The psychological effects of the physical healthcare environment on healthcare personnel (Review)

Tanja-Dijkstra K, Pieterse ME

Tanja-Dijkstra K, Pieterse ME.
The psychological effects of the physical healthcare environment on healthcare personnel.
Cochrane Database of Systematic Reviews 2011, Issue 1. Art. No.: CD006210.
DOI: 10.1002/14651858.CD006210.pub3.

www.cochranelibrary.com
TABLE OF CONTENTS

- HEADER .. 1
- ABSTRACT ... 1
- PLAIN LANGUAGE SUMMARY .. 2
- SUMMARY OF FINDINGS FOR THE MAIN COMPARISON ... 3
- BACKGROUND ... 5
- OBJECTIVES .. 5
- METHODS ... 5
- RESULTS .. 7
- DISCUSSION ... 8
- AUTHORS’ CONCLUSIONS ... 9
- REFERENCES ... 10
- CHARACTERISTICS OF STUDIES ... 12
- DATA AND ANALYSES .. 16
- WHAT’S NEW .. 16
- HISTORY ... 16
- CONTRIBUTIONS OF AUTHORS .. 16
- DECLARATIONS OF INTEREST .. 16
- SOURCES OF SUPPORT .. 17
- INDEX TERMS .. 17
The psychological effects of the physical healthcare environment on healthcare personnel

Karin Tanja-Dijkstra¹, Marcel E Pieterse²

¹School of Psychology, University of Plymouth, Drake Circus, UK. ²Psychology and Communication of Health and Risk, University of Twente, Enschede, Netherlands

Contact address: Karin Tanja-Dijkstra, School of Psychology, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK. Karin.tanja-dijkstra@plymouth.ac.uk.

Editorial group: Cochrane Effective Practice and Organisation of Care Group.
Publication status and date: Edited (no change to conclusions), published in Issue 4, 2011.
Review content assessed as up-to-date: 9 November 2010.

Citation: Tanja-Dijkstra K, Pieterse ME. The psychological effects of the physical healthcare environment on healthcare personnel. Cochrane Database of Systematic Reviews 2011, Issue 1. Art. No.: CD006210. DOI: 10.1002/14651858.CD006210.pub3.

Permission to reproduce tables and figures is usually given by the Copyright Office, 201 Madison Avenue, New York, NY 10016-1502.

ABSTRACT

Background
The physical healthcare environment is capable of affecting patients. This concept of 'healing environments' refers to the psychological impact of environmental stimuli through sensory perceptions. It excludes more physiological effects such as those produced by ergonomic (i.e. fall prevention) or facilitative (i.e. hygiene-related) variables. The importance of an atmosphere in the healthcare environment that promotes the health and well-being of patients is evident, but this environment should not negatively affect healthcare personnel. The physical healthcare environment is part of the personnel’s ‘workscape’. This can make the environment an important determinant of subjective work-related outcomes like job satisfaction and well-being, as well as of objective outcomes like absenteeism or quality of care. In order to effectively build or renovate healthcare facilities, it is necessary to pay attention to the needs of both patients and healthcare personnel.

Objectives
To assess the psychological effects of the physical healthcare environment on healthcare personnel.

Search methods
We searched the Cochrane EPOC Group Specialised Register; Cochrane Central Register of Controlled Trials; Database of Abstracts and Reviews of Effects; MEDLINE; EMBASE; CINAHL; Civil Engineering Database and Compendex. We also searched the reference lists of included studies.

Selection criteria
We included randomised controlled trials (RCT), controlled clinical trials (CCT), controlled before and after studies (CBA), and interrupted time series (ITS) of psychological effects of the physical healthcare environment interventions for healthcare staff. The outcomes included measures of job satisfaction, satisfaction with the physical healthcare environment, quality of life, and quality of care.

Data collection and analysis
Two reviewers independently assessed studies for eligibility, extracted data, and assessed methodological quality.
Main results

We identified one study, which adopted a CBA study design to investigate the simultaneous effects of multiple environmental stimuli. Staff mood improved in this study, while no effects were found on ward atmosphere or unscheduled absences.

Authors’ conclusions

One study was included in this review. This review therefore indicates that, at present, there is insufficient evidence to support or refute the impact of the physical healthcare environment on work-related outcomes of healthcare staff. Methodological shortcomings, particularly confounding with other variables and the lack of adequate control conditions, partially account for this lack of evidence. Given these methodological issues, the field is in need of well-conducted controlled trials.

PLAIN LANGUAGE SUMMARY

Psychologically mediated effects of the physical healthcare environment on work-related outcomes of healthcare personnel

Research has demonstrated that the physical healthcare environment can affect patients’ health and well-being. However, the healthcare environment affects not only patients, but also the people that work in these environments: nurses and physicians. Any changes that are made to the physical healthcare environment in order to benefit patients (e.g. renovation of hospital wards) must either benefit or have neutral impacts on healthcare professionals.

A review of the effects of changes to the physical healthcare environment on healthcare professionals was undertaken. Only one study was found which compared renovated wards of a psychiatric hospital to non-renovated wards.

There is no evidence to support or refute the impact of the physical healthcare environment on work-related outcomes of healthcare staff. This review does show that more work needs to be done in order to understand the effects of changes to physical healthcare environments on healthcare professionals.
SUMMARY OF FINDINGS FOR THE MAIN COMPARISON

The psychological effects of the physical healthcare environment on healthcare personnel

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Illustrative comparative risks* (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>No of Participants (studies)</th>
<th>Quality of the evidence (GRADE)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in mood</td>
<td>Assumed risk: The mean change in mood in the control groups was -0.2</td>
<td>Relative effect</td>
<td>67 (1 study³)</td>
<td>very low³,⁴</td>
<td>Study reported 'no difference' in ward atmosphere.</td>
</tr>
<tr>
<td></td>
<td>Corresponding risk: The mean change in mood in the intervention groups was 4.3 lower¹,²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Satisfaction with physical environment - not reported</td>
<td>See comment</td>
<td>Relative effect</td>
<td>Not estimable</td>
<td>See comment</td>
<td>Study reported 'no difference' in ward atmosphere.</td>
</tr>
<tr>
<td>Change in unscheduled absences</td>
<td>Assumed risk: The mean change in unscheduled absences in the control groups was -0.6 hours/staff/month</td>
<td>Relative effect</td>
<td>Not reported</td>
<td>very low³,⁴</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corresponding risk: The mean change in unscheduled absences in the intervention groups was 3.2 lower³</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The basis for the **assumed risk** (e.g. the median control group risk across studies) is provided in footnotes. The **corresponding risk** (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI).

CI: Confidence interval;
GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

1 Lower indicates improved mood.

2 Intervention: 9.7 at pretest and 9.5 at posttest. Control: 10.4 at pretest and 5.9 at posttest.

3 Unclear how differences in sample sizes between pre and posttest occurred and were accounted for. Staff on wards were tested twice but unclear if were the same people on each occasion.

4 Study with few participants.

5 Intervention: 7.2 hours pretest and 3.4 posttest. Control: 5.4 pretest and 4.8 posttest.
BACKGROUND

A systematic review on the effects of the physical healthcare environment on the health and well-being of patients (Dijkstra 2006) demonstrated the relevance of the physical healthcare environment for patients. In their Cochrane protocol on a closely related subject, Drahota and colleagues clearly state the importance of environmental design in relation to the health of patients and give a plain overview of the relevance of the subject (Drahota 2004). Recent research suggests that the possible effects of physical environmental stimuli on the health and well-being of patients in healthcare settings has gained much attention (see for example Devlin 2003; Schweitzer 2004). This work demonstrates that the physical healthcare environment is capable of having a positive influence on the patient, a concept known as ‘healing environments’.

The importance of a healthcare environment that promotes the health and well-being of patients is evident, but this healing environment should not negatively affect healthcare personnel. Moreover, the physical healthcare environment has different functions for the two main user groups; patients and healthcare personnel. Where the first group of users needs to recover as quickly as possible the second group needs to work effectively and satisfactorily in this environment on a daily basis.

The physical healthcare environment is part of the personnel’s ‘workscape’. This can make the environment an important determinant of job satisfaction as well as of judgments regarding functionality of the work environment. Work-related outcomes like job satisfaction and employee well-being have been shown to be associated with work performance, productivity, and, ultimately, the quality of healthcare (Lundstrom 2002). In order to effectively build or renovate healthcare facilities, it is therefore necessary to pay attention to the needs of both patients and healthcare personnel.

Considering the substantial budgets to be spent on hospital design and construction (Babwin 2002), a rigorous, systematic review is needed for the development of evidence-based guidelines for the design of healthcare facilities.

There are two ways in which the physical healthcare environment can impact personnel. First, it can have a direct physiological influence, meaning the effects are mainly unmediated or unmoderated by psychological processes (Taylor 1997). Two literature reviews are already available that concern this direct physiological influence. In 2003, Hickman et al conducted a literature review on the effects of healthcare working conditions, but focused solely on patient safety (Hickam 2003). Ulrich 2004 performed a much broader review focusing not only on effects of the physical environment on staff and quality of care, but also on patients. Their findings with respect to staff concerned the workflow and are mainly focused on ergonomic issues.

The second way in which the physical healthcare environment may affect personnel is through psychological processes as a result of sensory perceptions. These processes can be of a cognitive or emotional nature. Since there is no review available on the effects of the physical environment on personnel, this review will be restricted to this second category of processes. In those cases where environmental changes affect healthcare personnel both psychologically and physically, studies will only be included when the outcome measures are indicative of psychological effects. For example, furniture may directly affect personnel by causing back pain. The effect may also be indirect by providing a more homely ambience. We included studies with outcome measures such as mood or stress, but excluded studies measuring back pain.

In sum, it is necessary that a healthcare environment be psychologically supportive for both patients and healthcare personnel. The patient perspective is covered by reviews of Drahota 2004 and Dijkstra 2006. Our review adds the personnel perspective. Understanding the physical environmental stimuli that may affect workplace stress, reduce absenteeism, lower staff turnover, and even support providing high-quality care, will contribute to more efficient hospital design.

OBJECTIVES

The objective of this review was to assess the psychological effects of the physical healthcare environment on healthcare personnel.

METHODS

Criteria for considering studies for this review

Types of studies

Randomised controlled trials (RCT), controlled clinical trials (CCT), controlled before and after studies (CBA: incorporates a non-randomised control group). Data is collected in control and intervention groups before the intervention is introduced and data is collected after the intervention has been introduced), and interrupted time series studies (ITS: no control group and multiple data points are collected before and after the intervention) were included.

Types of participants

This review included both medical and paramedical personnel who are directly involved in treatment and care of patients in healthcare settings. These personnel are primarily physicians and nurses.
Types of interventions

For the purpose of this review we defined physical environmental stimuli as follows:

Physical environmental stimuli are part of the (shared) healthcare environment and can be classified as ambient, architectural or interior design features that influence healthcare personnel through mediation by psychological processes.

This review included studies that investigated interventions involving work-related effects of environmental stimuli in healthcare settings, and compared these either to environmental stimuli, or to no environmental stimuli (for example music versus no music). We included studies manipulating a single environmental stimulus as well as those manipulating multiple stimuli simultaneously. Interventions are those environmental stimuli that fit the criteria described below (Harris 2002):

1) Architectural features, which can be defined as the relatively permanent aspects of the physical environment, and include for example:
 - A. windows (versus none or different types of views from windows);
 - B. room size (different room sizes); and
 - C. spatial layout (different types of layout).
2) Interior design features, which can be defined as the less permanent aspects of the environment; they are predominantly visual in nature and include for example:
 - A. coloring (e.g. of walls, different colors);
 - B. artwork (different styles or art versus no art);
 - C. furniture (different types);
 - D. carpeting (different types); and
 - E. natural elements (e.g. providing access to nature, plants versus no plants).
3) Ambient features, which can be defined as the intangible features of the environment and include for example:
 - A. lighting (e.g. natural versus artificial, amount of lighting);
 - B. music (different types or music versus no music);
 - C. sound/noise (e.g. absence or presence of noise, effects of noise-reducing aids); and
 - D. scents (different types, scents versus no scents).

We excluded environmental stimuli that have a direct, physiological effect on healthcare personnel. These include, for example, hygiene related features, such as the number or location of sinks and hand-cleaner dispensers (Muto 2000). In those cases where environmental changes affect healthcare personnel both psychologically and physically, we included studies when any outcome measures were potentially indicative of psychological effects and both physical and psychological outcomes were reported.

We also excluded studies if the environmental manipulation was confounded with non-environmental changes, such as changes in the organisational climate or nursing care policy. The aim is to demonstrate that it is the physical healthcare environment responsible for changed outcomes (and not something such as policy changes).

All studies must have been conducted in healthcare settings. This includes hospitals, nursing homes, psychiatric facilities, and ambulatory care facilities.

Types of outcome measures

We included a broad range of outcome measures, since the healthcare environment may affect different aspects of both objective and subjective perceptions of nurses and physicians with regard to their daily work (environment). These outcomes can be categorised in measures concerning (1) job satisfaction (e.g. work morale, stress, burnout, sick leave); (2) satisfaction with the physical healthcare environment; (3) quality of life (e.g. mood, well-being); and (4) quality of care (such as medical errors).

Search methods for identification of studies

See: Cochrane Effective Practice and Organisation of Care Group methods used in reviews.

The following electronic databases were searched in November 2006 and this search was updated in July 2008:

(a) The EPOC Register (and the database of studies awaiting assessment) (see SPECIALISED REGISTER under GROUP DETAILS);
(b) The Cochrane Central Register of Controlled Trials (CENTRAL) and the Database of Abstracts of Reviews of Effectiveness; and
(c) MEDLINE, EMBASE, CINAHL, Civil Engineering Database and Compendex.

We handsearched reference lists of studies included in the review. We developed search strategies for electronic databases using the methodological component of the EPOC search strategy combined with selected MeSH terms and free text terms. We used the following terms in the MEDLINE search strategy:

1 environment design/
2 exp *Environment, Controlled/
3 ((multisensory or multi-sensory or sensory or therapeutic or restorative or healing) adj2 (environment$ or design$)).tw.
4 workplace/
5 exp "Facility Design and Construction"/
6 exp Health Facility Environment/
7 ((environmental or ambient) adj2 (design or feature$ or stimuli$)).tw.
8 or/1-7
9 exp Health personnel/
10 Health manpower/
11 exp Patient care team/
12 physician$.tw. Or nurses$.tw. Or pharmacist$.tw. Or dentist$.tw Or dental staff.tw Or laboratory personnel.tw Or medical staff.tw
13 or/9-12
14 8 and 13
We translated this search strategy into the other databases using the appropriate controlled vocabulary as applicable (see Appendix 1).

Data collection and analysis

Selection of studies
One author (KTD) screened titles and abstracts of potentially relevant studies and retrieved full text copies of articles identified as potentially relevant. Two reviewers (KTD and MP) independently assessed each retrieved article for inclusion and resolved disagreements about eligibility by consensus.

Quality
Two reviewers (KTD and MP) independently assessed the quality of all eligible studies using standard EPOC criteria (see ADDITIONAL INFORMATION, ASSESSMENT OF METHODOLOGICAL QUALITY under GROUP DETAILS). A 'Risk of bias' table was also completed. The following criteria are used in the 'Risk of bias' assessment for CBA study designs:

1. blinding of measurements and reliability of outcome measures;
2. addressing of incomplete outcome data;
3. free of selective reporting;
4. baseline measurements;
5. characteristics of the control site;
6. protection against contamination;
7. two control and two intervention groups.

Data extraction
Two reviewers (KTD and MP) independently undertook data extraction, using a modified version of the EPOC data collection checklist. Any disagreements were resolved through discussion among the reviewers. We extracted the following data for all included studies.

1. Study design: the employed study designs are listed and studies with significant design flaws were excluded.
2. Type of data retrieval: data can be retrieved by observations, using records or they can be self-reported.
3. Participants: the number of participants, their occupation and demographic variables.
4. Healthcare setting: type of healthcare setting in which the study took place.
5. Details of the intervention: interventions were described using a full description of the physical environmental stimuli that were manipulated in the study. Results were organized by intervention.

6. Outcomes: data on the different outcome variables was extracted.

Data analysis
We only identified one study. Therefore, aggregating analysis was not possible.

RESULTS

Description of studies
See: Characteristics of included studies; Characteristics of excluded studies.
One study met the inclusion criteria for this review (Christenfeld 1989).

Results of the search
We carried out the initial search in November 2006 and updated it in July 2008. The adopted search strategy led to an initial number of 851 potentially relevant citations. Of these potentially relevant studies, we excluded 595 because the participants were not healthcare personnel. We excluded another 224 studies for not studying effects of physical environmental stimuli.

Of the 33 studies retrieved for full text screening, we excluded 32; the Characteristics of excluded studies table briefly indicates the reason for exclusion. Sixteen studies did not meet the study design definitions; in most cases they did not include a control condition. Seven studies did not study effects of the physical environment, and another 4 studies investigated the direct physiological effect of environmental stimuli. In three studies, effects of the physical environment were confounded with changes in policy. Two studies did not take place in a healthcare setting. No ongoing studies were identified.

Included studies
(see Characteristics of included studies)
We identified one study meeting the inclusion criteria for this review (Christenfeld 1989).

Intervention:
This study investigated the effects of multiple environmental stimuli simultaneously. The dayroom ceiling was lowered and shaded lighting was installed. The floor was redone in light-colored tiles and the walls were covered with vinyl in calm colors and sylvan designs. The room was divided by waist-high walls into a dining area and three separate seating areas with all furniture regrouped. The nursing station was relocated for maximum viewing. The ceiling was also lowered in the bedrooms and central hallway where recessed lighting, vinyl walls, and archways were installed, along with a small seating area, full carpeting, and noninstitutional clocks and...
other wall hangings. No details on the control wards or the situation of the intervention wards were provided.

Type of healthcare setting:
The study was carried out in a long-term care psychiatric center (New York State’s Harlem Valley Psychiatric Center).

Participants:
All staff members working on the wards, the specific occupation of the participants was not specified in the reporting of the study.

Outcome measures:
The study reported measurements indicative of job satisfaction (unscheduled absences), quality of life (mood; measured with Lubin's Depression Adjective Checklist Form E) and satisfaction with the physical healthcare environment (measured with Moos ward atmosphere scale).

Risk of bias in included studies
The study used a CBA design (Christenfeld 1989). The design fulfilled the criteria of contemporaneous data collection and the choice of an appropriate control site.

Existing, validated questionnaires were used. Both self-reported data and records were used as data sources.

The questionnaires were completed by 27 Model ward staff at pretest and 23 at posttest and, correspondingly by 31 control staff at pretest and 44 at posttest. It remains unclear how differences in sample sizes between pre and posttest occurred and were accounted for.

There is a source of potential bias in the characteristics for the control site: the study matched two renovated wards with four control wards housing patients as similar as possible, as well as similar staffing levels (Christenfeld 1989). One of the renovated wards had one less Therapy Aide throughout the time of the study. It remains unclear how differences in sample sizes between pre and posttest occurred and were accounted for.

It is also unclear to what extent the study accounted for protection against contamination. The staff on the wards were tested twice but it is unclear whether they were the same people on each occasion.

Discussion

Limitations of the review
This review aimed to demonstrate the relationship between the physical healthcare environment and work-related outcomes of healthcare personnel. We limited the review to effects of the healthcare environment on healthcare workers. Other reviews (Drahota 2004; Dijkstra 2006) provide the patient perspective of effects of the built healthcare environment. This review aims to add the perspective of the healthcare worker. It should be noted that research studying the effects of the physical environment in office settings demonstrated that the environment can affect worker productivity, mood and other work-related outcomes (see for example Elsbach 2007; Kwalik 1990).

The other aim was to establish that changes in the physical healthcare environment are responsible for affecting healthcare workers' outcomes. In order to do so, it was necessary to exclude studies in which the environmental changes were confounded with non-environmental changes (for example, changes in the organisational climate or nursing care policy). However, when major changes are made to the physical environment, it is likely that they are accompanied by some changes in policies and procedures to ensure that the new environment functions at its optimal level. It is more likely that studies investigating effects of minor environmental changes, such as changing wall-colours or introducing indoor plants, will probably not be accompanied by policy changes. It is possible that studies investigating minor changes are likely to produce very small effect sizes, whereas those involving large changes to the environment and the accompanying policy changes are more likely to produce large effect sizes. However, intervention studies will not allow us to establish the causal link between the environment and work-related outcomes, which was the aim of the current review.

Furthermore, this review was aimed at psychological effects of the healthcare environment, as opposed to direct physiological effects.
of the environment. Such psychological outcomes can be considered mediating variables in establishing the process of environmental effects on work-related outcomes. The current review looked at outcomes that are indicative of such a process, but did not assess the mediating process.

Findings of the review

No studies were retrieved that exclusively examined the manipulation of either one interior design feature or one ambient feature. Nevertheless, several environmental stimuli that can be classified as being an interior design or ambient variable were manipulated simultaneously in combination with several others.

This review identified only one study which examined the effects of the physical healthcare environment on healthcare personnel, using a CBA study design. The study was carried out in a psychiatric center and investigated the combined effect of different environmental stimuli, aimed at creating a more home-like environment. Christenfeld 1989 reported improved moods but no effect on ward atmosphere or unscheduled absences. From a methodological perspective, the study also suffers from several sources of potential bias. Differences between the intervention and control groups cannot be ruled out and it also is unclear if the people participating in the pre and post-test measures are the same people.

Research that investigates how people experience their physical work environment is receiving growing attention (Vischer 2008). This research focuses on the effects of environments that only have one function, that of a workplace. The sole purpose of those environments is to facilitate the working processes that take place there. However, when thinking about staff in healthcare facilities, their workscape is not just a workplace. It also is the place in which patients come for the healthcare services provided. Different user groups can have different beliefs and meanings about their surrounding environments. Healthcare staff spends for example considerable amounts of time in patient rooms and it is thus most likely that they are affected by the design of those environments as well. But are the patient needs for the design of those rooms comparable to the needs of healthcare staff? Creating home-like environments with many decorations, soft lights, and nice furniture could give patients a positive feeling, but at the same time it might make the work of the medical team more difficult. On the other hand, efficient and professional environments can be very useful for nurses and doctors, but patients may feel less comfortable. Ideally, the environment should support the needs and preferences of both groups simultaneously. According to Bitter 1992, the first step in purposeful design of service environments is to identify desirable behaviours of both groups. Healthcare organizations should be concerned with patient and staff behaviour, and the interactions between patients and staff.

Redesigning the wards resulted in an increase in mood for staff members working in these wards (Christenfeld 1989). This finding suggests that the physical environment can potentially impact staff in healthcare settings. Based on this review, there is no evidence to support or refute the impact of the physical healthcare environment on work-related outcomes of healthcare staff.

Authors’ conclusions

Implications for practice

This review provides very limited evidence in support of the idea that architectural interventions in the physical healthcare environment affect healthcare personnel. Only one study was found that met the criteria for relevance and research methodology. It is therefore difficult to draw any conclusions regarding the effects of the physical healthcare environment on job-related outcomes. Formulating evidence-based guidelines for designing healthcare environments would be premature, given the presently inadequate research.

Implications for research

This review suggests several implications for future research on this subject. When looking at the reasons for excluding studies, 19 studies were not methodologically eligible, mainly because they did not incorporate an adequate control condition. Future research should employ robust research designs. It can be argued that controlled trials are simply not suitable for this topic and that they can only be quasi-experimental at best, as there are inevitably variables that cannot be controlled for. Related to this is the confounding of architectural changes with, for example, accompanying improvements in organisational climate. From a practical perspective, it is justifiable to simultaneously change working conditions when a renovation is being realised. However, when the aim is to determine the effects of the architectural changes, such confounding makes it impossible to draw conclusions on the effectiveness of the architectural intervention.

Considering these methodological issues, more well-conducted controlled trials on this subject are certainly desired. The review by Dijkstra 2006 on effects of the physical healthcare environment on patients’ health and well-being included 30 well-conducted trials. These trials can be used as a starting point for designing research on how the physical healthcare environment impacts healthcare personnel.

Research studying the effects of the physical environment in office settings demonstrated that the environment can affect worker productivity, mood and other work-related outcomes (see for example Elsbach 2007; Kwallek 1990). This indicates that the subject remains a promising field for future research.
REFERENCES

References to studies included in this review

Christenfeld 1989 [published data only]

References to studies excluded from this review

Allen 1994 [published data only]

Bayo 1995 [published data only]
Bayo MV, Garcia AM, Garcia A. Noise levels in an Urban Hospital and workers' subjective responses. ARCH-ENVIRON-HEALTH. Archives of Environmental Health 1995;50(3):247–51. [MEDLINE; review II]

Becker 1980 [published data only]

Becker 2008 [published data only]

Blomkvist 2005 [published data only]

Bond 1999 [published data only]

Brennan 1990 [published data only]

Buchanan 1991 [published data only]

Chaudhurry 2006 [published data only]

Chou 2002 [published data only]

Constable 1986 [published data only]

Folkens 1977 [published data only]

Hendrich 2004 [published data only]

Jansen 2001 [published data only]

Lethbridge 2005 [published data only]

Lin 1988 [published data only]

Manojlovich 2005 [published data only]

May 2005 [published data only]

McGillis Hall 2007 [published data only]

Morrison 2003 [published data only]

Mroczek 2005 [published data only]

The psychological effects of the physical healthcare environment on healthcare personnel (Review)
The psychological effects of the physical healthcare environment on healthcare personnel (Review)

Parker 2004 (published data only)

Shamian 2002 (published data only)

Shepley 2002 (published data only)

Shepley 2003 (published data only)

Shepley 2008 (published data only)

Topf 1988 (published data only)

Trites 1970 (published data only)

Tyson 2002 (published data only)

Ullmann 2008 (published data only)

Ulrich 2005 (published data only)

Verderber 1987 (published data only)

Additional references

Babwin 2002

Bitner 1992

Devlin 2003

Dijkstra 2006

Drahota 2004

Elsbach 2007

Harris 2002

Hickam 2003

Kwallek 1990

Lundstrom 2002

Muto 2000
Muto CA, Sistrom MG, Farr BM. Hand hygiene rates unaffected by installation of dispensers of a rapidly acting

Schweitzer 2004

Stichler 2001

Taylor 1997

Ulrich 2004

Vischer 2008

* Indicates the major publication for the study.
Characteristics of studies [ordered by study ID]

Christenfeld 1989

<table>
<thead>
<tr>
<th>Methods</th>
<th>Study design: controlled before-and-after study (follow-up: 4-8 months) Data retrieval: self-reported, records</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>pre: 58 post: 67 Occupation and demographics: not reported Wards at a psychiatric center</td>
</tr>
<tr>
<td>Interventions</td>
<td>renovated ward vs. control ward (lowered ceilings, light-colored floor tiles, warm wall colors, furniture rearrangements, relocation of nursing station, decorations)</td>
</tr>
<tr>
<td>Outcomes</td>
<td>unscheduled absences, mood, ward atmosphere</td>
</tr>
</tbody>
</table>

Notes

<table>
<thead>
<tr>
<th>Risk of bias</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blinding? unscheduled absences</td>
<td>Yes</td>
<td>data on unscheduled absences were collected from a routinely collected data index</td>
</tr>
<tr>
<td>Blinding? mood</td>
<td>No</td>
<td>Quote “all staff members received a questionnaire” No blinding, since data were self-reported. A validated questionnaire was used to measure mood (Lubin’s Depression Adjective Checklist Form E)</td>
</tr>
<tr>
<td>Incomplete outcome data addressed? All outcomes</td>
<td>Unclear</td>
<td>Quote “questionnaires completed by 27 Model ward staff at pretest and 23 at posttest and, correspondingly by 31 control staff at pretest and 44 at posttest” Unclear how differences in sample sizes between pre and posttest occurred and were accounted for</td>
</tr>
<tr>
<td>Free of selective reporting?</td>
<td>Unclear</td>
<td>No results of a direct comparison of control versus intervention wards were reported</td>
</tr>
<tr>
<td>Baseline measurement</td>
<td>Yes</td>
<td>Done</td>
</tr>
</tbody>
</table>
Characteristics for control site

<table>
<thead>
<tr>
<th>Study</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allen 1994</td>
<td>No healthcare setting</td>
</tr>
<tr>
<td>Bayo 1995</td>
<td>No control condition (survey)</td>
</tr>
<tr>
<td>Becker 1980</td>
<td>Confounded with participation of staff in the design process</td>
</tr>
<tr>
<td>Becker 2008</td>
<td>No control condition (survey)</td>
</tr>
<tr>
<td>Blomkvist 2005</td>
<td>No control condition (participants were their own control; only 1 datapoint before and after interventions)</td>
</tr>
<tr>
<td>Bond 1999</td>
<td>Ineligible study design</td>
</tr>
<tr>
<td>Brennan 1990</td>
<td>No effects of the physical work environment were studied</td>
</tr>
<tr>
<td>Buchanan 1991</td>
<td>Studied the direct physiological effect of an environmental stimulus</td>
</tr>
<tr>
<td>Chaudhurry 2006</td>
<td>No control condition (survey)</td>
</tr>
<tr>
<td>Chou 2002</td>
<td>No effects of the physical work environment were studied</td>
</tr>
<tr>
<td>Constable 1986</td>
<td>No effects of the physical work environment were studied</td>
</tr>
<tr>
<td>Folkins 1977</td>
<td>CBA design, but not enough groups</td>
</tr>
</tbody>
</table>

The staff on the wards were tested twice but it is unclear whether they were the same people on each occasion.

Protection against contamination

<table>
<thead>
<tr>
<th>Study</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allen 1994</td>
<td>No healthcare setting</td>
</tr>
<tr>
<td>Bayo 1995</td>
<td>No control condition (survey)</td>
</tr>
<tr>
<td>Becker 1980</td>
<td>Confounded with participation of staff in the design process</td>
</tr>
<tr>
<td>Becker 2008</td>
<td>No control condition (survey)</td>
</tr>
<tr>
<td>Blomkvist 2005</td>
<td>No control condition (participants were their own control; only 1 datapoint before and after interventions)</td>
</tr>
<tr>
<td>Bond 1999</td>
<td>Ineligible study design</td>
</tr>
<tr>
<td>Brennan 1990</td>
<td>No effects of the physical work environment were studied</td>
</tr>
<tr>
<td>Buchanan 1991</td>
<td>Studied the direct physiological effect of an environmental stimulus</td>
</tr>
<tr>
<td>Chaudhurry 2006</td>
<td>No control condition (survey)</td>
</tr>
<tr>
<td>Chou 2002</td>
<td>No effects of the physical work environment were studied</td>
</tr>
<tr>
<td>Constable 1986</td>
<td>No effects of the physical work environment were studied</td>
</tr>
<tr>
<td>Folkins 1977</td>
<td>CBA design, but not enough groups</td>
</tr>
</tbody>
</table>

The psychological effects of the physical healthcare environment on healthcare personnel (Review)

Copyright © 2011 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
<table>
<thead>
<tr>
<th>Author</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hendrich 2004</td>
<td>Studied the direct physiological effect of an environmental stimulus</td>
</tr>
<tr>
<td></td>
<td>Confounded with changes in the care process</td>
</tr>
<tr>
<td>Janssen 2001</td>
<td>Confounded with changes in nursing education</td>
</tr>
<tr>
<td>Lethbridge 2005</td>
<td>No healthcare setting</td>
</tr>
<tr>
<td>Lin 1988</td>
<td>Studied the direct physiological effect of environmental stimuli</td>
</tr>
<tr>
<td>Manojlovich 2005</td>
<td>No effects of the physical work environment were studied</td>
</tr>
<tr>
<td>May 2005</td>
<td>No control condition (cross-sectional study)</td>
</tr>
<tr>
<td>McGillis Hall 2007</td>
<td>No effects of the physical work environment were studied</td>
</tr>
<tr>
<td>Morrison 2003</td>
<td>No control condition</td>
</tr>
<tr>
<td>Mroczek 2005</td>
<td>No control condition (survey)</td>
</tr>
<tr>
<td>Parker 2004</td>
<td>No control condition (cross-sectional study)</td>
</tr>
<tr>
<td>Shamian 2002</td>
<td>No effects of the physical work environment were studied</td>
</tr>
<tr>
<td>Shepley 2002</td>
<td>No control condition</td>
</tr>
<tr>
<td>Shepley 2003</td>
<td>Studied the direct physiological effect of environmental stimuli</td>
</tr>
<tr>
<td>Shepley 2008</td>
<td>Ineligible study design</td>
</tr>
<tr>
<td>Topf 1988</td>
<td>No control condition (correlational study)</td>
</tr>
<tr>
<td>Trites 1970</td>
<td>Ineligible study design</td>
</tr>
<tr>
<td>Tyson 2002</td>
<td>Confounded with changes in organizational procedures</td>
</tr>
<tr>
<td>Ullmann 2008</td>
<td>No control condition (survey)</td>
</tr>
<tr>
<td>Ulrich 2005</td>
<td>No effects of the physical work environment were studied</td>
</tr>
<tr>
<td>Verderber 1987</td>
<td>No control condition (correlational study)</td>
</tr>
</tbody>
</table>
DATA AND ANALYSES

This review has no analyses.

WHAT'S NEW

Last assessed as up-to-date: 9 November 2010.

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 March 2011</td>
<td>Amended</td>
<td>Affiliation change for Karin Tanja-Dijkstra.</td>
</tr>
</tbody>
</table>

HISTORY

Protocol first published: Issue 4, 2006

Review first published: Issue 12, 2010

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 November 2010</td>
<td>Amended</td>
<td>Title changed.</td>
</tr>
<tr>
<td>30 November 2010</td>
<td>Amended</td>
<td>Title changed.</td>
</tr>
<tr>
<td>6 May 2009</td>
<td>Amended</td>
<td>Converted to new review format.</td>
</tr>
<tr>
<td>23 August 2006</td>
<td>Amended</td>
<td>Substantive amendment</td>
</tr>
</tbody>
</table>

CONTRIBUTIONS OF AUTHORS

All review authors have contributed to the production of the protocol. KTD led the writing of the protocol and MP provided comments and feedback. For the full review: KTD developed and ran the search strategy (with support of the EPOC Group); KTD and MP screened records for eligibility; KTD and MP abstracted data, undertook analyses, interpreted the results and wrote up the review.
DECLARATIONS OF INTEREST

None known.

SOURCES OF SUPPORT

Internal sources

• No sources of support supplied

External sources

• Netherlands Board for Health Facilities, Netherlands.

INDEX TERMS

Medical Subject Headings (MeSH)

Affect; Health Facility Environment [*standards]; Health Personnel [*psychology]; Interior Design and Furnishings; Job Satisfaction

MeSH check words

Humans