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State-of-the-art bioactive hydrogels can easily and efficiently be formed by enzyme-catalyzed mild-
crosslinking reactions in situ. Yet this cell-friendly and substrate-specific method remains under
explored. Hydrogels prepared by using enzyme systems like tyrosinases, transferases and lysyl oxidases
show interesting characteristics as dynamic scaffolds and as systems for controlled release. Increased
attention is currently paid to hydrogels obtained via crosslinking of precursors by transferases or

’éeywords’ peroxidases as catalysts. Enzyme-mediated crosslinking has proven its efficiency and attention has now
C?;:’sﬂsimg shifted to the development of enzymatically crosslinked hydrogels with higher degrees of complexity,

mimicking extracellular matrices. Moreover, bottom-up approaches combining biocatalysts and self-
assembly are being explored for the development of complex nano-scale architectures. In this review,
the use of enzymatic crosslinking for the preparation of hydrogels as an innovative alternative to other
crosslinking methods, such as the commonly used UV-mediated photo-crosslinking or physical cross-
linking, will be discussed. Photo-initiator-based crosslinking may induce cytotoxicity in the formed gels,
whereas physical crosslinking may lead to gels which do not have sufficient mechanical strength and
stability. These limitations can be overcome using enzymes to form covalently crosslinked hydrogels.
Herewith, we report the mechanisms involved and current applications, focusing on emerging strategies

Injectable hydrogels
Tissue engineering

for tissue engineering and regenerative medicine.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Hydrogels are hydrophilic polymeric networks able to absorb
and retain high quantities of water while retaining its shape [1,2].
Their three-dimensional (3D) structure is excellent to mimic cell
and tissue culture environments and, consequently, they are
frequently used to encapsulate cells in a 3D-microenvironment.
Additionally, hydrogels have proven to be very efficient for the
delivery of biologically active molecules, such as growth factors, as
well as providing organization of cells and tissues, due to the
possibility to create multilayered systems [3—6].

In the last few years, mild-crosslinking methods have been
successfully developed to form artificial matrixes. Major advances
have been achieved in both physically or chemically crosslinked gels
[7]. In physically crosslinked gels, interactions between polymers
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chains in amphiphilic block and graft copolymers [8], are established
by ionic and/or hydrophobic interactions [9], or crystallization [10].
On one hand, this type of crosslinking has the advantages of
reversibility and absence of chemical reactions potentially harmful
to the integrity of incorporated bioactive agents or cells. On the other
hand, their stability in vivo might be severely affected by interactions
with bodily functions, both physiological and mechanical. Examples
of these functions include weight bearing actions, for example in the
bone and joints, for which these gels might provide insufficient
mechanical strength. Another example is the sudden change in ion
concentration or changes in pH, occurring in a normal inflammatory
response, which can ultimately lead to gel collapse. In chemically
crosslinked gels, covalent bonds are formed between polymer
chains. In contrast, chemical crosslinking allows the formation of
gels with controllable mechanical strength and superior physio-
logical stability. The crosslinks in these type of gels can be generated
via e.g. radical polymerization, chemical reaction of complementary
groups, by using high energy radiation or by mimicking of biological
crosslinking methods using enzymes [11].
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Recently, increasing interest has been devoted to enzymatically
crosslinked hydrogels, mainly due to the mildness of this type of
reaction. The majority of the enzymes involved in the crosslinking
are common to the enzymes catalyzing reactions naturally occur-
ring in our body [12—20]. Enzymatic reactions are catalyzed by
most enzymes at neutral pH, in an aqueous milieu and at moderate
temperatures implying that they also can be used to develop in situ
forming hydrogels. Additionally, unwanted side reactions or
toxicity, that can occur with photo-initiators or organic solvents
mediated reactions, are avoided due to one of the best character-
istics of this type of reaction: the substrate specificity of the
enzyme. Another major advantage relates to the mildness of the
enzymatic reactions at normal physiological conditions, which
highlights the advantages of this method for the crosslinking of
natural polymers that cannot withstand harsh chemical conditions.
Possible loss of bioactivity is, therefore, avoided. The polymeriza-
tion reaction can be directly controlled by modulation of the
enzyme activity [21]. Smart enzyme-responsive systems can be
designed not only to recreate native extracellular matrixes (ECM)
[22], but also to form and degrade biomaterials. These events
capture, in essence, the intricacy of one of the most important
biological functionalities of ECM, which is remodeling. In addition
to degradability, tailoring the gelation rate is fundamental for
applications such as drug delivery and tissue regeneration strate-
gies. A controlled gelation rate is essential to prevent diffusion of
the precursors, to ensure localized drug delivery, to obtain a suit-
able cell distribution, and, finally to properly integrate the gel with
the surrounding tissues (mainly for irregular-shape filling
applications).

Minimally invasive procedures are highly advantageous in
tissue engineering therapies, presenting an attractive alternative
for the replacement of cartilage. In situ crosslinkable gels are based
on aqueous mixtures of gel precursors with bioactive agents that
can be administrated via a syringe [23,24]. Injectable matrices
abolish the need of complicated surgical interventions and reduce
both the discomfort and complications for the patient [25]. For this

purpose, artificial matrices should be non-cytotoxic, non-inflam-
matory, easy to inject, stable after gelation, and, lastly, their
resorption rate should match the rate of neo-tissue formation [26].
Moreover, injectable enzymatically crosslinked hydrogels offer
a plausible solution for the generation of functional tissue substi-
tutes due to the similarities in the mechanical and swelling prop-
erties of these gels and native tissue, thereby maintaining the cell
phenotype. This feature is highly relevant for tissues such as
cartilage, where cells tend to de-differentiate when placed in a 2D
environment [27,28]. Importantly, integration within wounds and
tissue defects, even oddly shaped, is permitted by in situ forming
hydrogels. These hydrogels can be applied during endoscopic or
arthroscopic procedures, due to the initial fluidity of the gel
precursors prior to gelation.

In this contribution, enzymatically crosslinked gels will be
reviewed, focusing on their application in regenerative strategies.
The purpose of this review is to provide examples of combinations
of enzymes and materials that offer innovative avenues for further
exploration in tissue engineering applications.

2. Enzymatically crosslinked hydrogels
2.1. Transglutaminase

Transglutaminases are a wide family of thiol enzymes that
catalyze post-translational protein modification mainly by inducing
isopeptide bond formation, but also through the covalent conju-
gation of polyamines, lipid esterification, or the deamination of
glutamine residues. Transglutaminases are a mild alternative to
chemical crosslinking, catalyzing the formation of covalent bonds
between a free amine group from a protein or peptide-bound lysine
and the y-carboxamide group of a protein or peptide-bound
glutamine (Fig. 1). Once formed, these bonds are highly resistant
to proteolytic degradation. Consequently, stable polymeric
networks are assembled, without addition of co-factors. The
biochemical role of transglutaminases was discovered in 1968,

Mechanism of the reaction:
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tenance of tissue ingegrity [34]
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concentrations [35]

¢ Relatively fast gel formation (from 5 to 20
minutes) [36]

« The gels formed are generally highly cyto-
compatible and with suitable transport
properties [20]

tissue transglutaminase is about 11 hours)
[37]

* Large enzymes, difficult to produce
recombinantly [38]
¢ Involvement in chronic inflammatory

diseases of the joint, activating pro-
inflammatory cytokines that might lead to
mineralization and disease progression
[39,40]

* Poor mechanical properties
modulus up to 1kPa) [36]
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Fig. 1. Mechanism of the enzymatic reaction mediated by transglutaminase, advantages and drawbacks [34,35,37,39,40].



L.S. Moreira Teixeira et al. / Biomaterials 33 (2012) 1281—1290 1283

when the function of isozyme factor XIII in blood coagulation was
revealed as a fibrin-stabilizing factor [29]. These enzymes are found
in a variety of tissues, such as skin and the brain [30—32]. Trans-
glutaminases are responsible for the formation of fibrin clots and
cornified epidermis. Consequently, the absence of these enzymes
severely hampers wound healing [33].

Using this system, Davis [12] has reported a modular hydrogel
with tunable characteristics that is formed within 2 min. Addi-
tionally, bioactive peptides could be engrafted, allowing custom-
izable cell-signaling requirements. Fibrin matrices are formed by
factor XIII, which is the circulatory form of transglutaminases.
These matrices have been studied both in vitro and in vivo for
several applications, including angiogenesis, nerve repair and
cartilage tissue engineering [41—44]. Ehrbar [36] used activated
transglutaminase factor Xllla to simultaneously couple site-specific
cell-adhesion ligands and crosslink modified multi-arm poly(-
ethylene glycol) (PEG) precursors. Interestingly, in their system, the
material building blocks are responsive to two enzymatic systems,
one responsible for matrix formation and the other one for
degradation. The enzyme-mediated site-specific coupling of
ligands allowed extensive cell spreading, proliferation and migra-
tion, as well as proteolytic matrix degradation by cell-derived
matrix metalloproteinase’s (MMPs). Elegant strategies also
reporting the use of factor XlIlla to crosslink star-shaped PEG,
functionalized by either a glutamine acceptor or donor, to tether
growth factors to surfaces were provided [45]. In this study,
consecutive enzymatic reactions allowed for site-specific immobi-
lization of large quantities of biologically active substances. This
system highlights the advantages of the use of enzymatic cross-
linking, as their mild conditions and high specificity do not jeop-
ardize protein’s bioactivity, providing the cells simultaneously with
adhesive sites and morphogens. Tissue transglutaminase shows
a high degree of sequence similarity with other transglutaminases,
such as factor XIII, however, requiring no proteolysis for activation.
Moreover, tissue transglutaminases present stronger adhesiveness
than fibrin-based glues and less susceptibility to physical parame-
ters like humidity [46]. The combination between PEG and tissue
transglutaminases has been described by Sperinde and Griffith
[47,48]. In their model, the gelation time was dependent on poly-
mer functionalities, initial stoichiometric ratios and substrate
kinetics. Hu and Messersmith [49] reported the high adhesive
strength of the in situ forming peptide conjugated polymer

hydrogels crosslinked by transglutaminase. Transglutaminase has
also been used to prepare gelatin-based hydrogels. These gels can
be used for incorporation of cells showing excellent cytocompati-
bility and promising features for TE applications. In addition, they
show excellent transport properties, which facilitate sustained drug
delivery [20,50]. Genetically engineered elastin-like polypeptide
hydrogels and peptide-PEG conjugates crosslinked by trans-
glutaminases have shown promising features as injectable hydro-
gels for cartilage repair [51,52]. In the study published by Jones [52],
reactive ECM components have been identified, that allowed the
coupling of peptide and peptide-polymer conjugates via tissue
transglutaminase. The possibility to broaden the application of this
strategy to a variety of tissue surfaces highlights the versatility of
this method. Using this method, surfaces can be modified with
molecules such as growth factors, therapeutic drugs or functional
moieties. Transglutaminases are enzymes that rely on the presence
of Ca?*. Interestingly, Ca®* independent transglutaminase-
catalyzed gel formation has also been described with the ability
to entrap and release cells. These gels appear especially useful for
micro-fluidic biosensor systems [53].

2.2. Tyrosinase

Similarly to transglutaminases, tyrosinases, also known as
phenoloxidase and monophenol monooxygenase, catalyze macro-
molecular network formation in the absence of co-factors. Tyrosi-
nase is a copper-containing enzyme that catalyses the oxidation of
phenols, such as in tyrosine residues and dopamine, into activated
quinones [54], in the presence of O,. Activated quinones can react
with a hydroxyl group or amino group mainly via a Michael-type
addition reaction [55]. Tyrosinases are present in plants and
animals. These enzymes are involved in melanin production,
browning of food and also cuticle hardening in insects [56]. In most
plants and animals, tyrosinases have rather broad substrate speci-
ficity. In contrast, substrate specificity is restricted to the L-form of
tyrosine or DOPA in mammalian tyrosinases.

Chen [56,58] compared gels of gelatin and chitosan formed
upon crosslinking using tyrosinase (Fig. 2) or transglutaminase and
concluded that tyrosinase induced faster gelation. However, the
hydrogels catalyzed by tyrosinase only formed in the presence of
chitosan and were mechanically weaker or unstable. This and
similar studies, suggested that the gels formed by tyrosinase were

Mechanism of the reaction:
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+ Not yet tested in hydrogel formation for
biomedical applications

Fig. 2. Mechanism of the enzymatic reaction mediated by tyrosinase, advantages and drawbacks.
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mainly suitable as glue [59] and wound dressings or could be used
for protein immobilization [60], due to their fast degradation. Kang
[57] reported the efficacy of tyrosinase crosslinking of silk fibroin
and chitosan conjugates. Other applications of tyrosinase involve
the crosslinking of tyrosine residues in silk, fibroin and sericin,
yielding protein-polysaccharide conjugates [61,62]. These hydro-
gels showed potential for biomedical applications, due to their
unique mechanical properties, adhesiveness and non-toxicity.
However, no specific descriptions as TE approaches were reported.

2.3. Phosphopantetheinyl transferase

Phosphopantetheinyl transferase is a small enzyme that can be
obtained with high expression yields, thus, offering an alternative
to transglutaminases, which are larger and have limited recombi-
nant production. Transferases, which are expressed mainly in the
cytosolic compartment in a wide range of tissues, both in yeast and
animal cells, comprise large multifunctional polypeptides that
contain all of the catalytic components required for the synthesis of
long-chain fatty acids [63]. The general mechanism of transferase
catalysis to form synthetic hydrogels occurs by transfer of a phos-
phopantethein prostetic group of coenzyme A-functionalized PEG
macromers to a serine residue of engineered carrier proteins.

The use of phosphopantetheinyl transferase-catalyzed forma-
tion of polymer hydrogels (Fig. 3) was recently reported by
Mosiewicz [38]. Hybrid hydrogels were formed by mixing the
precursors of 8-arm-PEG-coenzymeA, at 37 °C, neutral pH and in
the presence of Mg?*. The gelation was rather slow and occurred in
approximately 15 min. The hydrogel reached an elastic modulus

value of 2.3 kPa. Furthermore, in this study, they also explored the
potential to incorporate bioactive peptides, more specifically the
integrin receptor binding motifs, such as RGDs (Arg-Gly-Asp),
which enable cell attachment and spreading [64]. With this
method, selective covalent formation and modification of these
transferase-catalyzed hydrogels with bioactive peptide ligands
occurred simultaneously. This type of reaction is, on one hand
highly attractive for cell biology and tissue engineering applica-
tions, but, on the other hand, still under explored.

2.4. Lysyl oxidase and plasma amine oxidase

Lysyl oxidase is a key component in the formation and repair of
the native extracellular matrix. This ubiquitous enzyme oxidizes
primary amines of lysines to aldehydes (Fig. 4). The formed reactive
aldehydes react further to crosslink the extracellular matrix [65].
Lysyl oxidase is responsible for the covalent crosslinkages which
stabilize collagen and elastin fibrous proteins. Consequently, lysyl
oxidase is involved in the morphogenesis and regeneration
potential of many connective tissues including skeleton, respiratory
tract and cardiovascular tissue [66]. Plasma amine oxidase also
functions by oxidation of primary amines and has the major
advantage that it is commercially available [65]. Interestingly, both
these enzymes can be used as matrix crosslinkers, not only to
improve tissue or biomaterial strength over time, but also to
enhance matrix formation [67,68].

Bakota [65] used lysyl oxidase to fabricate nanofibers of multi-
domain peptides, by oxidative crosslinking of lysine residues.
Interestingly, unlike other hydrogel systems that degrade overtime,

Mechanism of the reaction [38]:
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+ Soft gels
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Fig. 3. Mechanism of the enzymatic reaction mediated by lysyl phosphopantetheinyl transferase, advantages and drawbacks.
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Mechanism of the reaction [65]:
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Fig. 4. Mechanism of the enzymatic reaction mediated by lysyl oxidase and plasma amine oxidase, advantages and drawbacks.

the hydrogels formed by this enzyme family become more robust
due to the continuous activity of lysyl oxidase. This interesting
feature leads to continuous increase in the mechanical stability of
hydrogels composed of biopolymers rich in lysine. Lysyl oxidase is
abundantly present in serum. Thus, in serum containing conditions,
crosslinking of lysine containing polymers spontaneously occurs
without addition of an exogenous enzyme source. Lysyl oxidase
shows great value in tissue engineering using lysine-rich peptide-
based hydrogels [69,70]. It might be explored to enhance extra-
cellular matrix production by cells incorporated in the hydrogel.
Moreover, it may also improve the intrinsic mechanical properties
of tissue engineered constructs over time and allow hydrogel
fixation with native tissue by covalent bond formation between the
lysine-rich polymers of the hydrogel and primary amines in native
tissue proteins.

2.5. Phosphatases, thermolysin, $-lactamase and phosphatase/
kinase

Enzyme catalysis mediated by phosphatases, thermolysin, -
lactamase or phosphatase/kinase can change the amphiphilicity of
small peptide derivatives, for example, by phosphorylation medi-
ated by a kinase or dephosphorylation mediated by a phosphatase.
This change can, subsequently, trigger the self-assembly and non-
covalent interactions of the amphiphilic peptides in nanofibers,
ultimately resulting in hydrogel formation, as represented in Fig. 5
[71,72]. These small peptide derivatives are usually organic or

bioactive molecules, which tolerate the addition of bioactive
components.

Phosphatases catalyze the removal of phosphate groups from
a substrate, which becomes more hydrophobic. In an aqueous
milieu, these hydrophobic substrates may self-assemble into a 3D
nanofiber network by non-covalent interactions (for example, 7-7
interactions, hydrogen bonding, charge interactions) that allow gel
formation [75]. In this respect, alkaline phosphatases are particu-
larly interesting classes of enzymes to form hydrogels due to their
involvement in mineralization of skeletal tissues. Schnepp [76]
exploited this property of alkaline phosphatase by fabricating
materials with a range of mineral loadings. Interestingly, these
materials maintained their viscoelasticity rendering them suitable
as biomaterials for application in tissue engineering, wound heal-
ing, and drug release purposes. Instead of breaking the covalent
bonds between the peptide and the phosphate group, as it occurs
with phosphatases, thermolysin exploits another way of changing
the amphiphilicity of a peptide. Thermolysin catalyzes the forma-
tion of bonds between peptides by reverse hydrolysis. This enzyme
can be used to couple two distinct peptide derivatives, reducing the
solubility of one of the peptides. This block peptide can then self-
assemble into a hydrogel by hydrophobic interactions. Thermoly-
sin favors hydrophobic, aromatic residues on the amine side of the
peptide bond. This system has been reported by Toledano [77] with
possible applications in the production of nanofibrous hydrogel
scaffolds for cell culture. B-Lactamases and esterases are two other
enzymes that can be used as catalysts for molecular self-assembly.
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Mechanism of the reaction [72]:
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Fig. 5. Mechanism of the enzymatic reaction mediated by phosphatases, thermolysin, B-lactamase and phosphatase/kinase, advantages and drawbacks.

If the self-assembly occurs in an aqueous medium, the gels are
referred to as a supramolecular hydrogels, and the small molecules
are referred to as supramolecular hydrogelators. Both enzymes
couple with the formation of hydrogelators. B-Lactamases are
produced by some bacteria and are responsible for their resistance
to B-lactam antibiotics, such as penicillin. The lactamase breaks
a four-atom ring present in the molecular structure of antibiotics,
known as B-lactam. As this ring opens, the molecule’s antibacterial
properties are deactivated. Upon the action of a lactamase, the
lactam ring of the hydrogel precursor molecules opens and the
hydrogelator is released. This release results in their self-assembly,
subsequent nanofiber assembly and hydrogel formation. The
presence of lactamases in bacterial lysate are able to convert the
precursor to an hydrogelator, which triggers supramolecular
hydrogel formation The intracellular self-assembly of a hydrogels
mediated by B-lactamases or esterases can potentially be used as in
bacterial assays or to trigger specific cell death, as the formation of
these supramolecular hydrogels can occur inside the cells [78,79].

Most enzymatic reactions are irreversible, thus, leading to
irreversible modification of the peptide backbone of the crosslinked
hydrogel. To allow reversibility of the enzymatic reactions, Yang
[73] proposed a kinase/phosphatase switch to control supramo-
lecular hydrogels. This enzyme switch regulates the phase transi-
tion of the peptide backbone of the hydrogel. This occurs by either
adding or removing a hydrophilic phosphate group from the

peptide backbone, thereby, controlling both dissociation and
formation of the self-assembled nanostructures. Exploiting this
enzymatic switch allows precise control of biomaterial organiza-
tion at the molecular level over time. This may have a wide range of
applications in tissue engineering. In contrast to the random
formation of polymer chains obtained by other ways of enzymatic
crosslinking of polymeric hydrogels, the self-assembly of supra-
molecular hydrogels allows an ordered molecular arrangement
within the nanofibers (hierarchical nanostructures) that ultimately
leads to hydrogel formation. These are unique features of enzy-
matically formed supramolecular hydrogels [74,80].

2.6. Peroxidases

Peroxidases are a wide family of enzymes that typically cata-
lyze the following reaction: ROOR’ + electron donor
(2 e7) 4+ 2H" — ROH + R’'OH. The majority of the peroxidases use
hydrogen peroxide as substrate. This family consists up to 42
isozymes, which becomes a challenge when defining the in vivo
function [81]. The most commonly used peroxidases in hydrogel
formation are horseradish peroxidase and soy bean peroxidase.
Both are plant enzymes and are explored as useful tools for
biosciences and biotechnology, even though soy bean peroxidase
has only become known in the last 20 years. Horseradish peroxi-
dase is a single-chain B-type hemoprotein responsible for the
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catalysis of the conjugation of phenol and aniline derivatives in the
presence of hydrogen peroxide [82]. In this reaction the horseradish
peroxidase promptly combines with hydrogen peroxide and the
formed complex can oxidize hydroxyphenyl groups. Such groups
are present for instance in tyramine, tyrosine and 4-hydrophenyl
acetic acid [83]. Soybean peroxidase is a suitable alternative to
horseradish peroxidase, due to comparable stability and mecha-
nism of action. The family of human peroxidases includes myelo-
peroxidase, lactoperoxidase, eosinophil peroxidase, thyroid
peroxidase and prostaglandin H synthases. Mammalian enzymes
contribute mainly in host defense against infection, hormone
synthesis and pathogenesis. Plant peroxidases differ from human
peroxidases in size and how the heme-group is bound. Plant
peroxidases consist of approximately 300 amino acids and the
heme-domain is not covalently bound, whereas mammalian
peroxidases are larger, ranging from 576 to 738 amino acids, with
heme covalently bound [84,85]. Although human peroxidases have
been widely investigated, to our knowledge, only plant peroxidases
have been explored for enzymatic crosslinking to form hydrogels.

Sofia [21] reported the use of peroxidases to catalyze the
crosslinking of functionalized polyaspartic acid-based hydrogels.
This study is one of the first comparing the activity of several
peroxidases and their efficiency to form hydrogel networks. The use
of this enzyme was further explored due to its non-cytotoxicity and
potential to crosslink in situ. Recently, multiple biomaterials have
been developed taking advantage of this system for the

1287

crosslinking of tyramine conjugated polymers. Darr [87] has char-
acterized tyramine-based hyaluronan hydrogels that have shown
in vivo non-cytotoxicity and resistance to degradation after
subcutaneous injection, while preserving most of the negative
charge from the carboxyl groups in hyaluronic acid, essential for the
contribution of the physio-mechanical properties of tissue. Other
studies have reported the use of hyaluronic acid-tyramine conju-
gates crosslinked by horseradish peroxidase, which possess
promising features for controlled drug delivery and for application
as injectable in situ forming gels [88,89]. The success of crosslinking
system using peroxidases was extended to the use of other
polysaccharide-derived polymers such as chitosan [90,91], alginate
[18], carboxymethylcellulose [16] and dextran [86]. Horseradish
crosslinkable dextran-tyramine hydrogels (Fig. 6) also in combi-
nation with hyaluronic acid and heparin have recently shown high
potential as artificial extracellular matrixes for cartilage tissue
engineering [13—15]. These polysaccharide hybrids were designed
to mimic the molecular structure of the extracellular matrix of
native cartilage. Similarly, injectable hyaluronic acid-tyramine has
been described by Kim [92] as an effective drug carrier for the
treatment of rheumatoid arthritis. Other polymer combinations
using horseradish peroxidase to induce gelation include tetronic-
tyramine conjugates and supramolecular hydrogels based on
tyramine-terminated PEG [83,93]. The major advantage of this
enzyme in comparison to the above mentioned enzymes, such as
transglutaminase, is the fast gelation that can occur within seconds.

Mechanism of the reaction [14]:

horseradish peroxidase |
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OI,NH
Advantages Drawbacks
* Peroxidases are involved in several

processes in our body and are used in a
wide range of biotechnological tools [81]

* Both horseradish and soybean
peroxidases are highly stable
e Induce fast gelation, ranging from

seconds to a few minutes [86]

* No co-factors are necessary [21]

e The gels formed are overall highly
cytocompatible and are suitable for drug
delivery [13,14,15]

* High mechanical strength

* Despite the several in vitro applications
of horseradish peroxidase, the in vivo
role is not fully elucidated

* No human peroxidase has been reported
to induce in situ hydrogel formation

Fig. 6. Mechanism of the enzymatic reaction mediated by peroxidases, advantages and drawbacks.
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Table 1
Enzyme-catalyzed crosslinkable hydrogels and potential applications.
Gel type/composition Enzyme type Potential applications References
Modular protein hydrogel of lysine and glutamine Animal derived tissue transglutaminase Non-specific TE applications [12]
Recombinant human tranglutaminase
Fibrin gel Factor Xllla (transglutaminase isoenzyme) Angiogenesis [41—44]
Neurite extension
Bone and cartilage tissue repair
8-arm PEG-peptide conjugates Factor Xllla (transglutaminase isoenzyme) Drug delivery systems [36,45]
Smart implants for in situ TE
Multi-arm comb PEG Tissue transglutaminase Gelation model [47]
Elastin-like polypeptide gels Tissue transglutaminase Cartilage tissue repair [51]
PEG-peptide conjugates Tissue transglutaminase Surgical tissue adhesives [49,52]
Cartilage tissue repair
Gelatin Microbial transglutaminase Scaffolds for TE [20,50,99,100]
Sustained drug release devices
Gelatin Calcium-independent microbial Microfluidic biosensor systems [53]
transglutaminase
Casein Microbial transglutaminase Sustained drug release [101]
Gelatin-chitosan conjugates Tyrosinase Tissue glue [56,59]
Wound dressings
Silk fibroin/chitosan conjugates Tyrosinase Scaffolds for TE [57]
Gelatin-chitosan conjugates Tyrosinase Film biofabrication [54,58]
Microbial transglutaminase Scaffolds for TE
Coil-chitosan bioconjugate Tyrosinase Protein immobilization [60]
Coenzyme A-functionalized PEG Phosphopantetheinyl transferase Cell biology and TE [38]
(surfactin synthetase)
Nanofibrous lysine-rich peptide hydrogel Lysyl oxidase Plasma amine oxidase No application described [65]
Supramolecular tyrosine-based hydrogel Alkaline phosphatase Assay platform for enzyme inhibitors [75]
Supramolecular tyrosine- phosphate-based hydrogel Alkaline phosphatase Scaffolds to assist biomineralization [76]
Fmoc-(Phe)s hydrogel Thermolysin Nanofibrous scaffolds for cell culture [77]
Pentapeptidic hydrogelator (Nap-FFGEY) Kinase/phosphatase Non-specific TE applications [73]
Functionalized polyaspartic acid Peroxidases Drug delivery, wound healing and TE [21]
Chitosan derivative Horseradish peroxidase Drug delivery and TE [90]
Chitosan-glycolic acid conjugates modified with Horseradish peroxidase Cartilage tissue repair [91]
phloretic acid
Hyaluronic acid-tyramine Horseradish peroxidase Protein delivery [87—89,92]
Non-specific TE applications
Cartilage tissue repair
Alginate-phenol tyramine conjugates Horseradish peroxidase Multicellular spheroids for TE [18]
Carboxymethylcellulose Horseradish peroxidase Biomedical applications [16]
Dextran-tyramine conjugates Horseradish peroxidase Protein delivery and TE [14,86]
Cartilage tissue repair
Dextran-hyaluronic acid conjugates Horseradish peroxidase Cartilage tissue repair [15]
Dextran-heparin Horseradish peroxidase Cartilage tissue repair [13]
Tetronic-tyramine conjugates (propylene oxide Horseradish peroxidase Drug delivery and TE [93]
and ethylene oxide)
Tyramine-terminated PEG Horseradish peroxidase Drug delivery and TE [83]

2.6.1. Horseradish peroxidase mimetic enzymes

Even though natural enzymes are remarkably specific, in
general, these biomolecules are expensive, unstable and prone to
deactivation when in solution. Thus, artificial enzymes with similar
selectivity and catalytic activity have been developed, with superior
stability compared to the natural enzymes [94—97]. Chen [94] has
described a catalytic system, which is a water dispersible imprinted
hydrogel based on a tetrapolymer of 4-vinylpyridine, hemin,
acrylamide, and N-isopropylacrylamide. Hemin, also named chloro
[3,7,12,17-tetramethyl-8,13-divinylporphyrin-2,18-dipropanoato(2-
)]-iron(III) or Fe(Ill)protoporphyrin(IX) chloride, are co-functional
monomers that act as the catalytic centers. This tertrapolymer
was crosslinked by ethylene glycol dimethacrylate with homo-
vanillic acid as template molecule, designed as an enzyme mimic
of horseradish peroxidase. Wang [96,97] has previously reported
a supramolecular hydrogel with encapsulated hemin as an artificial
enzyme to mimic peroxidases, reaching approximately 90% of the
activity of horseradish peroxidase. This artificial enzyme allowed
catalysis with operational stability and reusability. Additionally,
poly(NIPAAm/MBA/hemin) has been reported by Li [95] as
a substitute for peroxidase. In addition to hemin, two other bio-
catalysts, microperoxidase-11 and cytocrome c, display peroxidase
activity when activated by an electron receptor. These alternatives

based on hemin, microperoxidases, or cytochrome ¢ to mimic natural
peroxidases have shown great promise for industrial purposes [98],
although not yet explored for biomedical applications.

3. Conclusions and future perspectives

As outlined, enzyme-mediated systems are a relatively recent
concept, pointing towards promising directions in hydrogel design.
Despite the major advances and advantages of using biocatalysts,
there are still challenges to overcome. These relate mainly to the
slender amount of studies in vivo, instability of some of the enzyme
types, such as transglutaminases and tyrosinases, and limited
mechanical properties of the gels formed. The reduced in vivo
applications are essentially due to the recent establishment of these
systems. Additionally, the stability and availability of enzymes can
be enhanced by the development of more recombinant enzyme
types. Lastly, the poor or limited mechanical properties of some
hydrogels can, in principle, be improved by combining enzyme
types, after adjusting the material design.

Predominantly, transglutaminases and horseradish peroxidases
can be highlighted as the best studied enzyme systems involved in
hydrogel crosslinking for tissue engineering approaches (Table 1).
Transglutaminases are highly interesting since they offer intimate
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integration between the in situ formed gel and the native host
tissue. The gels formed act as biological glues, due to the ubiquitous
bodily distribution and equal supply of natural substrates [48].
Additionally, these enzymes have proven to successfully catalyze
the crosslinking reaction of very different types of materials, such
as PEG, elastin and gelatin. Horseradish peroxidases are likewise
attractive due to their high stability, easy purification and avail-
ability mainly directly from the horseradish but also of recombi-
nant forms [102]. Engineered peroxidases with even higher
stability and catalytic efficiency are currently being developed,
which is indicative that, in the near future, further applications
using this enzyme type will be developed and continue to prosper
in the tissue engineering field.

Overall, enzyme catalysis allows exceptional control over
hydrogel formation, providing a step forward regarding higher
complexity, non-cytotoxicity and non-invasiveness, vitally desired
for the next generation of biomaterials for tissue engineering and
regenerative medicine.
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