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Reed–Solomon List Decoding From a
System-Theoretic Perspective

Margreta Kuijper and Jan Willem Polderman

Abstract—In this paper, the Sudan–Guruswami approach to list
decoding of Reed–Solomon (RS) codes is cast in a system-theoretic
framework. With the data, a set of trajectories or time series is
associated which is then modeled as a so-called behavior. In this
way, a connection is made with the behavioral approach to system
theory. It is shown how a polynomial representation of the mod-
eling behavior gives rise to the bivariate interpolating polynomials
of the Sudan–Guruswami approach. The concept of “weighted row
reduced” is introduced and used to achieve minimality. Two de-
coding methods are derived and a parametrization of all bivariate
interpolating polynomials is given.

Index Terms—Behaviors, bivariate interpolation, list decoding,
Reed–Solomon (RS) codes, system theory.

I. INTRODUCTION

A. Context

FOR several decades Reed–Solomon (RS) codes could be
counted among the most frequently used block codes.

Their algebraic structure allows for a range of hard-decision
decoding algorithms, such as the Berlekamp–Massey (B-M)
algorithm, the Euclidean algorithm, and the Welch–Berlekamp
algorithm. All these classical decoding algorithms decode
up to the conventional limit of half the minimum-distance
number of errors. In more recent years, a novel approach
toward RS decoding was introduced in [1]–[3] that opened up
the possibility of decoding beyond this conventional limit. The
approach employs list decoding in which a list of codewords
that are nearest to the received word is produced. This major
breakthrough was followed by several publications, such
as [4]–[9]. In particular, it gave rise to innovative ideas on
algebraic soft-decision RS decoding, as presented in [10]–[12].

Parallel to the developments described above, there has been
a growing interest to establish relationships between the area
of coding theory and the area of system theory, particularly the
behavioral approach, see, e.g., [13], [14] as well as [15] and ref-
erences therein. In the behavioral approach, the system theo-
rist’s focus is on the set of all possible time trajectories of a
system, which is called the behavior. In previous work [16],
[13], [17], [18], [14], [19], [20] classical RS decoding algo-
rithms are formulated in terms of behavioral modeling. To ef-
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fectuate the translation to system theory the decoding data is
transformed into trajectories on the time axis . Decoding is
then shown to be equivalent to modeling of these trajectories.
In this setup, autonomous behaviors play a key role. In the be-
havioral literature [21], an iterative procedure is available for
building autonomous behaviors that requires the specification of
an update matrix at each step. In [19] it is shown that the B-M
algorithm is a special instance of this procedure with cleverly
chosen update matrices. In a sense, this work gives a behavioral
foundation to the matrix formulation of the B-M algorithm, as
in Blahut [22].

In this paper, we seek to put the novel list decoding approach
of [1]–[3] in a system-theoretic framework. Our motivation
for this is threefold. First, this framework unifies different list
decoding methods. We show that one of these, namely the
Nielsen–Høholdt decoding algorithm from [8], can be inter-
preted as a special instance of the iterative modeling procedure
of [21] where the update matrix is chosen cleverly (see also
[23], [24] for a restricted case). In this paper, we derive a second
decoding method which requires a postprocessing stage. In
a sense, the postprocessing stage generalizes the Euclidean
algorithm as used for classical decoding (see [25]).

Our second motivation for using a system-theoretic approach
is that it naturally gives rise to decoding methods that produce
more than just the sought after solution: it is shown that it also
produces a parametrization of all solutions. We elaborate on this
aspect of the approach in Section V.

A third motivation for using our system-theoretic framework
is that we believe that it brings about conceptual clarity that facil-
itates the understanding of decoding algorithms. Some prelimi-
nary knowledge on system theory is of course required to achieve
this understanding. This paper is meant to be self-contained. In
fact, we aim to equip the reader with just enough system-theo-
retic knowledge to be able to understand the paper’s contribu-
tions. In the remainder of this section, we present an informal first
introduction to our system-theoretic approach to give the reader
a first idea of the approach. This is followed by more stringent
system-theoretic preliminaries in Section II. We pay specific at-
tention to the impact of finite fields on behavioral results. The
outline of the rest of the paper is as follows. In Section III, we for-
mulate the decoding interpolation problem in behavioral terms
as the modeling of certain trajectories. In Section IV, we present
algorithms that perform multivariable interpolation through the
iterative calculation of a square polynomial matrix . Solu-
tions of minimal weighted degree are produced in this
way. In addition, our approach provides a complete characteri-
zation of all such bivariate polynomials, as shown in Section V.
Finally, conclusions are presented in Section VI.

0018-9448/04$20.00 © 2004 IEEE
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B. Introduction to a System-Theoretic Approach

As mentioned above, the translation to system theory is ef-
fectuated by reformulating decoding equations in terms of be-
havioral modeling. The basic idea is contained in the following.
Consider an equation of the type

(1)

where and are elements of a field and and are
polynomials over . In terms of bivariate polynomials we then
have for . With the data
pair we associate the trajectory given by

(2)

An observation that is crucial to our approach is that the poly-
nomials and are solutions of (1) if and only if is a
solution of the difference equation

where stands for the backward shift operator, that is,
. The latter difference equation gives rise

to a so-called behavior that is linear and shift invariant and
given by

(3)
We see that satisfies (1) if and only if the trajectory
defined in (2) is in .

The behavior specified in (3) is spanned by infinitely many
trajectories . Behavioral modeling is concerned
with finding the smallest linear shift-invariant behavior that
contains . This behavior is called the Most Powerful Un-
falsified Model (MPUM) for the data set . It is clear that
is necessarily contained in the behavior defined above. For

we can immediately write down a representation, namely

i.e., , where

In fact, in this rather trivial case is one-dimensional and
spanned by . A two-dimensional example is provided next.

Example 1.1: Take . Define

and

Then the MPUM for the data set is given by

Note that the above representation is not unique: can also
be represented by, for example

C. Problem Statement

In this subsection, we formulate the general problem state-
ment. Let be a subset of a finite field . For the
sake of clarity we make the traditional assumption that the
are mutually distinct. However, the approach is general enough
to encompass the case where not all are distinct, as put for-
ward in recent work [26]. An RS code is defined as the
set of codewords of the form , with

running through the set of polynomials of degree
. The codeword is transmitted through a channel where

errors may occur so that the received word is not necessarily
equal to the transmitted codeword . The decoding problem con-
sists of reconstructing the original polynomial from the
received word . In list decoding, a list of possible polynomials

is generated. The breakthrough idea of [1] is to use bi-
variate polynomials for list decoding.

Definition 1.2: Let be a bivariate polyno-
mial, say

The weighted degree of is defined as

Definition 1.3: Let be a bivariate polyno-
mial, say

The pair is a root of of multiplicity
if for all and for
some . The pair is a root of
of multiplicity if is a root of of
multiplicity .

Generally, the concept of multiple root can be expressed in
terms of derivatives. In order to enable results that make sense
for finite fields we first introduce the concept of Hasse derivative
[27], [28] (called hyperderivative in [29, p. 303]).

Definition 1.4: Let be a polynomial with
coefficients in a field . Then the polynomial
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is called the th Hasse derivative of . Let
with . The th Hasse derivative of

, denoted by , is defined as

The Hasse derivative of a general polynomial
is defined through the requirement

Note that times equals the usual th “formal

derivative” . The relation with Taylor expansions about
a point shows the role of Hasse derivative

(4)

From this we also see that is the coefficient of in
. Similarly, is the coefficient of

in . In finite fields, say of characteristic , the
Hasse derivative is much more useful than the formal derivative
because whenever we have and hence all th
formal derivatives vanish. The reader may find it convenient to
realize that as long as the order of “differentiation” is strictly
less than the characteristic of the field, then we may as well
work with the classical formal derivative. Below, we express the
concept of multiple root in terms of Hasse derivatives.

Theorem 1.5:

1) The polynomial divides if and only if
is a root of all th Hasse derivatives of for

.

2) Let and . Then is a
root of of multiplicity if and only if

for some

Proof: This follows immediately from (4) or the “Re-
peated Factor Test” of [28], see also [29].

The next two results can also be found in [3].

Theorem 1.6: Let be elements of
with the mutually distinct. Let be a bi-
variate polynomial with such that

with multiplicity , for . Let
be a polynomial of degree . Let and
define If then divides .

Proof: For all , we have that
with multiplicity at least . This follows by applying the chain
rule for to and Theorem 1.5. It follows that

has, counting multiplicities, at least and therefore
more than roots. Since we conclude that

is the zero polynomial. This implies that
divides .

Corollary 1.7: Consider the message polynomial and
let be the received word. Let

be a bivariate polynomial of weighted degree such
that with multiplicity , for . Let

and define . Define
. If then divides .

The main concern of Sudan’s list decoding approach is to
construct a polynomial such that with
prescribed multiplicities. To maximize the number of errors that
can be corrected, it makes sense to minimize the weighted de-
gree of this polynomial, an approach which is also taken in
[8], [10], [11]. In the decoding process all factors of the form

are subsequently extracted to produce a list of candi-
date polynomials of degree . The next step is then to
produce a sublist of most likely message words by computing
the corresponding codewords and comparing with . It has been
shown in the literature that the probability that this sublist con-
tains more than one message word is “usually very small” [8]. In
this paper, we solely concentrate on the polynomial construction
part of this decoding process and do not consider the factoriza-
tion part.

Our main aim is to place the list decoding approach of [1]–[3]
in a behavioral framework. Roughly, our approach is structured
as follows. We write the polynomial to be constructed
as

for an appropriate choice of . With each data point
we associate trajectories.

We then determine the MPUM of these trajectories. Then we
construct a weighted row reduced matrix that represents

. From we select a row of minimal weighted row
degree and, finally, we define

where the ’s are the entries of . It turns out that
constructed in this way is a bivariate polynomial of minimal
weighted degree that interpolates the data points with
multiplicity at least for .

II. PRELIMINARY RESULTS FOR BEHAVIORS

OVER FINITE FIELDS

In this section, we review some basic concepts and results
of the behavioral approach to linear systems over a field . For
most of these the underlying field is immaterial. The only excep-
tion pertains to the differentiation of polynomials as we shall see
below. Results that are obvious analogies of the real or complex
case are stated without proof. The reader is referred to [30] for
more detailed discussions of the behavioral theory. Results that
are specific for the finite field case are stated with proof.
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Following [30], a dynamical system is a triple
. Here can be thought of as the time axis, is

the signal alphabet, and , the behavior of the system, is a
subset of . Relevant choices for our purposes are ,

, and a linear subspace of .
We define , the backward shift operator, acting on elements

in as . Important systems are those
whose behavior is defined as the kernel of a polynomial matrix
in . Let be a matrix in the indetermi-
nate and with coefficients in . Then we define the behavior
corresponding to as

It is easy to see that is linear. Moreover, is time invariant,
that is, for every trajectory in the shifted trajectory
is also in . The class of behaviors in variables that admit a
representation of the form is denoted by . Rep-
resentations of the form are, for obvious reasons,
referred to as kernel representations. In the general theory of be-
haviors many other representations are of interest. In this paper,
we only use kernel representations.

It appears that different matrices and may de-
fine the same behavior. It is possible to give a complete charac-
terization of all matrices that represent a given behavior, as we
show next (see [31, Theorem 3.7] for a detailed proof, see also
[32]).

Lemma 2.1: For let and denote
the corresponding behaviors by . If then there ex-
ists a matrix such that .

A matrix is said to be unimodular if there
exists such that ,
equivalently, if is a nonzero constant in . A direct
consequence of the above lemma is the following theorem (see
e.g., [31, Theorem 3.9] or [30, Theorem 3.6.2]).

Theorem 2.2: Let define the same be-
havior , i.e., if and only if .
Then there exists a unimodular matrix such
that .

Theorem 2.2 makes it possible to choose out of the many rep-
resentations of a given behavior one that is particularly conve-
nient for the application at hand. Examples are upper or lower
triangular forms. Also, by means of appropriate unimodular pre-
multiplication one may create zero rows to end up with a matrix
in which the remaining nonzero rows are independent over .
The nonzero rows then form a matrix with fewer rows that is said
to be of full row rank. A form that is crucial in the application
of the behavioral approach to coding theory is the row reduced
form.

Definition 2.3: Let and denote the rows
of by , . The row degrees
are defined as . Define the diag-
onal matrix and write

with strictly proper, meaning
that in every entry of the degree of the denom-
inator exceeds the degree of the numerator. Then, is said

to be row reduced if is of full row rank as a matrix in .
The matrix is called the leading row coefficient matrix.

The next two theorems are well-known results from behav-
ioral theory.

Theorem 2.4: Let be a square matrix with
row degrees . Denote the sum of these row degrees by

. Then is row reduced if and only if .

Theorem 2.5: Let be of full row rank. There
exists a unimodular matrix such that is row
reduced.

For , Theorem 2.5 may conveniently be proved using
the Euclidean algorithm. The proof for the general case
uses a slightly different technique, dating back to [33, p. 27], see
also [31, p. 24]. We provide this proof for the sake of complete-
ness and the convenience of the reader. Moreover, the procedure
that is outlined in the proof is used explicitly in Section IV, see
also Example 2.9.

Proof: Refer to Definition 2.3 for the notation. Suppose
that is not of full row rank. Then there exists a nonzero vector

such that . Let be a row of for
which the row degree is maximal among all rows of for
which the corresponding component of is nonzero. Define the
unimodular matrix as

. . .

. . .

Premultiplication of with leaves all rows unaltered
except the th row which is transformed into a linear combina-
tion of the rows of

(5)

Because of , the row degree of (5) is strictly smaller
than . As a consequence, the sum of the row degrees of

is strictly smaller than the sum of the row degrees
of . We can repeat this transformation for as long as the
leading row coefficient matrix does not have full row rank. On
the other hand, the sum of the row degrees is a nonnegative in-
teger and can therefore only decrease a finite number of times.
The conclusion is that after a finite number of steps a row re-
duced form is reached.

In the sequel, we use a modified version of row reduced-
ness of which the above is a special case. This is the notion of
“weighted row reduced.”

Definition 2.6: Let be nonnegative integers. De-
fine

(6)
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The weighted row degrees of a matrix are
defined as the row degrees of . The matrix is
called weighted row reduced if is row
reduced.

Notice that weighted row reduced is just row re-
duced. We mainly consider
weighted row reduced. We shall refer to this special case as
simply weighted row reduced.

The following two theorems are generalizations of
Theorems 2.4 and 2.5. They come in useful in Section IV.

Theorem 2.7: Let be a square polyno-
mial matrix of full row rank and let be non-
negative integers. Let be defined as in (6). Then

is weighted row reduced if and only if
equals the sum of the weighted

row degrees of .
Proof: It follows from Theorem 2.4 that is row

reduced if and only if

equals the sum of the row degrees of . By definition,
the latter equals the sum of the weighted row degrees of ,
which proves the theorem.

Theorem 2.8: Let be of full row rank and let
be nonnegative integers. There exists a unimodular

matrix such that is weighted row
reduced.

Proof: Let be as in (6). According to
Theorem 2.5, there exists a unimodular matrix such
that is row reduced. But then, by definition,

is weighted row reduced.

Example 2.9: Let and let the matrix
be given by

This matrix is not weighted row reduced. We demonstrate how
this matrix is transformed into weighted row reduced form. To
that end, we first postmultiply by
yielding

Take, for example

so that

Then

Repeating the argument we finally obtain

so that

which is indeed weighted row reduced.

The next result shows how row reducedness gives rise to
the so-called “predictable-degree property” (terminology from
Forney’s paper [34]). This observation turns out to be crucial in
the behavioral interpretation of the decoding scheme of [1].

Theorem 2.10: Let be row reduced and
denote the row degrees by . Let be a
nonzero vector. Then the row degree of equals

(7)

Proof: See [34] and also [35, Theorem 6.3–13].

Corollary 2.11: Let be weighted row re-
duced and denote the weighted row degrees by . Let

be a nonzero vector. Then the weighted row
degree of equals

Proof: Define . Let the diagonal matrix

Since is weighted row reduced, is row reduced
with row degrees . By Theorem 2.10, the row degree
of is given by (7). Since the weighted row degree of

is the row degree of the statement follows.

As remarked, behaviors are represented by polynomial ma-
trices. The question arises how, for a given polynomial matrix,
the behavior can be determined explicitly. Our key players are
trajectories of the form

for

for
(8)

where . So far, Hasse derivatives have only been defined
for polynomials. We would however like to interpret the trajec-
tory as the th Hasse derivative of the trajectory . To this
end, we now extend the definition of Hasse derivative to trajec-
tories as follows.

Definition 2.12: Let and be such that
for all and some . Then the th Hasse

derivative of the trajectory is defined as the trajectory
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With this definition, the trajectory defined in (8) can be
written as . In the sequel, for and constant

we denote the trajectory by . Then
obviously

(9)

Now, let be a given polynomial matrix in . Then
obviously

(10)

Further, it is easy to check that for defined by (8) we have

(11)

It now follows straightforwardly from (9)–(11) and the product
rule for Hasse derivative that

(12)

Using (12), we arrive at the following result which is the finite
field equivalent of [30, Theorem 3.2.16].

Theorem 2.13: Let , let be a poly-
nomial of degree , and let .
Then is an -dimensional subspace of . If

with and , then all trajectories in are of the form

with defined by for and with
satisfying the linear restrictions

Example 2.14: Let be given by

Then

Using Theorem 2.13 it follows that all solutions of
are of the form

In the sequel we only use a special case of Theorem 2.13 which
we therefore state next.

Corollary 2.15: Let , with
. Let . Then if and only if

with .

In the above we investigated explicit expressions for trajec-
tories satisfying a given polynomial representation. In the se-
quel, we are interested in the converse, namely, building rep-
resentations from given trajectories. For this purpose, we use
the theory of exact modeling of behaviors as first introduced in
[36]. We recall a few of the main ideas. Given a finite number
of trajectories we may seek to
build a system whose behavior contains these specific trajecto-
ries. A behavior is called an unfalsified model for the data
set if . A model is called more
powerful than a model if . From a modeling per-
spective it appears sensible to look for the smallest behavior that
contains the trajectories. A model is called the MPUM
for , if is unfalsified for and . In
[21], it is shown that for such an MPUM
exists. In fact, it is characterized as , where
is the set of unfalsified models for . In [21], a general proce-
dure for the iterative construction of a kernel representation for

is presented. We recall this procedure; its workings can be
easily understood from Lemma 2.1.

Procedure 2.16: ([21]) Initially define

where is the identity matrix

Proceed iteratively as follows for . Define, after
receiving , the th error trajectory as

Compute a kernel representation of the MPUM for
. Then define

Theorem 2.17: ([21]) For , the kernel repre-
sentation of the above procedure, represents the
MPUM for .

Remark 2.18: For general trajectories, Procedure 2.16 may
be cumbersome to run. However, for exponential trajectories,
the procedure is easy and convenient to perform. As an illus-
tration, for given and , consider the trajecto-
ries , , and with defined by (8). We want to de-
termine the MPUM of these three trajectories. Set
and define . So . Choose such
that and . Then, according to
Corollary 2.15, represents the MPUM of . Set

. Next, define . It follows
from (12) that
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Take such that and and
define . Define . Then,
again from (12), equals

The middle term is zero because

Hence, choose such that and
. Finally, define . Then rep-

resents the MPUM of , , and .

III. MINIMAL INTERPOLATION AS BEHAVIORAL MODELING

In this section, we reformulate the problem statement as
introduced in Section I in terms of behavioral modeling. In
Section IV, we then proceed to solve the problem by employing
iterative behavioral modeling. As outlined in Section I, the
problem statement in its most general form involves interpola-
tion “with multiplicity.”

A. Problem Statement

Given triples , find a
polynomial of minimal weighted degree such
that for with multiplicity at least .

We formulate this problem statement in terms of behavioral
modeling. Analogous to (8), we define trajectories
by

for

for
(13)

Also, for we define

(14)

Theorem 3.1: Let be a bivariate polyno-
mial, written as

Then, for with multiplicity at least
if and only if

(15)

Proof: We give the proof for only. For the
proof follows the same lines.

First, assume that with multiplicity at least two.
We need to prove (15) for and ,
respectively. According to the second part of Theorem 1.5, we
conclude that

From (11), we conclude

(16a)

(16b)

(16c)

Then from (16a) and (16c), we obtain two of the three claims
made in (15). Next, from (12) it follows that

(17)

From (16a), (11) it follows that and, therefore,
. Once more using (11) we then get from (17) and

(16b) that

(18)

This proves (15) for .
Second, assume that (16a), (16c), and (18) are true. From

(16a), (16c), (11) we get

(19)

Finally, again using (11), it follows from (17) that also (16b) is
true. From the second part of Theorem 1.5 it then follows that

with multiplicity at least two.

The problem is now to find an integer and a vector
satisfying the above. Notice that

(15) only guarantees interpolation with multiplicity at least .
At first sight one might, relying on univariate intuition, expect
that the additional requirement that is of minimal
weighted degree implies that the multiplicity is exactly . This,
however, is not true as the following simple example shows.

Example 3.2: Let and take as interpolation points
. Furthermore, take .

The polynomial of minimal weighted degree
that interpolates these points can be proven to be unique up to
a scaling factor and equals . Inspection
yields that all points are interpolated with multiplicity one, ex-
cept which has multiplicity two.

For the choice of we argue as follows. A trivial solution to
the interpolation problem is given by . With

, this polynomial has weighted degree and, therefore,
the following choice of suffices:

(20)

Remark 3.3: A tighter upper bound for the minimal weighted
degree can be expressed in terms of both and . It is based on
a counting argument, see [1, Lemma 7]. This upper bound can
then be used to derive a possibly smaller choice of .

We now proceed as follows. We construct a weighted
row reduced matrix that represents the MPUM
of the trajectories in (15). From we select a row

of minimal weighted row
degree. The desired polynomial
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interpolates each data point with multiplicity at least
and has minimal weighted degree.

Theorem 3.4: Let be the MPUM of

defined in (13), (14) with defined by (20). Let
be a weighted row reduced representation

of and let be a row of
of minimal weighted degree. Define

Then is a polynomial of minimal weighted degree with
for with multiplicity at least .

Proof: Let be such that
with multiplicity at least for . Write

and . Then, by Theorem 3.1 , for

It follows from the definition of MPUM that for all
. It follows from Lemma 2.1 that there exists

such that . It now follows from
Corollary 2.11 that the weighted row degree of is larger
than or equal to the weighted row degree of . This means
that the weighted degree of is larger than or equal to the
weighted degree of .

IV. DECODING PROCEDURE

In this section we show how behavioral modeling, in partic-
ular the iterative modeling Procedure 2.16, can be put to work
for list decoding. The workings of this procedure in its general
context of behavioral modeling were described in Section II.
Here we use this theory to first produce a general interpolation
procedure in which the matrix in Procedure 2.16, which
is the update matrix at step , is left unspecified. For different
choices of update matrix the procedure then turns into different
interpolation algorithms.

Procedure 4.1: General interpolation procedure
INPUT: interpolation data for ; multi-
plicities for ; parameter .

Step 1: Initialization , i.e., the
identity matrix.

Now proceed iteratively for with

Step 2: Process : taking the matrix as input
this step outputs the matrix .

OUTPUT: matrix .

The rows of the final matrix produce bivariate poly-
nomials that are solutions to the interpolation problem as for-

mulated in Section III. In particular, a row of
lowest weighted row degree gives rise to a solution

of minimal weighted degree . The reason for this is that the
algorithm is set up in such a way that is weighted row
reduced.

The remainder of this section is organized as follows. In
Section IV-A, we present the case , whereas Section IV-B
assumes general values for the multiplicities .
In each of these subsections, we present two choices (Choice I
and Choice II) for the type of update matrix . Choice I is
a rather straightforward choice, leading to an algorithm that
produces a final matrix that is not necessarily weighted
row reduced. In Section IV-A (all multiplicities set to one),
this algorithm builds up the Lagrange interpolating solutions.
Minimal interpolation can then be achieved by next applying
the procedure indicated in the proof of Theorem 2.5 for making
a matrix weighted row reduced (use also Theorem 2.8). In
Choice II, the update matrix is chosen in such a way that it
creates weighted row reducedness at each step, thus immediately
producing minimal solutions. Such an update needs to keep track
of weighted row degrees, just as in the minimal interpolation
algorithm of [8]. In Section VI, we comment on the relationship
of our algorithm with the algorithm of [8]. In Section V, we
elaborate on some of the implications of using the behavioral
approach. In particular, we find that, in generating a minimal
solution, our behavioral algorithm in fact generates a polynomial
basis for all interpolating solutions in an explicit fashion.

Throughout the remainder of this section we use a RS
code on as a running example.

A. Multiplicity One

For Step 2 of Procedure 4.1 can be
specified in more detail as follows ( defined as in (14)):

Step 2.1: Compute

Step 2.2: Specify the update matrix .

Step 2.3: Compute .

Here the update matrix should be chosen such that

(21)

represents the MPUM of . This is due to the fact that,
at each step, the error trajectory equals .

The above procedure exactly follows the steps of Procedure
2.16. It therefore follows immediately that for the
matrices in the above algorithm are such that
represents the MPUM of . The only issue
that still deserves attention is the choice of update matrix .
It follows from Corollary 2.15 that for (21) to represent the
MPUM of we need to make sure that
and . This still leaves room for numerous
choices. In the following we focus on two of those choices. In
the sequel, denotes the th unit vector.
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1) Nonminimal Choice of : A particularly straightfor-
ward choice for the update matrix in the above algorithm
is

that is,

. . .
...

(22)

It is not difficult to show that, as long as the are distinct, this
choice guarantees that for all so that
(22) is well defined.

For this choice of update matrix the final matrix is
given by

. . .
...

(23)

where and denotes the Lagrange
polynomial of degree that maps to for .
This is most easily seen by expressing the Lagrange polynomial
in its Newton polynomial form. Thus, we have an iterative pro-
cedure for building this model which lends itself to an elegant
implementation.

Example 4.2: Consider the RS code on defined
by

Let the received word be as in [11, Example 1], i.e.,
. Running the preceding algorithm for

yields a final matrix given by

which is easily seen to be of the form (23). This matrix is not
weighted row reduced as the leading weighted row coefficient
matrix is singular.

As demonstrated by Example 4.2, for the above choice of
, the resulting matrix is not necessarily weighted row re-

duced. It follows from Theorem 3.4 that in order to get a solution
of our interpolation problem we need to bring the matrix into
weighted row reduced form. For this we resort to the method
outlined in Section II.

Example 4.2–Continued Applying Theorem 2.8 and the pro-
cedure from the proof of Theorem 2.5 to the above matrix

yields weighted row reducedness. The resulting matrix is (see
Example 2.9)

The third row has minimal weighted row degree, namely,
, and we conclude that the corresponding given by

is of minimal weighted
degree . Factorization yields

From this it follows that and are
candidate message polynomials. Computing the corresponding
codewords we find that both are at a Hamming distance of

from so that both qualify as decoding
solutions.

2) Minimal Choice of : A different algorithm is ob-
tained by choosing in such a way that the matrix is
weighted row reduced at each step. This is achieved by making
sure that only one of the row degrees of is increased
when left multiplied by . In order to specify we need
to keep track of the vector of weighted row degrees

...

of the matrix . The following specification satisfies our
requirement: Let be the smallest integer for which
is minimal among . Define by

(24)

and update the vector as

This choice of produces an iterative algorithm that imme-
diately leads to a weighted row reduced matrix and essentially
coincides with the algorithm in [8]. It is interesting to note that
for the algorithm only differs from the Welch–Berlekamp
algorithm in the initialization of . This can be seen most
easily by comparison with the behavioral interpretation of the
Welch–Berlekamp algorithm, as given in [14], [17], [20].

B. General Multiplicities

For general values of the specification of Step 2 is more
complicated because there are other than exponential trajecto-
ries to be incorporated. For each there are

trajectories to be incorporated and thus Step 2
consists of substeps, indexed by with

and . In the following, the
notation “ ” is used to denote the predecessor of index

in the lexicographical ordering. As initialization we have
. Step 2 now becomes: proceed itera-

tively for and as follows.
Recall that the notation is used for the Hasse derivative.
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Step 2.1: Compute

Step 2.2: Specify the update matrix .

Step 2.3: Compute .

Finally set .

In the above procedure, the update matrix should
be chosen such that

represents the MPUM of . This is due to the fact
that, at each step, the error trajectory equals

(use Remark 2.18 to see this).
The above procedure exactly follows the steps of Proce-

dure 2.16 in Section II. It, therefore, follows immediately that
for the matrices in the above algorithm
are such that represents the MPUM of

In order to represent the MPUM of we need to
choose the update matrices such that

and

Below we focus on two of those choices, in analogy with
Section IV-A.

1) Nonminimal Choice of : Here we aim to present
a simple choice of analogous to the case of
(22). Let be the smallest integer for which . Define

by

As in (22), this specification does not require us to keep track of
the row degrees. It may yield a matrix that is not weighted row
reduced, as illustrated in the following example.

Example 4.3: Consider again the RS code of
Example 4.2 with received word . Let the
multiplicities be specified as in [11] by

. Running the above algorithm for yields
a final matrix given in the Appendix by (A1). Its vector
of weighted row degrees is given by . Note
that the sum of the weighted row degrees equals which does
not add up to

By Theorem 2.7 this shows that is not weighted row
reduced.

As illustrated by the preceding example the resulting matrix
may not be weighted row reduced. It follows from Theorem 3.4
that in order to get a solution of our interpolation problem we

need to bring the matrix into weighted row reduced form. For
this we resort to the method outlined in Section II.

Example 4.4: Applying Theorem 2.8 and the procedure from
the proof of Theorem 2.5 to the above matrix yields
weighted row reducedness. The resulting matrix is given in the
Appendix by (A2). Its weighted row degrees are and

which adds up to (compare Theorem 2.7).

2) Minimal Choice of : It follows straightforwardly
that can be chosen in exactly the same way as in (24)
to give rise to a weighted row reduced matrix at each
step. Again, we need to keep track of the vector of weighted row
degrees at each step. The resulting algorithm essentially
coincides with the algorithm of [8]. The exact specification is as
follows: Let be the smallest integer for which
is minimal among . Define

by

and update the vector as

Example 4.5: For the data of Example 4.3 the above algo-
rithm produces a final matrix given in the Appendix by
(A.3). Its vector of weighted row degrees is given by

. The sum of the weighted row degrees equals
so it follows from Theorem 2.7 that is weighted row re-
duced. Another way to conclude weighted row reducedness is
by observing that the leading weighted row coefficient matrix
of has full rank, see Definition 2.6. The last two rows
of have minimal weighted degree and yield interpolating
polynomials

and

The polynomial corresponds to the minimal interpo-
lating polynomial in the example of [11]—it is factorized as

and yields candidate message polynomials and
at Hamming distances and , respectively.

The polynomial was incorrectly labeled the minimal
interpolating polynomial in [11]. Our algorithm shows that there
are other minimal interpolating polynomials, for example, the
polynomial . This polynomial can be factorized as

It yields the same candidate message polynomials as the above
polynomial . In this example, any linear combination
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with is an interpolating polyno-
mial of minimal weighted degree. On the other hand, any inter-
polating polynomial of minimal weighted degree can be written
as . This is discussed in Section V.

V. THE SET OF ALL INTERPOLATING ’S

Theorem 3.4 provides a desired polynomial through
a row of of minimal weighted degree. The question arises
whether the other rows of contain valuable information.
The first observation is that the rows of provide a basis
over of all polynomials

that interpolate the data with the prescribed multiplicities and
with for .

Theorem 5.1: Let and be as in Theorem 3.4. Sup-
pose that

and with multiplicity at least , . De-
fine . Then there exist a unique
polynomial such that

(25)

Conversely, any as defined in (25) gives rise to a bivariate
polynomial

for which with multiplicity at least , .
Its weighted degree equals

where are the weighted row degrees of .
Proof: Since with multiplicity at least it

follows that for all there holds . By Lemma
2.1, there exists a polynomial vector such that

. Since has full row rank there can be at most
one such vector. The converse statement follows immediately
from Theorem 3.4 and Corollary 2.11.

In particular, it follows from Theorem 5.1 that all ’s
of minimal weighted degree are stemming from a linear combi-
nation of rows of of minimal weighted degree.

Let us now, for the sake of clarity, restrict ourselves to inter-
polation with multiplicity . In this case, polynomials
of weighted degree generate all message words that cor-
respond to codewords at distance less then to the received

word. It may, however, also produce polynomials that cor-
respond to codewords at a larger distance than . The reason
that this possibility cannot be excluded is that Corollary 1.7 re-
flects an implication rather than an equivalence. Intuitively, we
would like to use the parametrization in Theorem 5.1 to draw
some conclusions about the message polynomials that the inter-
polating solutions corresponding to the rows of have in
common. Ideally this could help us narrow down the number
of suitable message candidates. The following theorem is a first
step in this direction. Part 2 of the theorem deals with the clas-
sical situation of errors in which an inter-
polating polynomial of degree can be found. It
shows that the rows of that give rise to interpolating solu-
tions of degree have the true message polynomial
as their only intersection. Part 1 of the theorem is more general
and shows that a common message polynomial stemming from
rows of of weighted degree is either unique
or does not exist.

Theorem 5.2: Let , , be elements of
with the mutually distinct. Let and be as in

Theorem 3.4. Define

Let with . Define
and . Define .

1) Let with be such that
for all of weighted degree not

exceeding . Then .

2) Suppose . Then for all
with if and only if

.
Proof:

1) Define

and

Then . By Theorem 5.1 we can write
with .

Since we have that divides
and, therefore, divides . It

follows that .
2) Sufficiency follows from Part 1. Notice that

. Since

it follows that the number of zeroes of is
strictly larger than its degree. Therefore,
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Part 2 of the above theorem is illustrated by the next single-
error correcting example.

Example 5.3: We take . The data are given by
, , , , . Running the algorithm in

Section IV-A with all multiplicities set to one, , and
yields given by

The minimal weighted row degree of equals two. Both
the second and the third row of are of weighted row de-
gree two. In the notation of Theorem 5.2 this yields two inter-
polating polynomials of minimal weighted degree:

and . Simple
calculations show that the only for which

is given by , which is the true
message polynomial.

The above result shows that the algorithm in Section IV-A
can easily be used for classical decoding by performing the fac-
torization step for all rows of minimal degree and then out-
putting the factor that the corresponding polynomials have in
common. Note that in this case a minimal interpolating polyno-
mial is not necessarily linear in . This makes the method sub-
stantially different from other classical decoding methods such
as the Welch–Berlekamp algorithm. An efficient implementa-
tion of the involved multiple factorization would still have to be
investigated.

VI. CONCLUSION

In this paper we formulated the RS list decoding approach
in a system-theoretic framework of behavioral modeling over
finite fields. Interpolation with multiplicity was dealt with
through the use of Hasse derivatives. The modularity of the
modeling method allowed for the derivation of two decoding
methods. One of these (Procedure 4.1 with Step 2 specified
as in Section IV-B1) is noniterative in the data and can be
interpreted as a generalization of the Euclidean algorithm as
used for classical decoding. It relies on a system-theoretic
matrix manipulation procedure, dating back to [33]. The other
decoding method (Procedure 4.1 with Step 2 specified as in
Section IV-B2) is iterative in the data and essentially coincides
with the Nielsen–Høholdt algorithm of [8]. Its presentation is,
however, different from [8] in that it explicitly keeps track of an

matrix of univariate polynomials, whereas
the algorithm in [8] iteratively constructs a set of bivariate
polynomials. An advantage of our system-theoretic matrix
presentation is that it gives rise to parametrization results and,
in our belief, yields conceptual clarity. It is a topic of current
investigation how to use the parametrization results to help the
decoding process. A first idea is to use them to limit the number
of factors of interpolating solutions that need to be validated
as valid message polynomials. A few preliminary results on
this were presented in Section V. Another idea is to use the
parametrization to find an interpolating solution of
minimal weighted degree that also has minimal degree in , so
as to achieve few factors.
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