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Domain formation and growth in spinodal decomposition of a binary fluid
by molecular dynamics simulations
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The two initial stages of spinodal decomposition of a symmetric binary Lennard-Jones fluid have been
simulated by molecular dynamics simulations, using a hydrodynamics-conserving thermostat. By analyzing the
growth of the average domain size R(r) with time, a satisfactory agreement is found with the R(r)oct!"3
Lifshitz-Slyozov growth law for the early diffusion-driven stage of domain formation in a quenched homoge-
neous mixture. In the subsequent stage of viscous-dominated growth, the mean domain size appears to follow

the linear growth law predicted by Siggia.
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I. INTRODUCTION

Phase separation and pattern evolution are well-known
phenomena visible in various immiscible multicomponent
mixtures, ranging from simple liquid mixtures to complex
fluids, such as polymers, colloids, surfactants, emulsions,
and biological materials [1]. Free-energy minimalization in
combination with hydrodynamic flow, collectively known as
model H [2-4], determines the global structure of the emerg-
ing pattern and the rate at which it evolves. The bicontinuous
morphologies observed in the spinodal decomposition of
symmetric binary liquids are commonly believed to be self-
similar in time, i.e., the patterns at any two moments in time
resemble one another and differ only by a scaling factor. This
dynamical scaling hypothesis implies that a single time-
dependent characteristic length R(7) can be used to charac-
terize the growth of the pattern. It is generally accepted that
this evolution follows a simple power law, R(r) ~ %, where «
is the growth exponent. Since the coupled and nonlinear dif-
ferential equations for the composition and flow fields in
model H cannot be solved analytically, a comparison of the
dominant terms in these equations has led to the identifica-
tion of three successive growth regimes,

3 (diffusive),

R(r) o<\t
l‘2/3

(viscous), (1)

(inertial).

Directly following the spinodal quench of a homogeneous
mixture, diffusion is the dominant process driving particles
to like particles, culminating in the formation of tiny clusters.
The growth law is then given by the Lifshitz-Slyozov mecha-
nism [5], R(f) < (\y1)""3, where \ is a diffusive transport co-
efficient and v is the interfacial tension of the domain bound-
aries. Our main objective here will be to study this growth
law by molecular dynamics simulations, for reasons outlined
below. After the formation of domains with well-defined in-
terfaces, the minimalization of their interfacial energies be-
comes the driving force behind segregation. Siggia [6] de-
rived that the balance between interfacial and viscous forces
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then gives rise to the linear scaling law R(r) « (yt/ 7), with 7
the viscosity of the liquid. During this growth the Reynolds
number, Re=(p/7)R(dR/dr) with p denoting the specific
gravity, steadily increases. This led Furukawa [7] and Ken-
don [8] to predict an inertia-dominated scaling law, R(z)
o (y£*/ p)!”3, as the final stage in the growth process. By com-
paring the aforementioned scaling laws, a transition from the
diffusive to the viscous regime is predicted (denoted by an
asterisk) to occur at time £, ~(\7°/9»)"? and length R},
~ (A 7)"2, while the viscous regime is succeeded by an iner-
tial regime at time #,,~ 7°/(y?p) and length R}, ~(7*/p7y),
corresponding to a Reynolds number Re;,~1. These ap-
proximate expressions serve as guides in the ongoing experi-
mental and numerical research of spinodal decomposition, to
be discussed next, which has largely confirmed the power-
law growth of the domains.

In most experimental studies on fluid-fluid phase separa-
tion in mixtures of simple liquids [9-11], the spinodal de-
composition is initiated by a very shallow quench of a ho-
mogeneous system to a temperature barely below the critical
temperature. The associated Reynolds numbers are very low,
hence the observed scaling follows the viscosity-dominated
a=1 scaling law. Since phase separation usually progresses
extremely rapidly, the critical slowing down in the vicinity of
the critical point is exploited to facilitate the experiments.
Liquids with high Schmidt numbers [Sc=7/(pD)=10°-105,
with D the diffusion coefficient] are preferred for the same
reason. With these expedients, the rapid diffusion-dominated
regime of initial domain formation is just about detectable in
mixtures of simple liquids [9,11]. Suspensions of large un-
like particles, such as colloids and polymers [12], also dis-
play a diffusive ¢'/3 coarsening of the domain size, be it much
slower than in fluid-fluid mixtures. The inertia-dominated
growth regime has not yet been observed experimentally.

Computer simulations of spinodal decomposition using
dedicated Navier-Stokes solvers, such as lattice gas automata
and lattice Boltzmann (LB) methods, have confirmed the ex-
istence of both linear a=1 [13-15] and sublinear a=2/3
[14,16] growth laws. The transition between both regimes
was first studied by Kendon et al. [14,17] by performing LB
simulations of one fluid mixture over a range of viscosities,
thus effectively and efficiently sampling a far wider range of
time and length scales than can be accessed by a single simu-
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lation of a large system. The turnover between both growth
regimes occurs surprisingly late, centered around z,; ~ 104t:i,
and is protracted over nearly four orders of magnitude in
time. In terms of the Reynolds number, this corresponds to
the range 1 <Re,;=100. A further discussion of the inertial
regime was presented by Love et al. [18].

Phase separation of binary fluid mixtures has also been
simulated using off-lattice particle-based methods, such as
molecular dynamics (MD) [19-21] and dissipative particle
dynamics (DPD) [22,23]. In the latter method, proposed a
decade ago by Hoogerbrugge and Koelman [24], the hard
MD potentials between atoms are replaced by extremely soft
interactions between fluid elements, and an ingenious ther-
mostat is introduced to make all forces consistent with New-
ton’s third law, which also lies at the basis of hydrodynamics.
The main advantages of these particle-based simulation
methods are that they are not based on presuppositions re-
garding the dynamics or thermodynamics of the system, and
that they include the perpetual thermal noise. This way, the
mesoscopic properties of the phase separating system emerge
naturally from the simulations rather than being imposed via
the simulation algorithm. Because of the extremely soft in-
teraction potentials in DPD, a linear growth regime is easily
reachable in simulations, especially in the computationally
less-demanding two-dimensional systems [22]. Simulations
by Jury et al. [23], combining one thermodynamic state point
with a range of tuned viscosities, even suggest that the first
glimpses of the broad transition to the inertial regime are
attainable with DPD. The early MD simulations of a binary
Lennard-Jones fluid by Ma et al. [19] were also reported to
have reached the inertial regime. Laradji et al. [20] simulated
a larger Lennard-Jones system and argued, based on a differ-
ent analysis of the data, that the growth rate is in the viscous
regime instead. Both these simulations employed traditional
MD thermostats known to interfere with the consistent
buildup of the hydrodynamical flow field, while these hydro-
dynamic interactions are essential for the viscous growth
law. Other simulations with stronger perturbations of the
flow field have shown that disturbances may impede viscous
domain growth [16,22].

The short-lived diffusive growth regime has thus far at-
tracted little attention in the simulations of fluid-fluid spin-
odal decomposition, since the focus has been on the two later
stages. In the lattice-based methods, which are specifically
designed for the long length and time scales, the omission of
the initial stage is self-evident. But for the off-lattice particle-
based simulations, which by construction are limited to short
length and time scales, the absence of studies on the initial
t'3 regime is rather surprising. In this study, we concentrate
on this first stage of spinodal decomposition and the subse-
quent transition to the viscous regime. We combine the best
features of both above discussed particle based simulation
techniques, to wit, the realistic hard interactions from MD
and the momentum conserving thermostat from DPD. This
paper is organized as follows: in Sec. II we briefly describe
the employed simulation model and a technique to determine
the average size of the emerging domains. Our simulation
results are presented in Sec. III, followed in Sec. IV by a
discussion and comparison with previous studies.
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II. SIMULATION DETAILS

In our molecular dynamics simulations [25,26], the inter-
action between two like particles at a distance r is modeled
by the Lennard-Jones (LJ) potential,

o 12 o 6
o]

where € and o are the strength and radius of the potential,
respectively. The potential is smoothly truncated at the cutoff
distance r.=2.50, to eliminate discontinuities in the energy
and in the forces. Unlike particles interact by the same LJ
potential in the preparatory equilibration runs and by the
purely repulsive Weeks-Chandler-Andersen (WCA) poten-
tial, defined as Uwca(r)=Up(r)+e for r=2"¢ and
Uwea(r)=0 for r>2"6¢, during the phase separation simu-
lations. The Verlet leap-frog algorithm is used to numerically
integrate Newton’s equations of motion with a time step Az
=0.0027, where 7=\ma>/ € is the natural LJ unit of time and
m is the mass of a particle.

A thermostat is employed to maintain a constant tempera-
ture 7T throughout the simulation, mainly by dissipating the
excess energy released by the phase separating system. The
traditional MD thermostats based on velocity scaling [25,26]
interfere with the evolution of the hydrodynamical flow field,
and are therefore less suited for studying processes in which
these flow fields might play an important role. We have
therefore used a thermostat, introduced by Hoogerbrugge
and Koelman [24] as part of the DPD method, which was
particularly designed to obey Newton’s third law and hence
automatically gives rise to permissible flow fields. In sum-
mary, any two particles at a distance r within the cutoff ra-
dius r, interact by friction and random forces [24,27,28],

F < (1 r)2(A AV)F + —— (1 r)(
mo = — - r-AvV)r+ - r,
thermo 2kpT T V’E 7.

3)

where « sets the activity of the thermostat, kp is Boltzmann’s
constant, ¥ is the unit vector between the two particles, and
Av is their velocity difference. The random numbers ¢ have
zero average, unit standard deviation, are independent for
every particle pair and are sampled every time step from a
distribution without memory. A fluctuation-dissipation theo-
rem relating the variances of the friction and random forces
to the desired equilibrium temperature 7" has been included in
the above equation. Note that the thermostatting forces do
not affect the thermodynamic properties of the Lennard-
Jones fluid, but they will slow down the dynamics of the
fluid. We take advantage of this corollary by selecting a
fairly high friction parameter, k=3e7"20™!, to increase the
length ¢, of the diffusive growth regime. This particular
choice decreases the diffusion coefficient of the LJ particles
by a factor of about 3 relative to the nonthermostatted fluid.
A further convenient property of the DPD thermostat is that
it couples to the local temperature, as opposed to conven-
tional MD thermostats which act on the overall mean tem-
perature. Note that we have not used the extremely soft po-
tentials cointroduced with the DPD thermostat [24]: these
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weak interactions lead to fluids with very low Schmidt num-
bers [27] and consequently reduce the span 7, of the diffu-
sive growth regime.

All simulations were performed using three-dimensional
symmetric binary mixtures, containing a total of N
=500 000 particles in a cubic box with periodic boundary
conditions. The number density was fixed at p=0.7073,
yielding box sizes L=89¢. Every simulation started with the
creation of a new homogeneous system, by randomly insert-
ing particles in the simulation box and rejecting all insertions
resulting in a large overlap with previously accepted par-
ticles. Next, these boxes were thoroughly equilibrated in MD
simulations at the desired temperatures of T=1¢€/kp, 2€/kp,
and 3€/kp, using the same Lennard-Jones potential for all
interactions to create homogeneous systems. Finally, phase
separation was initiated by replacing the LJ interaction be-
tween unlike particles by the WCA potential, which instan-
taneously quenches the simulation boxes to states deeply be-
low the spinodal. All particle coordinates r;(f) were stored at
intervals of 0.27 for later visualization and analysis of the
phase separation dynamics.

Since the time-dependent average domain size R(z) is the
most interesting and natural measure for the progression of
the phase separation, we have determined this coarsening
function from the structure factors of the stored configura-
tions. The latter are calculated as

S(k,1) = (k) (- K)), (4)

where the Fourier transform of the order field reads as
N
B(k) = 2 b, (5)
j=1

with b;= =1 depending on the type of particle j and k a
wave vector commensurate with the box dimensions. Along
any direction in reciprocal space, the structure factors of a
symmetric binary liquid start at S=0 for k=0, then rise to a
maximum S, for wave number k,, before gradually returning
to zero at large wave numbers. Since the structure factors
S(k,r) calculated from a single configuration at time 7 are
rather noisy, we exploited this rotational symmetry to calcu-
late spherically averaged structure factors S,,(k,), using a
bin width of Ak=0.0170"!. The structure factors of four in-
dependent runs were averaged before making a least-squares
fit with the scaling function

3[k/ k()]

Sgk,t) = Sm(t)m,

(6)
proposed by Furukawa [29] on the basis of the limiting be-
haviors of S(k) at small and large k. One readily shows that
this function reaches a maximum of S,,(z) for the wave num-
ber k=k,(t). Note that Furukawa’s function is consistent
with the dynamical scaling hypothesis, which is expected to
hold for the evolving phase separated domains. An offset in
the wave number, introduced as a third fit parameter to im-
prove the quality of fit [30], spoils this scaling invariance and
is therefore not recommendable. The characteristic lengths of
the domains in our simulations are finally extracted from the
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FIG. 1. (Color online) Spherically averaged structure factors
Ssph(k,t) for four times, =207, 607, 1007, and 1407, after quench-
ing a homogeneous system. The data shown are averages over four
independent simulations to improve the signal-to-noise ratio. Thick
smooth lines represent fits with the Furukawa function, see Eq. (6).
As time advances, the position k,, of the peak shifts to lower wave
numbers, and the height of the peak increases, indicating that the
domains are growing.

peak positions of the fitted functions by R(r)=2/k,,(1). We
believe that this route to the average domain size provides a
worthwhile alternative to the more common approaches
based on the first or second moment of S(k), especially when
the structure factors are compounded with noise.

III. RESULTS

Visual inspection of the stored trajectory files, using the
visual molecular dynamics (VMD) package [31], vividly il-
lustrates the sequence of events in a phase separating fluid
mixture. Immediately following the quench, tiny domains of
like particles appear throughout the previously homoge-
neously mixed system. The domains gradually increase in
size until their diameters reach a significant fraction of the
box dimensions, at which point the simulations are termi-
nated. A quantitative measure of the domain sizes is obtained
by calculating the spherically averaged structure factors
Sspn(k,t) of the stored configurations, using the procedure
outlined in the preceding section. Typical results for four
distinct times during the phase separation are plotted in Fig.
1. In agreement with the visual inspection of the simulation
movies, the position k,, of the peak gradually shifts toward
lower wave numbers with increasing time. The four data sets
are fitted reasonably well, see the thick lines in the plot, by
the master curve proposed by Furukawa, see Eq. (6). A closer
inspection reveals that the master curve systematically over-
estimates the structure factors in the tails at both sides of the
peak. We want to emphasize that the quality of the fit func-
tion is of minor importance in the current analysis, provided
both the emerging pattern and the applied fit function are in
agreement with the dynamical scaling hypothesis. An aver-
age domain size R is now readily deduced from the peak
position k,,, which is one of the two fit parameters in the
Furukawa function. Since it proves difficult to make reliable
fits of the structure factors at early times into the decompo-
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FIG. 2. (Color online) Characteristic length scale R of the phase
separated domains, as deduced from the structure factors, plotted
(in black) as a function of time for the two lower temperatures. The
colored (gray) lines are fits with the generalized power law, see Eq.
(7), whose fit parameters are listed in Table 1.

sition simulation, t<<57, where the demixing has not yet
yielded well-defined domains and the signal-to-noise ratio in
the S(k,?) is still unfavorable, we have omitted these earliest
times in the following analysis.

The average domain sizes are plotted as functions of time
in Fig. 2 for the two lowest temperatures, 7=1€/kg and T
=2€/kg. Both curves show a sublinear regime at small times
followed by a near-linear regime at later times, which we
identify with the diffusive and viscous scaling regimes, re-
spectively. Since the power laws of Eq. (1) were deduced
from mesoscopic equations of motion, they are expected to
hold true for mesoscopic time and length scales only. The
current simulations, however, are at a level where the under-
lying microscopic details might be expected to be still rel-
evant to the domain coarsening. It therefore appears appro-
priate to fit the observed growth functions with a more
general power law [20],

R(1) = Ry + a(t/7)°, )

where R, represents a microscopic offset in the domain size.
The Lennard-Jones unit of time 7 is introduced here for con-
venience, thus making the dimensions of a independent of
the value of a. The resulting fit parameters are collected in
Table I. Of particular interest are the two similar growth
exponents of @=0.55, which suggests that we are sampling
a time interval close to or surrounding the transition time 7,
from the diffusive a=1/3 to the viscous a=1 growth re-
gime. It is tempting, therefore, to extract from the simulated

TABLE I. Parameters obtained by fitting the simulated growth
functions at three temperatures with the power law of Eq. (7). In the
last line, the growth for = 1007 was fitted with a simple power law,
i.e., without the offset Ry.

T/ ek’ Ryl o alo a

1 3.37 0.62 0.57
2 3.33 0.97 0.52
3 -1.85 4.96 0.27
3 4.10 0.28
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FIG. 3. (Color online) Characteristic length scale R of the phase
separated domains plotted against scaled time, for the two lower
temperatures. The growth curves are expected to coalesce in the
viscous regime, after rescaling time with the temperature-dependent
factor y/ n.

range an initial and a late period; the bounds on these periods
are admittedly rather arbitrary in the absence of a clear tran-
sition. By fitting the growth curve at T=2¢€/kp over the initial
period ST7=t=t; with #,=507, 257, and 157, we find the
substantially lower exponents of «=0.45, 0.39, and 0.40, re-
spectively. These values hint at a transient regime with
diffusion-limited growth, although the covered time interval
is far too short to admit a more definitive conclusion. The
other two fit parameters are also fairly consistent in these
three regions, with Ry=2.00 and a=1.90. At the lower tem-
perature of 7=1¢€/kp, the exponent remains almost unaltered
at «=0.55 for all tested upper bounds on the initial range,
implying that the diffusive region is extremely short lived in
this case. In the final region of the growth curve, fy=¢
=3007 with Iy between 1507 and 2507, it proves difficult to
fit the data with a general power law. The growth exponents
are found to vary strongly with 7, yielding values as dispar-
ate as 0.24 and 1.57, while the other two fit parameters are
equally inconsistent, making the direct evaluation of the
growth exponent unreliable in this regime. Laradij ef al. [20]
identify the viscous growth process in their simulations by
noting that rescaling of the curves at different temperatures
according to the predicted growth law, Rt/ 7, should
make the curves coalesce. We calculate the interfacial ten-
sion from the difference in the pressures parallel and perpen-
dicular to the fluid-fluid interface in a phase separated box
with two flat interfaces [26,27]. The viscosity is extracted
from the self-diffusion coefficient D in the homogeneous lig-
uid by using the Stokes-Einstein expression, D=kzT/cmnR,
with ¢=5 and R=0/2 [32]. Both calculations are performed
at T=1€/ky and 2€/kg. After rescaling both growth curves
by their respective factors, we observe the good agreement
depicted in Fig. 3. Plots of R(f) against ¢, the predicted
power law in the diffusive regime, yield a less satisfactory
agreement between the two curves, even if the value of the
undetermined diffusive transport coefficient A is chosen such
as to minimize the differences between the curves (not
shown). Rescaling both growth curves according to the iner-
tial law produces a clear deviation between the graphs (not
shown). Taken together, this strongly indicates that the ob-
served growth of the average domain size is best character-
ized as being in the viscous regime.
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FIG. 4. (Color online) Average domain size during spinodal de-
composition at the elevated temperature of 7=3¢€/kg. The slope a
=0.29 of the fitted line is in good agreement with the a=1/3 ex-
pected in a diffusive growth process.

A completely different picture emerges at the higher tem-
perature of 7=3¢€/kp. Fitting the data with the general power
law, see Table I, we find that the average domain size grows
with an exponent «=0.27 over the entire simulated time in-
terval. On a double logarithmic plot, presented in Fig. 4, the
curve converges to the straight line R=4.10(t/7)%%, fitted
over the range 1007=¢=3007. These exponents are in good
agreement with the a=1/3 predicted for the diffusive re-
gime.

IV. DISCUSSION AND CONCLUSIONS

The initial stages of phase separation in a quenched ho-
mogeneous mixture of immiscible binary fluids have been
studied by molecular dynamics simulations. At the elevated
temperature of T=3¢€/kp, the power-law growth of the aver-
age domain size is in good agreement with the initial diffu-
sive growth mechanism R '3 predicted by the Lifshitz-
Slyozov theory. This is the first clear observation of the
diffusive regime in three-dimensional molecular dynamics
simulations of spinodal decomposition. For the intermediate
temperature of T=2€/kp the diffusive regime is short lived,
and quickly gives way to a viscous regime. The latter is the
only regime discernible in the simulations at the low tem-
perature of 7=1¢€/kg. Although an accurate growth exponent
cannot be established, the characterization of this regime is
supported by the observed scaling behavior with tempera-
ture.

The small mean domain sizes in the initial parts of the
simulations, for R(f) <L/10~ 100, imply that the simulation
boxes contain a large number of domains, be they correlated.
In combination with the averaging over four unrelated simu-
lations at every temperature, this suggests that the temporal
evolution of the mean domain size has been determined ac-
curately for short times. Since the average repeat distance of
the phase separated domains remains relatively small com-
pared to the box dimensions until the termination of the runs,
R(1)L/4 for all t, possible box-size related artifacts are
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expected to be still of minor importance. The accuracy of
R(zr) will, however, decrease at the later times, which might
contribute to the difficulties in determining the growth expo-
nent in the viscous regime.

The introduction of a domain size offset R, in the general
power law, as proposed by Laradji et al. [20], is important
for the quality of the fit, especially since the actually attained
mean domain sizes are not orders of magnitude larger than
R(. We find that this offset for the two lowest temperatures is
of the same magnitude as the sizes of the particles, which
agrees with the intuition of a viscous growth process starting
from small clusters. An additional temporal offset 7, was
introduced in some fits, replacing ¢ by 71—z, on the right-hand
side of Eq. (7). We found that this did not substantially im-
prove the quality of the fit, with 7, often being close to zero.
A number of fits even became numerically poorly defined,
indicative of the redundancy introduced by the extra degree
of freedom.

The transition time 7, between diffusive and viscous
growth is seen to increase strongly with increasing tempera-
ture. At T=1€/ky there is no clear transition, for T=2¢€/kp
we estimate t,, ~ 507, while at T=3¢€/ kg the transition is not
even reached within the spanned time range, i.e., 74> 3007.
We suggest that critical slowing down plays an important
role in the pronounced rise of 7,, with 7. Simulations at the
higher temperature 7=3.5€/kp show a limited transient de-
gree of clustering but do not yield a continuous growth of
these clusters, implying that this temperature already exceeds
the critical temperature. It cannot be ruled out, however, that
the effect reflects a steep temperature dependence of \. Fur-
ther calculations, exceeding the scope of this paper, are re-
quired to investigate these possible explanations. A simple
calculation yields that 7,,~ 1007 at T=2€/ kg, which in com-
bination with the previously established ¢#,;~ 104t;‘;i explains
why the inertial regime is not observed in the current simu-
lations.

The transition time ¢4, is also interesting for the study of
spinodal decompositions of liquid mixtures exposed to a
shear deformation [33,34]. At relatively low shear rates, ¥
<t¢_1;’ the effect of the flow is sufficiently small for well-
defined domains to form. The flow deformation will distort
the domains, possibly tearing them apart, but may also be
effective in bringing domains together. For relatively high
shear rates, y> t;i, the deformation flow is expected to com-
pete with the diffusive stage of phase separation, thus seri-
ously hindering the formation of clear domains. In a forth-
coming paper we will discuss this competition between
phase separation and flow deformation, for the current
Lennard-Jones liquid, in a Couette geometry.
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