1. Computer simulations 

Since the computer simulations provided possibilities to test our analysis method for a broader range 
of parameters, we discuss most of our results here. Roughly speaking, two performance levels can be 
identified; the first level being a correct measurement of the velocity profile via particle tracking, and 
the second (more demanding) level comprising the measurement of the reliable MSDs via careful 
subtraction of the local advection.  
All simulated datasets were analyzed with the same parameter settings. Four iterations were used to 
obtain the trajectories, reducing the number of Y-bins (flow lanes) sequentially as 100, 40, 10, 3 and 
the corresponding maximum displacements (search radii) as 8, 4, 4 and 4 pixels. Typically only results 
of the last iteration will be presented. Areas close to the boundaries of the final 3 Y-bins used during 
tracking, were excluded from the analysis, to avoid negative biasing of the found Dy values. In the 
construction of trajectories, the length was maximized to 12 steps; longer trajectories were cut into 
units of 12 steps, which were then treated as individual trajectories. This was supposed to contribute 
to a more even spreading of the mass-centers of the trajectories over the available y-range, and also 
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to a better y-resolution of these quantities (Sec. 4.3). Mean Squared Displacements were fitted with 
a linear function using the first 7 lag times, after which the slope was taken as the measured diffusion 
coefficient, following the Einstein relation.  

5.1.1. Velocity profiles  

 

Figure 7: velocity profile for vmax=8.0 pixel/frame and Dx = 0.36 pixel2/frame at AF=0.32, measured in 3 
iterations: 1) black squares, 2) red circles, 3) blue stars. 

Measurement of the velocity profiles turned out to work successfully for all explored conditions, 
without the need for (nonzero) initial estimates for vx(y). An issue at low concentration (AF=0.032) 
was the occasional occurrence of empty Y-bins (for the entire time range) in the first iteration. This 
was addressed by deleting the data points for these bins; the ensuing problem of gapped vx(y) data in 
the next iteration was automatically handled by the software via interpolation between the available 
data points. Convergence of the velocity profile was always reached within 3 iterations; in most cases 
the first 2 measurements already superimposed well. Exceptions were only found in cases where vmax 
exceeded 6 pixel/frame. Fig. 7 shows the stepwise improvement for a simulation at the highest flow 
rate. Although the first used ∆rmax equals the largest advective displacement (8 pixels), the initially 
measured velocities are lower. This can be due to two effects: i) additional diffusive displacements 
cause ∆r to exceed 8 pixels, or ii) another particle in the same Y-bin is trailing so closely that its 
displacement brings it closer to the original position of the leading particle than the leader itself. In 
the latter case, which most likely occurs at the highest velocity, the ensuing misidentification leads to 
a measured displacement in the negative flow direction; this explains the dimple in the initial vx(y). In 
subsequent iteration steps this error is rectified by biasing the search towards forward displacements. 
Additionally, the measurement accuracy also is improved stepwise via the larger total number of 
particles that are tracked as the Y-bins are made wider. For low particle concentrations, the finally 
obtained vx(y) is relatively less accurate, even though the number of data records was the same (106); 
this can be seen by comparing Fig. 7 and Fig. 9.  
 

5.1.2. Diffusion coefficients 

The diffusion coefficients extracted from the simulated data were inspected using graphs of Dx (=σx
2) 

and Dy (=σy
2) as a function of y. Exploring broad ranges of diffusion coefficients (0.04-1.0 pixel2/frame) 

and flow velocities (0-8 pixel/frame) at 3 discrete area fractions (0.032, 0.32, 0.43), we found that the 
inputted (equal and y-independent) Dx and Dy were fairly well recovered in the majority of cases.  
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General trends 

Typical results are illustrated in Figure 8 for AF=0.32, vmax=8 pixel/frame, and a variety of diffusion 
coefficients. In all cases statistical noise is encountered, as illustrated by the ‘spiky’ nature of the 
variation with y, and the lack of a perfect symmetry with respect to y=0. Variation of the number of 
data records confirmed that the noise can be progressively reduced by increasing this number. A 
constant value of 106 was chosen for all simulations presented here. Besides this random noise, also 

systematic dependences of the relative errors in Dx and Dy on the magnitude of the diffusion 
coefficient and on the y-location appear present. 

 
Figure 8: Measured diffusion coefficients σ2

x (red circles) and σ2
y (black diamonds) compared to input 

values (dashed lines) in a simulation where particles are advected via a parabolic profile (symmetric 
around Y=0) with a maximum velocity of 8.0 pixel/frame, and additionally show diffusion with  
coefficients (σx=σy=σz) of 0.04, 0.09, 0.16, 0.36, 0.64 and 1.0 pixel. Area fraction is 0.32.  

One systematic error observed for the largest diffusion coefficients, is that the measured Dx and Dy 
fall slightly below their input values. This effect, which is noticeable for D=0.64 and 1.0 pixel2/frame 
in Fig. 8, is due to the use of ∆rmax=4 pixels in the last iteration. Even though this number is 
significantly above the standard deviation σ of the Gaussian diffusive displacements (0.8 and 1.0 
pixels), the rejection of displacements ∆r>2.83σ (respectively 3.16σ) still lowers the measured second 
moment (i.e. the MSD of a single step) by as much as 15% (7%). Mitigation of this issue by choosing a 
larger ∆rmax  would be possible for the lower area fraction of 0.032, but at high area fractions the 
correlation problem described in Section 4.1.1 then shows up.  
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A second systematic error is found for Dx, which shows a positive deviation at combinations of small 
Dx , large |𝑦𝑦| and high flow rates. This is observable in Fig. 8 (corresponding to the highest flow rate) 
for σx

2=0.04 and 0.09 pixel2/frame. Considering that in our case the shear rate is proportional to |𝑦𝑦|, a 
plausible explanation might be the occurrence of small diffusive displacements Δy in the y-direction. 
An undetected diffusive step into a different flow lane would cause an error in the subtracted 
advection and hence an overestimation of the x-MSD. A velocity error Δy 𝛾̇𝛾, then changes the x-MSD:   

<(∆x)2>(τ)= (σx
2 + (σy 𝛾𝛾)̇2 τ0)*τ  ,        (13) 

where τ0=1 frame since the vx-value used in the advection correction was evaluated for each 
individual time step (see Eq. 7). For σx=σy and 𝛾̇𝛾=0.16/frame (the highest shear rate), Eq. 13 predicts a 
3% increase in apparent Dx, which is much lower than the one observed in Fig. 8. Moreover Eq. 13 
also indicates that the relative error should be the same for all σ, which is not in line with the trend 
observed in Fig. 8. Alternatively, an inaccuracy ∆vx in the measured local velocity vx(y) would produce 
an x-MSD given by: 

<(∆x)2>(τ)= (σx
2 + (∆vx)2τ)*τ        (14) 

For relatively small ∆vx and τ, the quadratic term will not be prominent, but it can still contribute 
significantly to the apparent Dx as found by fitting the x-MSD with a linear dependence on the lag 
time. Clearly the error should become most noticeable at small σx. Taking the (worst) case of σx

2=0.04 
pixel2/frame and ∆vx=0.06 pixel/frame (a typical number from the simulation data), a 70% increase in 
apparent Dx is obtained from a linear fit to Eq. 14. This noise level is in reasonable agreement with 
Fig. 8. Also for the lower flowrates a fairly good agreement with Eq. 14 is found (not shown).  
The remaining question, why the error increases with |𝑦𝑦| can be addressed by considering that near 
the walls, the flow velocities are lower. Particles flowing there have a longer residence time in the 
simulation box, and hence are not refreshed as often. Especially in combination with a low σy and σz 
(which tend to keep particles in the same y-bin and focal z-plane) this leads to a relatively poor 
sampling of the y-range and hence a less accurate measurement of the local vx(y). Recalculation of 
the x-MSDs, now using the (perfectly parabolic) input velocity profiles to eliminate the convection, 
produced a strong reduction of the y-dependent error in Dx. This finding, illustrated in Fig. 9, 
corroborates that indeed the direct error in ∆vx is responsible. 

Specific issues at low and high concentrations 

While it is clear from the above that the measurement of accurate (x-) MSDs is generally more 
difficult at high flow velocities and low diffusion coefficients, it also appears that the regimes of low 
and high particle concentrations present their own specific issues.  

At small area fractions, noise in the velocity profile (Eq. 14) is a prominent source of error. Even when 
taking the number of time steps inversely proportional to the number of particles per frame (to keep 
the product constant at 106), the obtained vx(y) data are more noisy at low AF. Here the y-bins 
become less evenly populated, giving less accurate measurements of vx in the most underpopulated 
bins. The origin lies in the random insertion of new particles. At higher AF, these are less random 
because the area exclusion between particles leads to many rejections, thus favoring the more empty 
areas for insertions of new particles. The effect of a noisy vx(y) on the measured Dx is illustrated in 
Fig. 9.  
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Figure 9: Effect of errors in the measured flow velocity on the measurement of σx
2 at low concentration 

(AF: 0.032). Left: measured velocity profile for vmax=8.0 pixel/frame and σx
2= 0.04 pixel2/frame. Right: 

apparent Dx(y) based the measured (red dots) and the ideal (black diamonds) vx(y), for σx
2=0.04 and 

0.09. The former data have been multiplied with 0.1 to improve the clarity of the plot.  

At large area fractions (AF=0.43), the main source of error is misidentification, i.e. the occurrence of 
found trajectories that involve more than one particle. The fraction of thus flawed trajectories was 
determined by detecting for changes in particle identifier within a trajectory, and was found to 
increase non-linearly with particle concentration: for AF=0.032 it is always < 10 ppm, making its 
contribution to the errors in the MSD negligible. However for AF=0.32 it can increase up to 1.6% 
while for AF=0.43 it can reach up to 7.6%. This is illustrated in Table 1 and Fig. 10.  
 

Table 1: Fraction of trajectories (expressed as %) that contain one or more link-up errors, as a function 
of vmax and σ, for area fractions of 0.32 (left) and 0.43 (right). 

AF =0.32 AF=0.43  

 

 vmax  0 2 4 6 8 
  σ        
0.2  0.022 0.042 0.068 0.085 0.12 
0.3  0.070 0.099 0.13 0.17 0.20 
0.4  0.16 0.20 0.23 0.26 0.30 
0.6  0.48 0.50 0.53 0.58 0.61 
0.8  0.93 0.95 1.0 1.03 1.1 
1.0  1.5 1.5 1.5 1.6 1.6 

 vmax  0 2 4 6 8 
  σ        
0.2  0.41 0.61 0.78 0.96 1.1 
0.3  1.1 1.3 1.4 1.6 1.8 
0.4  1.9 2.0 2.2 2.4 2.5 
0.6  3.7 3.9 4.0 4.1 4.2 
0.8  5.7 5.7 5.8 5.9 6.0 
1.0  7.5 7.5 7.6 7.6 6.0 

 

 

   

The explanation for this dependence on particle concentration is straightforward: in more crowded 
systems, particles occur in closer proximity, making it more likely that more than one particle will 
occur within the search-circle defined by ∆rmax. Combined with the random (x,y) displacements of 
these neighboring particles, this leads to increased chance of misidentification. The clear dependence 
of the error fraction on σ in Table 1 is also consistent with this picture: a larger diffusion coefficient 
will lead to more ‘scrambling’ (just as in a quiescent system). The dependence of the error on vmax is 
relatively weak, and shows a clear trend only for low diffusivities: if the random displacements are 
small, then cases leading to particle misidentification will mainly be generated via differences in 
advection; the probability of this effect increases with the shear rate and hence with the maximum 
velocity.  
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Figure 10: Effect of tracking errors on measured 
diffusion coefficients at high concentration (AF 
=0.43). Maximum flow velocity is 8.0 pixel/frame, 
diffusion coefficient is 0.04 pixel2/frame. Red dots 
correspond to Dx, black squares to Dy. Closed 
symbols show the results of the analysis, while the 
open ones were calculated after removing the 
flawed trajectories.  

 
 

Finally we present overall accuracies in the measured diffusion coefficients for all 90 flow experiments 
that were simulated. Since we did not aim for a spatially resolved overall analysis and because a 
‘break down’ of the errors into specific mechanisms (as done above) is not always possible, we 
present results that are lumped over the entire y-range. Specifically, for the data sets shown in Fig. 8 
and similar for all other flow rates, the difference between the locally measured D and the level of 
the dashed line was taken as the local error. From the local errors within the same data set, Root 
Mean Squares were calculated, and presented in Table 2.  

The trends in this Table mostly confirm the expectations: relative errors are largest for small 
diffusivities and high velocities. Comparing Tables 1 and 2, it becomes clear that tracking errors are 
most influential for low diffusivities, even though the fraction of misidentified trajectories is larger 
for high diffusivities. This is attributed to the relative importance of the misidentified displacement: 
assuming that it will have a typical magnitude comparable to the interparticle distance, the anomaly 
of such a displacement will be stronger if the typical diffusive displacements are smaller. This issue, 
and its possible mitigations, have been described in [44]. 

While the precise numbers in the Tables will clearly vary with the chosen y-binning of Dx and Dy, and 
could show (weak) dependence on particular details of the simulations as well (e.g. the z-range of the 
simulation box), the trends of the errors are believed to be correct, and the typical magnitudes in the 
right range. As such they could be useful as a guideline in designing experiments. Since σ and vmax are 
expressed in pixels and frames, translation of these results to an optimized pixel binning and 
exposure time for a specific experimental situation should be relatively straightforward.  

Table 2: Aggregated relative errors in diffusion coefficient along x (top) and y (bottom). AF is the area 
fraction occupied by the particles, σ is the standard deviation of the diffusive displacement and v is 
the flow velocity at the centerline of the channel. 

 AF=0.032                AF=0.32                    AF=0.43 

Dy v  0 2 4 6 8 
  σ        
0.2  2.8 3.3 3.7 3.3 3.2 
0.3  2.7 3.2 3.9 3.9 4.4 
0.4  3.2 3.6 4.2 3.4 3.5 
0.6  3.5 3.4 3.9 3.3 3.0 
0.8  4.2 3.8 4.7 3.8 3.5 
1.0  4.5 5.1 5.3 4.4 4.6 

 

Dy v  0 2 4 6 8 
  σ        
0.2  3.8 4.2 5.5 6.2 8.7 
0.3  2.8 4.5 4.4 4.6 5.1 
0.4  3.9 3.3 3.3 2.8 4.4 
0.6  4.6 5.2 4.2 5.2 4.5 
0.8  5.0 6.3 4.4 5.5 4.3 
1.0  5.9 6.0 7.4 6.8 6.1 

 

Dy v  0 2 4 6 8 
  σ        
0.2  18 30 42 48 57 
0.3  16 18 22 28 32 
0.4  11 11 16 16 19 
0.6  5.4 4.7 6.8 7.3 7.0 
0.8  4.9 5.0 5.9 4.6 5.3 
1.0  8.1 8.0 7.8 8.0 6.6 
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        AF=0.032                AF=0.32                    AF=0.43 
 

Dx v  0 2 4 6 8 
  σ        
0.2  3.1 5.9 22 27 85 
0.3  4.2 8.1 12 16 46 
0.4  2.9 3.2 5.8 9.8 20 
0.6  3.2 3.5 3.0 4.1 7.8 
0.8  3.9 3.3 3.2 3.3 3.9 
1.0  3.4 4.3 3.4 2.7 4.6 

 

Dx v  0 2 4 6 8 
  σ        
0.2  4.1 5.2 9.6 18 25 
0.3  3.8 3.0 5.7 8.3 12 
0.4  3.6 2.9 3.8 4.7 6.9 
0.6  4.9 4.4 4.7 4.2 4.9 
0.8  6.5 5.3 4.8 5.6 4.9 
1.0  6.1 6.1 5.8 4.8 5.0 

 

Dx v  0 2 4 6 8 
  σ        
0.2  19 34 45 72 80 
0.3  14 20 29 34 42 
0.4  9.6 13 19 21 27 
0.6  4.6 5.6 7.3 8.5 12 
0.8  4.2 4.5 4.6 6.1 6.2 
1.0  6.4 6.4 5.9 5.2 5.2 

 

5.3. Experiments 

To further validate our analysis, we also applied it to experiments in a microfluidic channel. In this 
case also other potential sources of error can play a role, e.g. the quality of the imaging, the precision 
of the localization, drift of the microscope table and fluctuations in the flow rate. We demonstrate 
for a typical case that most of these errors can be kept small, or corrected for.  

5.3.1 Velocity profiles 

Measurement of the velocity profile was achieved within 3 iterations for all experiments. The highest 
velocity (at the centerline of the channel) amounted ≈8 µm/s, corresponding to ≈4 pixels/frame. The 
same parameters were used throughout the analysis, varying the number of Y-bins sequentially as 
[100,50,25] and the corresponding search radius (in pixels) as [6,4,3]. Here 100 Y-bins corresponded 
to a bin width of 0.3 µm, equivalent to 0.3 particle diameters or 2.2 pixels. In all cases, the first 
estimate of vx(y) was already close to the final one: see Fig. 11 for an example.  

 

 

Figure 11: First (black symbols) and second iteration (red line) of a velocity profile measured at low 
volume fraction. First measured velocities are slightly underestimated in the center of the channel. 
Inset: comparison of the second measured vx(y) with a calculation for a Newtonian fluid (dots). 

As shown by the inset if Fig. 11, the last iteration of the measured velocity profile corresponds well to 
a theoretical calculation [45] for a Newtonian fluid that is pumped through a rectangular channel of 
the same dimensions. Since dilute suspensions of hard spheres also show Newtonian behavior [46], 
the close correspondence further validates our method for measuring vx(y). 
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5.3.2 Mean Squared Displacements 

Fig. 12 shows some representative Mean Squared Displacements (along the x- and y-directions) as 
obtained from the ‘residual trajectories’, after segmentation into fragments with a maximum length 
of 15 steps (see Sec. 4.1.4). All data sets correspond to the same experiment (the same fluid, 
pressure drop and z-coordinate), but different y-locations inside the channel (excluding points within 
5 µm from the wall). A correction for minor (≈1%) variations in flow rate (see sec. 4.2) was performed 
before calculating the MSDs.  
Several observations can be made. Firstly, the differences between the MSDs taken at different y-
locations are generally rather small. Secondly, the majority of x- and y-MSDs turn out to be equal 
within statistical accuracy. Both findings indicate that the stochastic motion that remains after 
removal of the affine motion, is isotropic as for a quiescent fluid. Moreover, inspection of (the first 8 
points of) each MSD reveals that they show good linearity, as expected for Brownian motion in a 
Newtonian liquid. This indicates that they can be considered as a measurement of the viscosity, for 
which we find ≈ 106 mPa.s using the Einstein relation.  

  

Figure 12: Mean Squared Displacements along X and Y directions for the experiment shown in Fig. 11. 

The same residual trajectories were also analyzed for the probability displacement functions. The 
results obtained for the central flow lane (y=0) are presented in Fig. 13, show that the distributions 
are Gaussian for both the x- and y-directions. Also these data coincide well with each other. This 
corroborates once more that the elimination of the advective motion was successful.  

 
Figure 13: displacement probability functions for the x (red) and y (green) directions, measured at y=0 
±1 µm for the same experiment as shown in Fig. 11.  

Returning to Fig. 12, we remark that extrapolation of the MSD data to zero lagtime always results in a 
(positive) non-zero ordinate. This deviation from the Einstein relation is attributed to limitations in 
the accuracy of the particle localization, as discussed in ref [41]. Note that the offsets are small: 
taking 2*10-3 µm2 as a typical number, gives a square root of 44 nm, which seem reasonable as an 
error, considering the image quality that could be obtained (Fig. 2). In the calculations of diffusion 
coefficients from the MSD data (see below), this offset has been treated as a ‘noise floor’.  
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5.3.3 Corrections for drift 

Table drift 

Correction for drifts can be important in experiments with a long duration. In our experiments, drift 
of the microscope table occurred with a typical velocity vd of 0.01 pixel/frame, corresponding to ≈2 
nm/s (per direction). By default, drift in the flow direction ends up in the measured vx(y). Separate 
measurement and correction could be done using a ‘marker’, like a particle that is stuck to a side wall 
of the channel [47, 48]. However for the present work, even the effect on the x-MSD was negligibly 
small. For the same reason, table drift in the Y-direction had a negligible influence on the y-MSD. In 
principle, y-drift can also affect the y-resolution of vx(y) through convolution with a function of width 
vdT, with T the duration of the experiment. For the longest experiment (T=100 s) in this study this 
gives a width of ≈ 0.2 µm which is again negligible. For more narrow channels and/or longer lasting 
experiments the correction might still be needed. In that case, the average particle displacement in 
the y-direction has to be measured frame by frame, smoothened and integrated over time as in the 
usual drift correction [39]. The obtained function Δy(t) should then be subtracted from the time-
dependent y-coordinates, after which the tracking needs to be redone.  

Transient flow 

Also transient flows can play a role, even if they are not evidently visible from the video images.  
Similar to the effect discussed in the context of Eq. 14, they cause an error in the subtraction of 
advection, which in case of high flowrates can cause appreciable errors in the x-MSD. In our 
experiments with straight channels (i.e. no constrictions or expansions) the transients involved only 
the amplitude of vx(y) and not its shape; this was concluded after comparing the velocity profiles of 
different time segments, and was attributed to transients in the pressure drop. We found that after 
mechanical disturbances, whether intended (e.g. a change of reservoir height) or not, at least 1 
minute was needed to obtain a stable flow rate again.  

Variations in flowrate can be detected relatively simply using the standard procedure that measures 

drift from the trajectories [39]. However correction for the effect necessitated a modification of the 
procedure, the reason being that in spatially varying (e.g. Poiseuille-like) flows, the center-of-mass 
velocity of the particle ensemble becomes more sensitive to sampling issues. We observed that 
(dis)appearance (via advection or diffusion) of a particle from a low- or high-speed flow lane can add 
significant noise to the center-of-mass velocity, in particular for dilute suspensions. The correction 
described by Eqs. 8 and 9 mitigates this effect by measuring and normalizing the time-dependent vx 
in different Y-bins (with judiciously chosen width). Y-regions within 5 particle diameters from the 
channel sidewalls were excluded, because of the large relative error after normalization with a low 
velocity.  

An illustration of the success of this approach is given in Fig. 14, which shows an experiment where 
the flow rate was found to increase by more than 20% after a mechanical disturbance. In this 
particular case, a channel with a width of 60 µm and a structured wall (for Y=3-8 µm) was used. The 
iterative measurement of the (time averaged) velocity profile shown in Panel a indicates that vx(y) 
could still be measured as usual, in spite of the large amplitude variations f(t) shown in Panel b. In 
Panels c and d, x-MSDs before and after the correction for varying flow rate are compared. In this 
(admittedly extreme) case, the drift correction reduces the MSD down to a factor 1/6.  
 

17 
 



  

  

Figure 14: A case of time-dependent flow. Panel a: Velocity profile. Red diamonds, green dots and 
black triangles correspond to iteration 1, 2 and 3 respectively. Panel b: Time dependence of the 
normalized velocity. High-frequency noise (black line) is smoothened out (red line) before use of the 
signal to correct the trajectories. Panel c: MSD in the flow direction, before (red) and after (blue) the 
correction. These data were measured at Y=24 µm, where <vx> = 5 µm/s (see panel a). Panel d: Dx 
before (red) and after (blue) correction, calculated from a linear fit to the first 8 points of the MSD. 
Green symbols indicate Dy. The volume fraction was 0.3 for this suspension.   
 

5.3.4 Experiments at low volume fraction 

A particular case that has hardly been considered so far, is the superposition of diffusion and shear 
flow of colloids in the dilute regime. Studies where colloids are used as flow tracers are well-known 
[19, 49] but also the diffusive motion contains information: under certain conditions mechanical 
properties of the local micro-environment can be inferred from the MSDs of the particles [24-26]. 
The case of colloids in a purely viscous environment provides first exploration of this potential 
application, by (effectively) measuring the viscosity η as a function of shear rate (since D = kT/6πηa).  
Data shown in Fig. 15 correspond to a dilute suspension (φ=0.03) of 1 µm silica spheres in water/ 
glycerol, flowing through a 30 µm wide microchannel with the velocity profile shown in Fig. 11. In 
comparison to the simulations, this experimental case contains additional (potential) contributions to 
the MSDs: localization errors and several types of drift, as well as hydrodynamic interactions between 
the particles. Inaccuracy in the localization, shown as the offset in Fig. 12, was taken into account by 
fitting the slope of the MSD. Variation in the flowrate (≈1% increase over the experiment) was 
mitigated using Eqs. 8 and 9.  
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First of all, the data show the expected overall trends: Dx and Dy appear to be equal to each other 
and independent of the local shear rate (exceptions indicated by triangular symbols are attributed to 
a wall effect [36]). This suggests that the advection and drifts were adequately subtracted, and that 
shear-induced hydrodynamic interactions, which would show a y-dependence [36] do not play any 
role of importance. Taking into account the outcomes of the simulations, the remaining noise level in 
Dx and Dy (or alternatively in η) is then most probably due to inaccuracies in the measured vx(y). 
Considering that in the experiment, σ≈0.2 pixel and vmax≈4 pixel/frame, we estimated the expected 
typical error level by doing calculations similar to those done for Table 2, but now adapted for the 
fewer datarecords and Y-bins. Thus we found expected relative errors of 5 ± 1 % for Dy and 35 ±
10% for Dx (where the ± sign takes into account the inaccuracy in σ) The noise levels in Fig. 15 are 
≈15%, for both Dx and Dy, which is not in perfect agreement but of the correct order of magnitude.  

 

 
Figure 15: Diffusion coefficients in the x- and y-directions, measured as a function of the y-location in 
the channel, for the experiment shown in Figs. 11-13. Dx is plotted in black while Dy is plotted in red.  

5.4. Comparison with other tracking methods 

While the correction procedures and subsequent error analysis at the level of MSDs (Sections 4.2-
5.4) have not been previously presented for colloids diffusing in a shear flow, the method to find the 
trajectories (Section 4.1) has elements in common with some of the procedures mentioned in ref 
[33]. A practical difference with the Correlated Image Tracking method is that our method only uses 
the images for particle localization, and subsequently tracks the particles using only their coordinates. 
In all cases addressed in this study, tracking was successfully achieved without the need for an initial 
estimate of the velocity profile: vx(y)=0 provided a good enough start. CIT could be used in a slightly 
broader scope of applications, for example at are very high velocities: if the affine displacement 
within a flow lane becomes comparable to half the typical distance between particles, irreparable 
misidentifications would occur in the first iteration of our method. In that case, a crude (non-zero) 
estimate for vx(y) is needed, as could be generated with CIT. Both in ref [33] and in our work, CIT 
provides a suitable start, followed by an optional refinement at the level of the particle coordinates 
to achieve sub-pixel accuracy.  
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6. CONCLUSIONS 

We developed an analysis, which extends and complements existing methods for tracking the 
advective and diffusive motions of colloidal particles in shear flow. Analysis of computer simulations 
and experiments indicates that our method can produce reliable results even for strong flows 
reaching local Peclet numbers of 50. Mean Squared Displacements, obtained by removing the 
instantaneous advective displacements from the trajectories, are sensitive both to the accuracy of 
the measured velocity profile and to the occurrence of tracking errors. As such, they provide on one 
hand a very suitable tool to validate the tracking, while on the other hand they indicate which level 
of accuracy is required to obtain reliable advection-free MSDs.   
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