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Abstract

In this paper a three-dimensional (3D) volume of fluid (VOF) method is presented featuring (i) an interface reconstruction technique
based on piecewise linear interface representation, (ii) a 3D version of the CSF model of Brackbill et al. [1992, Journal of Computational
Physics 100, 335]. Our model can handle a large density and viscosity ratio and a large value of the surface tension coefficient.

First the results of a number of test cases are presented to assess the correctness of the advection and interface reconstruction algorithms
and the implementation of the 3D version of the CSF model. Subsequently the computed terminal Reynolds numbers and shapes of
isolated gas bubbles rising in quiescent liquids are compared with data taken from the bubble diagram of Grace (1973). Finally results of
two calculations are reported involving the co-axial and oblique coalescence of two gas bubbles. The computed bubble shapes compared
very well with the experimentally observed bubble shapes of Brereton and Korotney [1991, In: Dynamics of Bubbles and Vortices Near
a Free Surface, AMD-vol. 119. ASME, New York].
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Multi-fluid flows in which a sharp interface exists are fre-
quently encountered in a variety of industrial processes. It
has proven particularly difficult to accurately simulate these
flows which can be attributed to (i) the fact that the interface
separating the fluids needs to be tracked accurately with-
out introducing excessive computational smearing, (ii) the
necessity to account for surface tension in case of (highly)
curved interfaces. In the past decade a number of techniques,
each with their own particular advantages and disadvantages,
have been developed to simulate complex multi-fluid flow
problems. The most important techniques are summarised
in Table 1together with their main advantages and disad-
vantages. Subsequently these techniques will be briefly re-
viewed.
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Front trackingmethods (Unverdi and Tryggvason, 1992;
Esmaeeli and Tryggvason, 1998a,b; Tryggvasson et al.,
2001) make use of markers (for instance triangles), con-
nected to a set of points, to track the interface whereas a
fixed or Eulerian grid is used to solve the Navier–Stokes
equations. This method is extremely accurate but also
rather complex to implement due to the fact that dynamic
remeshing of the Lagrangian interface mesh is required and
mapping of the Lagrangian data onto the Eulerian mesh has
to be carried out. Difficulties arise when multiple interfaces
interact with each other as in coalescence and breakup
which both require a proper sub-grid model. Contrary to
most other methods, the automatic merging of interfaces
does not occur in front tracking techniques due to the fact
that a separate mesh is used to track the interface. This
property is advantageous in case swarm effects in dispersed
flows need to be studied.
Level setmethods (Sussman et al., 1994, 1999; Sethian,

1996; Chang et al., 1996; Sussman and Smereka, 1997;
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Table 1
Overview of techniques for multi-fluid flows with sharp interfaces

Method Advantages Disadvantages

Front tracking Extremely accurate Mapping of interface mesh onto Eulerian mesh
Robust
Account for substantial topology changes in interface Dynamic remeshing required
Merging and breakage of interfaces does not occur automatically Merging and breakage of interfaces requires sub-grid model

Level set Conceptually simple Limited accuracy
Easy to implement Loss of mass (volume)

Shock capturing Straightforward implementation Numerical diffusion
Abundance of advection schemes are available Fine grids required

Limited to small discontinuities

Marker particle Extremely accurate Computationally expensive
Robust Re-distribution of marker particles required
Accounts for substantial topology changes in interface

SLIC VOF Conceptually simple Numerical diffusion
Straightforward extension to three dimensions Limited accuracy

Merging and breakage of interfaces occurs automatically

PLIC VOF Relatively simple Difficult to implement in three dimensions
Accurate
Accounts for substantial topology changes in interface Merging and breakage of interfaces occurs automatically

Lattice Boltzmann Accurate Difficult to implement
Accounts for substantial topology changes in interface Merging and breakage of interfaces occurs automatically

Sussman and Fatemi, 1999; Fedkiw and Osher, 2001) are
designed to minimise the numerical diffusion hampering
shock-capturing methods and typically define the interface
as the zero level set of a distance function from the interface.
The advection of this distance function evolves through the
solution of the following equation:

DF

Dt
= �F

�t
+ (ū · ∇F) = 0, (1.1)

expressing that the interface property is advected with the
local fluid velocity. Level set methods are conceptually sim-
ple and relatively easy to implement and yield accurate re-
sults when the interface is advected parallel to one of the
co-ordinate axis. However, in flow fields with appreciable
vorticity or in cases where the interface is significantly de-
formed, level set methods suffer from loss of mass (volume)
and hence loss of accuracy.

In shock capturingmethods (Ida, 2000) high order shock-
capturing schemes are used to treat the convective terms in
the governing equations. The advantage of this method is
that explicit reconstruction of the interface is circumvented
which offers advantages for unstructured grids. Although
state-of-the-art shock-capturing methods are quite sophisti-
cated, they work less well for the sharp discontinuities usu-
ally encountered in multi-fluid flows. Moreover, they require

relatively fine grids to obtain accurate solutions.Rider and
Kothe (1995)used a high order Godunov method and con-
ducted several numerical tests and concluded that “In all
cases the use of shock-capturing methods was inadequate”.

In marker particlemethods (Welch et al., 1965; Rider
and Kothe, 1995) marker particles are assigned to a partic-
ular fluid and are used to track the motion (and hence the
interface) of this fluid. From the instantaneous positions of
the marker particles the relevant Eulerian fluid properties,
required to solve the Navier–Stokes equation, are retrieved.
Marker particle methods are extremely accurate and robust
and can be used successfully to predict the topology of an
interface subjected to considerable shear and vorticity in the
fluids sharing the interface. However, this method is compu-
tationally very expensive, especially in 3D. Moreover, diffi-
culties arise when the interface stretches considerably which
necessitates the addition of fresh marker particles during the
flow simulation. Similar difficulties arise when the interface
shrinks. Also merging and breakup of interfaces poses a
problem; again a proper sub-grid model needs to be invoked.
Volume of fluid (VOF)methods (Hirt and Nichols, 1981;

Youngs, 1982; Rudman, 1997; Rider and Kothe, 1998;
Scardovelli and Zaleski, 1999; Popinet and Zaleski, 1999;
Bussman et al., 1999) employ a colour functionF(x, y, z, t)

that indicates the fractional amount of fluid present at a
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certain position(x, y, z) at time t. The evolution equation
for F is again Eq. (1.1) which is usually solved using spe-
cial advection schemes (such as geometrical advection, a
pseudo-Lagrangian technique), in order to minimise numer-
ical diffusion. In addition to the value of the colour function
the interface orientation needs to be determined, which
follows from the gradient of the colour function. Roughly
two important classes of VOF methods can be distinguished
with respect to the representation of the interface, namely
simple line interface calculation (SLIC) and piecewise lin-
ear interface calculation (PLIC). Earlier work is generally
typified by the SLIC algorithm due toNoh and Woodward
(1976)and the donor–acceptor algorithm published byHirt
and Nichols (1981). Modern VOF techniques include the
PLIC method due toYoungs (1982). The accuracy and
capabilities of the modern PLIC VOF algorithms greatly
exceeds that of the older VOF algorithms such as the Hirt
and Nichols VOF method (Rudman, 1997). A drawback
of VOF methods is the so-called artificial (or numerical)
coalescence of gas bubbles which occurs when their mutual
distances is less than the size of the computational cell.

The lattice Boltzmann method(LBM) can be viewed
as a special, particle-based discretisation method to solve
the Boltzmann equation. This method is particularly at-
tractive in case multiple moving objects (particles, bubbles
or droplets) have to be treated and avoids, contrary to the
classical finite difference and finite-element methods, the
dynamic remeshing which becomes prohibitive for a large
number of moving objects.Ladd (1994a,b)has used the
LBM successfully to compute the effective gas–particle
drag in particulate suspensions whereas Sundaresan and co-
workers (Sankaranarayanan et al., 2002a; Sankaranarayanan
and Sundaresan, 2002b) recently extended this technique
to deformable interfaces and applied this technique sucess-
fully to study the dynamics of isolated gas bubbles rising in
quiescent liquids. However, similar to VOF methods in this
method problems may arise due to the artificial coalescence
of the dispersed elements (gas bubbles).

In this study we have adopted the VOF method based on
a piecewise linear interface representation (PLIC VOF). The
VOF method, constitutes powerful and efficient direct nu-
merical simulation (DNS) technique for complex free sur-
face problems and was originally proposed byHirt and
Nichols (1981). Subsequently many improvements and ex-
tensions were embedded in the original VOF method; for an
excellent overview the interested reader is referred to the re-
view paper byRider and Kothe (1998). Our model is based
on Youngs’VOF method which gave the best overall perfor-
mance in standard (two-dimensional (2D)) advection tests
and simulations of (2D) Rayleigh–Taylor instability as re-
ported byRudman (1997).

Within the context of this paper we will focus on its appli-
cation to dispersed two-phase flows. Similar to other DNS
techniques the temporal and spatial resolution is such that all
details of the flow fields are captured which enables a priori
prediction of the drag, lift and added mass forces experi-

enced by the dispersed elements moving either in isolation
or in (dense) swarms in a continuous phase. As such it can
provide vital information on the closures for the phase inter-
actions required for either Euler–Lagrange or Euler–Euler
type of models which can in principle be applied to engi-
neering problems. We have developed a full 3D VOF model
for two-materialflows embedding a 3D version of the CSF
model ofBrackbill et al. (1992)for the computation of the
surface tension force.

In our model relatively high values for the density and
viscosity ratio (typically one hundred) can be used without
an adverse effect on the stability and the required computa-
tional effort. Traditionally systems with a high density and
viscosity ration have proven difficult to simulate as reported
by Scardovelli and Zaleski (1999)andSabisch et al. (2001).
The latter authors typically used a density ratio of 0.5 in
their computations and reported a steep increase in the re-
quired computational time at low density ratios. However,
Rudman (1998)presented a 2D VOF method for multifluid
flows with large density variations by incorporating a piece-
wise linear interface reconstruction on a grid twice as fine as
the velocity–pressure grid used to solve the Navier–Stokes
equations. The extension of his dual-grid method to three
dimensions seems possible but has not been reported so far.

In this paper, we apply our VOF model (i) to conduct a
systematic comparison between simulation and experiment
(Grace diagram) over a wide range of physical properties
using a high density and viscosity ratio which are charac-
teristic for gas–liquid systems, (ii) assess its capability to
simulate co-axial and oblique coalescence of two rising gas
bubbles, a process in which substantial changes in the inter-
face topology occur.

2. Governing equations

For incompressible multi-material flows the Navier–Stokes
equations can be combined into a single equation for the
fluid velocity ū in the entire domain of interest taking into
account surface tension through a local volumetric surface
tension forceF̄� accounting for the presence of the dis-
persed phases. The governing conservation equations for
unsteady, incompressible, Newtonian, multi-fluid flows are
given by the following expressions:

(∇ · ū) = 0, (2.1)

�
�t

(�ū) + (∇ · �ū ⊗ ū)

= −∇p + �ḡ +
(
∇ · �

[
(∇ū) + (∇ū)T

])
+ F̄�, (2.2)

where the local averaged density� and viscosity� are eval-
uated from the local distribution of the phase indicator or
colour functionF which is governed for two-fluid flows by

DF

Dt
= �F

�t
+ (ū · ∇F) = 0, (2.3)
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expressing that the interface property is advected with the
local fluid velocity. For the local average density� linear
weighing of the densities of the continuous (2) and dispersed
phase (1) is used:

� = F�1 + (1 − F)�2. (2.4)

Similarly, the local average dynamic viscosity can also be
obtained via linear averaging of the dynamic viscosities of
the continuous (2) and dispersed phase (1). As an alter-
native, more fundamental approach recently proposed by
Prosperetti (2001), the local average viscosity can be calcu-
lated via harmonic averaging of the kinematic viscosities of
the involved phases according to the following expression:

�
�

= F
�1

�1
+ (1 − F)

�2

�2
. (2.5)

In all computations reported in this paper Eq. (2.5) was
used to compute the local average viscosity. The volumetric
surface tension force appearing in the momentum Eq. (2.2)
acts only in the vicinity of the interface.

3. Numerical solution method

3.1. Computation of the flow field

The Navier–Stokes equations can be solved with a stan-
dard finite volume technique on a staggered rectangular 3D
grid using a two-step projection-correction method with an
implicit treatment of the pressure gradient and explicit treat-
ment of the convection and diffusion terms. A second-order
flux delimited Barton-scheme (Centrella and Wilson, 1984)
is used for the discretisation of the convection terms and
standard second-order central finite differences for the dif-
fusion terms. In order to be able to simulate systems with
very large density ratios, the Navier–Stokes equations are
rewritten in the following non-conservative form using the
continuity equation

�
[
�ū
�t

+ (∇ · ū ⊗ ū)

]

= −∇p + �ḡ +
(
∇ · �

[
(∇ū) + (∇ū)T

])
+ F̄�, (3.1)

where the density in the inertial terms is treated at the old
time level. We use a robust and very efficient incomplete
Cholesky conjugate gradient (ICCG) algorithm to solve the
pressure Poisson equation (PPE).

3.2. Computation of the surface tension force

In the CSF model (Brackbill et al., 1992) the surface ten-
sion force acts via a source term̄F� in the momentum equa-
tion which only acts in the vicinity of the interface. The
expression forF̄� is given by

F̄� = 2F��m̄, (3.2)

type 1 type 2 type 3

type 5type 4

Fig. 1. Five generic types of interface configurations considered in the
computation of the fluxes through the cell faces.

where the expression for the curvature is obtained from the
divergence of the unit normal vector to the interface:

� = −
(

∇ · m̄

|m̄|
)

= −(∇ · n̄)

= 1

|m̄|
[
m̄

|m̄| · ∇|m̄| − (∇ · m̄)

]
. (3.3)

The normal to the interface is computed from the gradient
of the smoothed colour function. The smoothing technique
used in this paper will be discussed later.

3.3. Solution of the F-advection equation

The integration of the hyperbolicF-advection equation is
the most critical part of the VOF model and is based on
geometrical advection which can be viewed as a pseudo-
Lagrangian advection step. The advantage of the geometrical
advection is given by the fact that a very sharp interface is
maintained during the simulations. First for each Eulerian
cell containing an interface the unit normal vector to the
interface is estimated from the gradient of the colour function
F:

n̄ = ∇F

|∇F | . (3.4)

In our model first the components of the normal vector are
computed at the vertices of the Eulerian cell and then the
cell-centered components are computed by averaging over
the eight surrounding vertices. To minimise the number of
possible interface conditions which need to be considered,
first a number of transformations at the level of computa-
tional cells are carried out to achieve that the components
n1, n2 andn3 of the normal to the interface are always pos-
itive and satisfy the following inequality:

n1<n2 <n3, (3.5)

where the subscript refers to the co-ordinate direction. These
transformations involve (i) change of co-ordinate directions,
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Table 2
Criteria for the determination of the type of interface cell

Type

1 6n1n2n3F <n3
1

2 n3
1 <6n1n2n3F <n3

2 − (n2 − n1)
3

3 if n1 + n2 >n3
n3

2 − (n2 − n1)
3 <6n1n2n3F <n3

3 − (n3 − n1)
3 − (n3 − n2)

3

ifn1 + n2 <n3
n3

2 − (n2 − n1)
3 <6n1n2n3F < (n1 + n2)

3 − n3
1 − n3

2

4 n1 + n2 >n3 and
n3

3 − (n3 − n1)
3 − (n3 − n2)

3 <6n1n2n3F < (n1 + n2)
3 − n3

1 − n3
2 − (n1 + n2 − n3)

3

5 n1 + n2 <n3 and
6n1n2n3F > (n1 + n2)

3 − n3
1 − n3

2

(ii) mutual interchange of co-ordinate directions and (iii)
interchange of the dispersed and continuous phase. Through
the use of these transformations it is possible to reduce the
total number of possible interface configurations from 64 to
five generic ones which are schematically shown inFig. 1.
From these five generic interface types the particular type
prevailing in a certain Eulerian cell needs to be determined
on basis of the known interface orientation (i.e. the normal
vector to the interface) and theF-value of the interface cell.
The criteria for determining the type of interface cell are
listed inTable 2. For the computation of the fluxes through
the cell faces the equation for the planar interface segment
cutting through the Eulerian cell needs to be considered.
This equation is given by

n1�1 + n2�2 + n3�3 = d, (3.6)

where �i (i = 1, . . . ,3) represents the dimensionless co-
ordinate in directioni given by

�i = xi

�xi
, (3.7)

where�xi represents the grid-spacing in co-ordinate direc-
tion xi (i = 1, . . . ,3). The value of the plane constantd can
be determined by equating the expression for the dimen-
sionless liquid volume (volume below the planar interface
segments shown inFig. 1) to the known fractional amount
of liquid or theF-value in the interface cell which leads to
the equations listed inTable 3. The value ofd can be ob-
tained readily from the root of these non-linear equations
using the Newton–Raphson method which needs however
to be done with care in order to find the correct root of the
cubic equations. As an alternative the Regula Falsi method
can be used, which requires however an interval in which
the root can be found. This interval can be obtained on basis
of the known interface orientation (i.e. components of the

Table 3
Equations for the plane constantd

Type

1 d3 = 6n1n2n3F

2 d3 − (d − n1)
3 = 6n1n2n3F

3 d3 − (d − n1)
3 − (d − n2)

3 = 6n1n2n3F

4 d3 − (d − n1)
3 − (d − n2)

3 − (d − n3)
3 = 6n1n2n3F

5 d3 − (d − n1)
3 − (d − n2)

3 + (d − n1 − n2)
3 = 6n1n2n3F

normal to the interface) and the fractional amount of liquid
in the interface cell (i.e. theF-value) using simple geomet-
rical considerations. One should keep in mind here that the
solution of the non-linear equation needs to be carried out
only for the interface cells.

Once the aforementioned steps have been taken, finally
the amount of liquid fluxed through each of the faces of
the Eulerian cells during a time step�t can be computed.
The F-advection equation is discretised with an explicit
treatment of the convections terms, where a straightforward
generalisation of the 2D geometrical advection method
given by Delnoij (1999) is used (also seeScardovelli and
Zaleski, 1999). In our implementation of this method we
have adopted the split advection scheme. Because the ex-
pressions for the fluxes through the cell faces are quite
lengthy they are not given here. Finally, the computed new
F-values are corrected for (small) non-zero divergence of
the velocity field due to the iterative solution of the PPE.

3.4. Smoothening of the colour function F

As indicated before the interface orientation (i.e. the nor-
mal to the interface) is computed from the gradient of the
colour functionF according to Eq. (3.4). Basically this in-
volves numerical differentiation of a discontinuous function
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leading in practice to (small) inaccuracies. This problem can
be overcome however by making use of a smoothed colour
function F̃ for the computation of the unit normal to the in-
terface using Eq. (3.4) withF replaced byF̃ obtained from:

F̃ (x, y, z) =
∑
m

D(x − xm)D(y − ym)

× D(z − zm)F (xm, ym, zm), (3.8)

where the smoothening functionD is given by the function
proposed byPeskin (1977):

D(x) = 1

2h

(
1 + cos

(
�
x

h

))
(3.9)

or as an alternative by a suitable polynomial expression as
the one proposed byDeen et al. (2004):

D(x) = 15

16

1

h

[(x
h

)4 − 2
(x
h

)2 + 1

]
, (3.10)

whereh represents the width of the computational stencil
used for the smoothening. The summation in Eq. (3.8) only
involves the grid points with distance (in each separate co-
ordinate direction) equal or less than the smoothening or
filter width h.

We typically useh= 2� where� represents the Eulerian
grid size and, unless otherwise stated. The width of the com-
putational stencil for the smoothening should be selected
carefully. When the width is too small numerical instabilities
may arise, especially in case the coefficient of surface ten-
sion is high. On the other hand when the width of the com-
putational stencil is chosen too large, excessive smoothening
(“thickening” of the interface) is obtained which is unde-
sirable. For the simulations reported in this paper we used
Eq. (3.10) and additionally we used the smoothed colour
function F̃ instead ofF in Eq. (3.2). It should be stressed
here that this smoothed colour function is only used in con-
junction with the estimation of the unit normal to the in-
terface and not in the computation of the material fluxes
through the faces of the computational cells for which the
unsmoothed colour function was used.

4. Results

As a first step our VOF model was subjected to several
tests to verify the correctness of the computer implemen-
tation. Our first test is a so-called standard advection test
(Rider and Kothe, 1998) in which basically the advection
and reconstruction of the interface is tested in a prescribed
flow field. Similar tests (in two dimensions) have been con-
ducted byRudman (1997)in his benchmark study of well-
known volume tracking techniques. We have conducted a
rather severe test using a flow field in which considerable
stretching and deformation of the interface occurs. In our
second test the implementation of the surface tension model
was tested by comparing the computed pressure jump with
the well-known Young–Laplace equation.

Table 4
Data used for the standard advection test

Computational grid 80× 80× 80 (-)
Grid size 0.01 m
Number of time steps 1000 (-)
Time step 0.001 s
Bubble radius 0.15 m
Initial bubble position (x, y, z) = (0.4,0.55,0.4) m
Liquid density 1000 kg/m3

Liquid viscosity 0.1 kg/(m s)
Gas density 10 kg/m3

Gas viscosity 0.001 kg/(m s)

Following these test calculations computed shapes and
rise velocities of gas bubbles were compared with the corre-
sponding data obtained from the bubble diagram published
by Grace (1973). As far as the authors know this study is the
first attempt to make a systematic comparison between sim-
ulation and experiment (Grace diagram) over a wide range of
physical properties using at the same time a relatively high
density and viscosity ratio. However, prior to these calcula-
tions the effect of the domain size and the typical number of
required computational cells inside the gas bubble were de-
termined. Finally the results of 3D simulations are presented
involving the co-axial and oblique coalescence of two ini-
tially spherical gas bubbles. The results of these 3D simu-
lations are compared with the experimental results reported
by Brereton and Korotney (1991)for axial and oblique co-
alescence of two rising gas bubbles.

4.1. Standard advection test

Following Rider and Kothe (1998), in our first test a gas
bubble was positioned in a box and subjected to a prescribed
vortical flow field with corresponding stream function�
given by

� = sin2
(x
a

)
sin2

(y
b

)
, (4.1)

wherea and b represent the box size in, respectively, the
x- andy-direction. Herex andy represent, respectively, the
horizontal and vertical direction. The velocity components
are related to the stream function� by

ux = −��
�y

, uy = ��
�x

, uz = 0. (4.2)

By comparing the initial bubble shape with its shape ob-
tained when the flow is advanced forn steps and then re-
versed for the same number of time steps the accuracy of
our VOF model can be assessed. InTable 4the data used
for this test are summarised.

In Fig. 2 the shape of the bubble is computed at sev-
eral moments during the advection. A perfect computational
technique would lead to exactly the same spatial distribution
of F-values at the beginning (Fig. 2a) and the end (Fig. 2c)
of the integration process. Clearly small differences can be
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Fig. 2. Computed bubble shapes for the advection test: (left) initial
bubble shape att = 0.0 s, (centre) bubble shape at the end of the forward
integration in time att = 1.0 s and (right) bubble shape at the end of the
backward integration in time att = 0.0 s.

observed between the initial shape of the bubble and its final
shape. It should be noted here that inFig. 2 (and all sub-
sequent figures) we show the true interface representation
which is used in the computations and not the (smoothed)
colour function. A quantitative measure for the associated
computational errorE1 can be obtained from (F = 0 corre-
sponds to the bubble phase;F = 1 corresponds to the liquid
phase):

E1 =
∑

i,j,k |(1 − F end
i,j,k) − (1 − F initial

i,j,k )|∑
i,j,k (1 − F initial

i,j,k )
, (4.3a)

where the summation is performed over the entire computa-
tional domain. Another error is associated with the volume
conservation which can be quantified using the following
expression:

E2 =
∑

i,j,k (1 − F end
i,j,k) − ∑

i,j,k (1 − F initial
i,j,k )∑

i,j,k (1 − F initial
i,j,k )

. (4.3b)

For our testE1 equals 0.037 which indicates a relatively
small error (see e.g.Rider and Kothe, 1998for the 2D case)
arising from the advection and reconstruction of the interface
whereasE2 = 2.5 × 10−4 indicating an excellent volume
conservation. From inspection ofFig. 2 and the computed
E-values it can be concluded that the advection and interface
reconstruction algorithm work properly.

4.2. Surface tension model

It is well known that surface tension induces an excess
pressure inside a bubble which for a spherical bubble can
be calculated from the Youngs–Laplace equation given by

�p = 2�
R

, (4.4)

where� is the surface tension coefficient andR the bubble
radius. InFig. 3the computed pressure distribution in a ver-
tical plane cutting through the centre of the bubble is given
and compared to the analytical solution where the pressure
far from the bubble has been taken as the reference pres-
sure. For this simulation the bubble was positioned in the
centre of the simulation box in a zero gravity field. The data
given inTable 5were used for this simulation. Contrary to
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101200
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101400

101450

101500

p 
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x [m]

Fig. 3. Top: Computed (open circles) pressure distribution in a central
plane cutting through the bubble together with the analytical solution
(solid line), the Young–Laplace equation (4.4); Bottom: Computed shape
of the bubble att = 0.05 s.

Table 5
Data used for the test of the surface tension model

Computational grid 80× 80× 80 (-)
Grid size 0.001 m
Number of time steps 1000 (-)
Time step 0.0001 s
Bubble radius 0.01 m
Initial bubble position (x, y, z) = (0.04,0.04,0.04) m
Liquid density 1000 kg/m3

Liquid viscosity 0.1 kg/(m s)
Gas density 10 kg/m3

Gas viscosity 0.001 kg/(m s)
Surface tension 1.0 N/m

the previous test case here the pressure (and velocity) distri-
bution is computed from the solution of the Navier–Stokes
equations. FromFig. 3 it can be seen that the excess pres-
sure inside the bubble is predicted with reasonable accuracy
(deviation from the analytical solution is 6%) which indi-
cates that the surface tension model has been implemented
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Fig. 4. Bubble diagram ofGrace (1973)for the shape and terminal rise
velocity of gas bubbles in quiescent viscous liquids. The simulated cases
(seeTable 7) are indicated with capitals.

correctly. Moreover the spherical bubble shape is nicely
maintained. The small discrepancy in the calculated excess
pressure can be further decreased by increasing the number
of computational cells inside the bubble.

4.3. Comparison with the bubble diagram of Grace

Grace (1973)has analysed a large body of experimental
data on shapes and rise velocities of bubbles in quiescent
viscous liquids and has shown that this data can be con-
densed into one diagram, provided that an appropriate set
of dimensionless numbers is used. A copy of this diagram,
taken fromClift et al. (1978)is reproduced inFig. 4 where
the dimensionless Morton (M), Eotvos (Eo) and Reynolds
(Re) are given by

M = g�4
l ��

�2
l �

3
, (4.5)

Eo = g��d2
e

�
, (4.6)

Re = �lv∞db

�l

, (4.7)

where the effective diameterde is defined as the diameter
of a spherical bubble with the same volume as the bubble

   Re=19.2                    Re=27.0                                               Re=28.8 

Fig. 5. Computed bubble shapes and rise velocities for computational do-
mains with increasing lateral dimensions (seeTable 6). Terminal Reynolds
number (Re) for the bubble according to the Grace diagram equals 30.

Table 6
Data used for the simulations to assess the size of the computational
domain in the lateral directions

Computational 20× 20× 100 (grid a) (-)
grids 40× 40× 100 (grid b) (-)

80× 80× 100 (grid c) (-)
Grid size 0.001 m
Number of time 5000 (-)
steps
Time step 0.0001 s
Bubble radius 0.006 m
Initial bubble (x0, y0, z0) = (0.01,0.01,0.01) (grid a) m
position (x0, y0, z0) = (0.02,0.02,0.01) (grid b) m

(x0, y0, z0) = (0.04,0.04,0.01) (grid c) m
Liquid density 1000 kg/m3

Liquid viscosity 0.1 kg/(m s)
Gas density 10 kg/m3

Gas viscosity 0.001 kg/(m s)
Surfacetension 0.1 N/m

Table 7
Morton (M) and Eotvos (Eo) numbers for simulations of bubbles in
different regimes according to the bubble diagram of Grace

Bubble M Eo ReG ReC Case in
regime Fig. 4

Spherical 1.26× 10−3 0.971 1.7 1.6 A
Ellipsoidal 0.10 9.71 4.6 4.3 B
Skirted 0.971 97.1 20 18 C
Dimpled/l 103 97.1 1.5 1.7 D
ellipsoidal

ReG andReC represent, respectively, the bubble Reynolds number ob-
tained from the Grace diagram and the computed bubble Reynolds num-
ber.

under consideration. In the Reynolds numberv∞ appears
which represents the terminal rise velocity of the bubble.

For the simulations presented in this paper a fixed density
and viscosity ratio of one hundred was used (viscosity and
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 Spherical: Eo=0.971, M=1.26.10-3  Ellipsoidal: Eo=9.71, M=0.1 

 Skirted: Eo=97.1, M=0.971 3

Skirted: Eo=97.1, M=0.971 Dimpled/Ellipsoidal: Eo=97.1, M=103

(A) (B)

(C) (D)

(C) (D)

Dimpled/Ellipsoidal: Eo=97.1, M=10

Fig. 6. Computed bubble shapes and rise velocities for the bubble regimes indicated inTable 7and Fig. 4.

density of the continuous liquid phase equal one hundred
times the viscosity and density of the dispersed gas phase).
This density and viscosity ratio is believed to be sufficiently

high to mimic gas–liquid systems with sufficient accuracy
and much higher than the ratio used bySabisch et al.
(2001).
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 t=0.000 s

t=0.075 s t=0.125 s t=0.100 s

t=0.050 s t=0.025 s

Fig. 7. Snapshots at different times of the co-axial coalescence of two initially spherical bubbles of 0.010 m diameter released from positions (0.020,
0.020, 0.010 m) and (0.020, 0.020, 0.025 m) in an initially quiescent liquid in a square column of 0.04 m× 0.04 m× 0.08 m, using a 80× 80× 160 grid
and a time step of 5× 10−5 s. Eo = 16 andM = 2× 10−4. Included are a liquid phase velocity map in the central vertical plane att = 0.100 s and the
photographs (time difference between subsequent photographs is 0.03 s) taken fromBrereton and Korotney (1991).

First a couple of simulations were carried out to warrant
that the size of the computational domain was sufficiently
large to mimic the condition of an infinite quiescent liquid.
In Fig. 5 the computed shapes of the bubbles are shown to-
gether with the computed terminal Reynolds numbers for
a number of sizes of the computational domain. Free-slip
boundary conditions were applied at all confining walls. The
data used for these simulations are given inTable 6. It can be
seen that the terminal rise velocity is not affected anymore
in case the lateral dimensions of the box in the horizontal
directions (i.e. thex- andy-direction) exceed 3–4 times the
(initial) bubble diameter. Another issue is concerned with
the required number of computational cells initially present
inside the gas bubble. For the simulations shown inFig. 5
the gas bubble initially contained 12 computational cells in
each direction. It was verified that the computed rise ve-
locities were not affected by this relatively low number of
computational cells.

Subsequently the simulation results for a number of im-
portant regimes given in the bubble diagram of Grace will

be presented. InTable 7the values of the selected Morton
and Eotvos numbers are given for simulations of bubbles in
different regimes according to this diagram (also indicated
in Fig. 4). In this tableReG andReC represent, respectively,
the bubble Reynolds number obtained from the diagram and
the computed bubble Reynolds number. InFig. 6 snapshots
are given of the computed shapes of the bubbles. It can be
seen that the computed Reynolds numbers and bubble shapes
compare very well with the data obtained from the bubble
diagram.

4.4. Multiple bubbles

The first example involves the co-axial coalescence of
two gas bubbles in an initially quiescent liquid where the
bubbles are initially spherical with their centres separated
by three-bubble radii. InFig. 7 the computed evolution of
the bubble shapes is shown together with photographs of
the experimentally observed bubble shapes just before and
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  t=0.000 s                               t=0.025 s                               t=0.050 s 

t=0.075 s                               t=0.100 s                               t=0.125 s 

 t=0.150 s                               t=0.175 s                               t=0.200 s 

Fig. 8. Snapshots at different times of the oblique coalescence of two initially spherical bubbles of 0.010 m diameter released from positions (0.020,
0.020, 0.025 m) and (0.028, 0.020, 0.010 m) in an initially quiescent liquid in a square column of 0.04 m× 0.04 m× 0.08 m, using a 80× 80× 160 grid
and a time step of 5× 10−5 s. Eo = 16 andM = 2× 10−4. Included are a liquid phase velocity map in the central vertical plane att = 0.100 s and the
photographs (time difference between subsequent photographs is 0.03 s) taken fromBrereton and Korotney (1991).

after the coalescence process as reported byBrereton and
Korotney (1991). The Morton and Eotvos number for this
case are, respectively, equal to 2× 10−4 and 16 (based on
the individual bubbles) which, according to the Grace dia-
gram, would correspond with a terminal Reynolds number
of 50 (case indicated with an asterisk inFig. 4) which agrees
reasonably well with the experimental value of 43 and the
computed value of 40. Apparently the leading bubble expe-

riences very little effect of the trailing bubble. However, the
behaviour of the trailing bubble is completely different as
can be seen clearly fromFig. 7. The trailing bubble catches
up with the leading bubble and attains a distinctly different
shape than the leading bubble when it enters the wake re-
gion of the leading bubble which is in excellent agreement
with the experimental observations. InFig. 7also a velocity
map is included just before the coalescence of the bubbles
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(t=0.10 s) for the central (vertical) plane cutting through the
column.

The second example involves the oblique coalescence of
two gas bubbles in an initially quiescent liquid where the
bubbles are initially spherical with their centres separated
again by three-bubble radii in the vertical direction. Com-
pared to the first case the position of the lower bubble was
shifted to the right (x-direction) over 1.6 bubble radii. In
Fig. 8the computed evolution of the bubble shapes is shown
together with photographs of the experimentally observed
bubbles shapes just before and after the coalescence process.
The Morton and Eotvos number are the same as for the first
case. Similar to the previous case the leading bubble behaves
as an isolated bubble although its major (vertical) axis at-
tains a small angle with the (vertical)z-axis when the trail-
ing bubble enters its wake region. Again the trailing bubble
catches up with the leading bubble and experiences consid-
erable shape deformation when it enters the wake region of
the leading bubble which is in excellent agreement with the
experimental observations. The liquid phase velocity map
is shown for the central (vertical) plane cutting through the
column just before coalescence of the bubbles commences.
In this case the velocity field is clearly asymmetrical.

5. Conclusions

In this paper a 3D volume of fluid (VOF) method has been
presented featuring (i) an interface reconstruction technique
based on piecewise linear interface representation, (ii) a 3D
version of the CSF model ofBrackbill et al. (1992). Several
(severe) tests were conducted which revealed that the advec-
tion and interface reconstruction algorithms work properly
and the model for the surface tension forces has been im-
plemented correctly. It was also assessed that the computed
terminal rise velocities were not affected by the size of the
computational domain in case the lateral dimensions of the
box in the horizontal directions (i.e. thex- andy-directions)
exceed 3–4 times the (initial) bubble diameter.

Subsequently the computed terminal Reynolds numbers
and shapes of isolated gas bubbles rising in quiescent liquids
were compared with data taken from the bubble diagram of
Grace. It was demonstrated that the computed shapes and
rise velocities agreed very well with the data taken from
this diagram. Finally the model was successfully applied to
a case where the interface experiences substantial changes,
i.e. co-axial and oblique coalescence of two gas bubbles
rising in a viscous liquid. In all cases studied the volume
conservation, quantified by Eq. (4.3b), was very good.

Notation

a computational domain inx-direction, m
b computational domain iny-direction, m
d plane constant for interface segment cutting

through Eulerian cell, dimensionless

de equivalent bubble diameter, m
D distribution or smoothening function, dimen-

sionless
E1 relative advection error, dimensionless
E2 relative volume conservation error, dimension-

less
Eo Eotvos number, dimensionless
F fractional amount of liquid, dimensionless
F̃ smoothed colour function, dimensionless
F� volumetric surface tension force, N/m3

g gravitational acceleration, m/s2

h width of the computational stencil for the
smoothening function, m

M Morton number, dimensionless
ni ith component of the unit normal vector, dimen-

sionless
p pressure, N/m2

R bubble radius, m
Re Reynolds number,dimensionless
t Time, s
v∞ terminal bubble rise velocity, m/s
xi ith co-ordinate direction, m
x x-co-ordinate, m
y y-co-ordinate, m
z z-co-ordinate, m

Greek letters

�� density difference, kg/m3

�p pressure difference, N/m2

�xi grid spacing inith co-ordinate direction, m
�V volume of computational cell, m3

� dynamic viscosity, kg/(m s)
� density, kg/m3

� surface tension, N/m
� stream function, m2/s

Vectors

m̄ normal vector
n̄ unit normal vector
ū velocity, m/s

Subscripts and superscripts

1,2 phase number
l liquid phase
x x-direction
y y-direction
z z-direction

Operators

⊗ dyadic vector product
�
�t

partial time derivative, s−1
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D

Dt
substantial derivative, s−1

∇ gradient operator, m−1

∇· divergence operator, m−1

T transpose of a tensor
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