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We present a probabilistic model for the retrieval of multimodal documents. The model is based on Bayesian decision theory
and combines models for text-based search with models for visual search. The textual model is based on the language modelling
approach to text retrieval, and the visual information is modelled as a mixture of Gaussian densities. Both models have proved
successful on various standard retrieval tasks. We evaluate the multimodal model on the search task of TREC’s video track. We
found that the disclosure of video material based on visual information only is still too difficult. Even with purely visual in-
formation needs, text-based retrieval still outperforms visual approaches. The probabilistic model is useful for text, visual, and
multimedia retrieval. Unfortunately, simplifying assumptions that reduce its computational complexity degrade retrieval effec-
tiveness. Regarding the question whether the model can effectively combine information from different modalities, we conclude
that whenever both modalities yield reasonable scores, a combined run outperforms the individual runs.
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1. INTRODUCTION

Both image analysis and video motion processing have been
unable to meet the requirements for disclosing the content
of large scale unstructured video archives. There appear to
be two major unsolved problems in the indexing and re-
trieval of video material on the basis of these technologies,
namely, (a) image and video processing is still far away from
understanding the content of a picture in the sense of a
knowledge-based understanding and (b) there is no effec-
tive query language (in the wider sense) for searching image

and video databases. Unlike the target content in the field of
text retrieval, the content of video archives is hard to cap-
ture at the conceptual level. An increasing number of devel-
opers that accept this analysis of the state-of-the-art in the
field have started to use human language as the media in-
terlingua, making the assumption that as long as there is no
possibility to carry out both a broad scale recognition of vi-
sual objects and an automatic mapping from such objects to
linguistic representations, the detailed content of video ma-
terial is best disclosed through the linguistic content (text)
that may be associated with the images: speech transcripts,
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manually generated annotations, subtitles, captions, and so
on [1].

Since the recent advances in automatic speech recogni-
tion, the potential role of speech transcripts in improving the
disclosure of multimedia archives has been especially given a
lot of attention. One of the insights gained by these inves-
tigations is that for the purpose of indexing and retrieval,
perfect word recognition is not an indispensable condition
since not every word will have to make it into the index,
relevant words are likely to occur more than once, and not
every expression in the index is likely to be queried. Re-
search into the differences between text retrieval and spo-
ken document retrieval indicates that, given the current level
of performance of information retrieval techniques, recog-
nition errors do not add new problems to the retrieval task
[2,3].

The limitations inherent in the deployment of language
features only have already lead to several attempts to deal
with the requirements of video retrieval by more closer in-
tegration of human language technology and image pro-
cessing. The notion of multimodal and even more ambi-
tious cross-modal retrieval have come in use to refer to
the exploitation of the analysis of a variety of feature types
in representing and indexing aspects of video documents
(4,5,6,7,8,9].

As indicated, many useful tools and techniques have be-
come available from various research areas that have con-
tributed to the domain of multimedia retrieval, but the
integration of automatically generated multimodal meta-
data is most often done in an ad hoc manner. The vari-
ous information modalities that play a role in video doc-
uments are each handled by different tools. How the
various analyses affect the retrieval performance is hard
to establish, and it is impossible to give an explana-
tion of performance results in terms of a formal retrieval
model.

This paper describes an approach which employs both
textual and image features and represents them in terms of
one uniform theoretical framework. The output from var-
ious feature extraction tools is represented in probabilistic
models based on Bayesian decision theory and the result-
ing model is a transparent combination of two similar mod-
els, one for textual features based on language models for
text and speech retrieval [10], and the other for image fea-
tures based on a mixture of Gaussian densities [11]. Ini-
tial deployment of the approach within the search tasks for
the video retrieval tracks in TREC-2001 [12] and TREC-
2002 [13] has demonstrated the possibility of using this
model in retrieval experiments for unstructured video con-
tent. Additional experiments have taken place for smaller test
collections.

Section 2 of this paper describes the general probabilis-
tic retrieval model, its textual (Section 2.1), and visual con-
stituents (Section 2.2). Section 3 presents the experimental
setup followed by a number of experimental results to evalu-
ate the effectiveness of the retrieval model. Finally, Section 4
summarises our main conclusions.

2. PROBABILISTIC RETRIEVAL MODEL

If we reformulate the information retrieval problem to one of
pattern classification, the goal is to find the class to which the
query belongs. Let Q = {w), wa, ..., wp} be the set of classes
underlying our document collection and Q be a query repre-
sentation. Using the optimal Bayes or maximum a posteriori
classifier, we can then find the class w*, with minimal prob-
ability of classification error,

*

w* = argmax P(w; | Q). (1)

In a retrieval setting, the best strategy is to rank classes by
increasing probability of classification error. When no clas-
sification is available, we can simply let each document be a
separate class. It is hard to estimate (1) directly; therefore, we
reverse the probabilities using Bayes’ rule

. P(Q|wi)P(w:)

w* = argmax PQ) = argmax P(Q| w;) P(w;).

(2)

If the a priori probabilities of all classes are equal (i.e.,
P(w;) is uniform), the maximum a posteriori classifier (2)
reduces to the maximum likelihood classifier, which is ap-
proximated by the Kullback-Leibler (KL) divergence between
query model and class model

w* = argmiinKL [Py (x)][Pi(x)]. (3)

The KL-divergence measures the amount of information
there is to discriminate one model from another. The best
matching document is the document with the model that is
hardest to discriminate from the query model. Figure 1 illus-
trates the retrieval framework.! We build models for queries
and documents and compare them using the KL-divergence
between the models. The visual part is modelled as a mixture
of Gaussians (see Section 2.2); for the textual part, we use
the language modelling approach in which documents are
treated as bags of words (see Section 2.1). The KL-divergence
between query model and document model is defined as fol-
lows:

KL [Py (x)||Pi(x)] = Jp(x L) log 1;(x @)

(x| wi)
= IP(x|wq) log P (x| wy)dx (4)

- JP(x | wg) log P(x | w;)dx.

The first integral is independent of w; and can be ignored;
thus,

IThe query model is here, like the document models, represented as a
Gaussian mixture model but it can also be represented as a bag of blocks (see
Section 2.2).
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FIGURE 1: Retrieval framework: image represented as Gaussian mixture and text as language model (“bags of words”).

e
Il

* = arg miin KL [Py (x)||Pi(x)]
(5)

argmaxJP(x |wg) log P (x| w;)dx.

When working with multimodal material like video, the
documents in our collection contain features in different
modalities. This means that the classes underlying our docu-
ment collection may contain different feature subclasses. The
class conditional densities can thus be described as mixtures
of feature densities

P(x|w;) = > P(x|w;r)P(wif),
=1

where F is the number of underlying feature subclasses,
P(w; ) is the probability of subclass f of class w;, and
P(x|w; r) is the subclass conditional density for this subclass.
When we draw a random sample from class w;, we first se-
lect a feature subclass according to P(w; ) and then draw a
sample from this subclass using P(x|wj, ).

To arrive at a generic expression for similarity between
mixture models, Vasconcelos [11] partitions the feature
space into disjoint subspaces, where each point in the fea-
ture space is assigned to the subspace corresponding to the
most probable feature subclass

(6)

g = [x: Plawl%) = Plou]x), VI£KL ()

Using this partition, (5) can be rewritten as (the proof is
given in [11])

JP(x|wq) log P (x| w;)dx
= ZP(wq,f) [logP(wi,k)
1k

P(x|w;ix) ]
+| P , x€yi) log ———==d
Lk (x| wg,f> xExx) log Ploie|x)

XJ P (x| wg,f)dx.
’ ®)

When the subspaces i form the same hard partitioning
of the features space for all query and document models, that
is, when

B L ifx ey,
Pwik|x) = Plwgk|x) = {O, otherwise, ©
then
1, iff=k
Lk Plx]wgs)dx {0, otherwise, (10)
Plwik|x) =1, Vx € yx
This reduces (8) to
JP(x|wq)logP(x|wi)dx
= Plw log P i
% (wg,f) log P(wi,f) )

+ zP(wq,f) J P(x|wgf) log P(x | wif)dx.
f X
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This ranking formula is general and can, in principle, be
used for any kind of multimodal document collection. In the
rest of the paper, we limit ourselves to video collections rep-
resented by still frames and speech-recognized transcripts.
The classes underlying our collection are defined through the
shots in the videos. Furthermore, we assume that we have
two feature subclasses, namely, a subclass generating textual
features and another generating visual features. We can now
partition the feature space into two distinct subspaces for tex-
tual and visual features: y; and y,. This partitioning is hard,
that is, a feature can be textual or visual but never both. Our
ranking formula becomes

w* = argmaij(x|wq) log P (x| w;)dx
= arg max [P(a)q,t) log P(w;¢)

+P(wge) | Plx|wge)logP(x|wie)dx
Xt

+ P(wq,y) log P(wiy)

+P(wgy) L P(x|wqy) log P(x| w,;v)dx}.
(12)

The mixture probabilities for the textual and visual mod-
els P(w;;) and P(w;,) might be derived from background
knowledge about the class w;. If, for example, we know
that w; is a class from a news broadcast, we might assign
a higher value to P(w;;) since the probability that there is
text that helps us in finding relevant information is rela-
tively high. On the other hand, if w; is from a documentary
or a silent movie, we might gain less information from the
text from w; and assign a lower value to P(w;;). At the mo-
ment, however, we have no background information; there-
fore, we do not distinguish between classes and use uni-
form mixture probabilities. This means that the first and
third terms from (12) are independent of w; and can be
ignored.

Our final (general) ranking formula becomes

w* = argmax [P(t)f P(x|wg:) log P(x | wiy)dx
i Y

+P(v) | P(x|wgy)logP(x] w,-,v)dx],
v
(13)

where P(t) and P(v) are the class-independent probabilities
of drawing textual and visual features, respectively.

2.1.

For the textual part of our ranking function, we use statis-
tical language models. A famous application of these mod-
els is Shannon’s illustration of the implications of coding
and information theory using models of letter sequences and
word sequences [14]. In the 1970s, statistical language mod-
els were developed as a general natural language-processing

Text retrieval

tool, first for automatic speech recognition [15] and later also
for, for example, part-of-speech tagging [16] and machine
translation [17]. Recently, statistical language models have
been suggested for information retrieval by Ponte and Croft
[18], Hiemstra [19], and Miller et al. [20].

The language modeling approach to information re-
trieval defines a simple unigram language model for each
document in a collection. For each document w;;, the lan-
guage model defines the probability P(x;1,..., x.n, |wi¢) of a
sequence of N; textual features (i.e., words) x¢1, ..., X¢n, and
the documents are ranked by that probability. The standard
language modelling approach to information retrieval uses a
linear interpolation of the document model P(x; |w;) with
a general collection model P(x;;) [19, 20, 21, 22]. As these
models operate on discrete signals, the integral from (13) can
be replaced by a sum. Furthermore, if we use the empirical
distribution of the query as the query model, then the stan-
dard textual part of (13) is

Nt
1
wf = arg max - D log [AP (x| wi) + (1—=A)P(x,;)]. (14)
1 tjzl

The linear combination needs a smoothing parameter
A which is set empirically on some test collection or alter-
natively estimated by the expectation-maximisation (EM)-
algorithm [23] on a test collection. The probability of draw-
ing textual feature x; ; from document w; (P(x;j|w;)) is com-
puted as follows: if the document contains 100 terms in total
and the term x; ; occurs 2 times, this probability would sim-
ply be 2/100 = 0.02. Similarly, P(x; ;) is the probability of
drawing x; ; from the entire document collection.

Using the statistical language modelling approach for
video retrieval, we would like to exploit the hierarchical data
model of video, in which a video is subdivided into scenes
which are subdivided into shots which are, in turn, subdi-
vided into frames. Statistical language models are particu-
larly well suited for modelling such complex representations
of the data. We can simply extend the mixture to include the
different levels of the hierarchy, with models for shots and
scenes,’

1
Shot™* = —
o argmax N,

Ni
X Z log [/\shotP(xt, j | Shot;)
j=1
+ ASceneP (xt,j ) Scenei) + ACO]IP (xij )]

with /1(;011 =1- Ashot - AScene-
(15)

The main idea behind this approach is that a good shot
contains the query terms and is part of a scene having more
occurrences of the query terms. Also, by including scenes in

2We assume that each shot is a separate class and replace w; with Shot;.
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the ranking function, we hope to retrieve the shot of inter-
est even if the video’s speech describes the shot just before
it begins or just after it is finished. Depending on the infor-
mation need of the user, we might use a similar strategy to
rank scenes or complete videos instead of shots, that is, the
best scene might be a scene that contains a shot in which the
query terms (co-)occur.

2.2. Image retrieval

In order to specialise the visual part of our ranking formula
(13), we need to estimate the class conditional densities for
the visual features P(x,|w;). We follow Vasconcelos [11] and
model them using Gaussian mixture models. The idea be-
hind modelling shots as a mixture of Gaussians is that each
shot contains a certain number of classes or components and
that each sample from a shot (i.e., each block of 8 by 8 pix-
els extracted from a frame) was generated by one of these
components. The class conditional densities for a Gaussian
mixture model are defined as follows:

C
P(xv|wi) = ZP(Hi,c)Cg(xv» Wi Z‘41‘,c): (16)

c=1

where C is the number of components in the mixture model,
0; is component ¢ of class model w;, and G(x, y, ¥) is the
Gaussian density with mean vector ¢ and covariance matrix
%,

G(x, i, 3) = 67(1/2)|\x7/4Hz’ (17)

Q2m)r 2]

where # is the dimensionality of the feature space and
lx = ulls = (x =)= (x = ). (18)

2.2.1 Estimating model parameters

The parameters of the models for a given shot can be esti-
mated using the EM algorithm. This algorithm iterates be-
tween estimating the a posteriori class probabilities for each
sample P(6.|x,) (the E-step) and re-estimating the compo-
nents parameters (4., ., and P(6,)) based on the sample dis-
tribution (M-step).?

The approach is rather general: any kind of feature vec-
tors can be used to describe samples. Our sampling process
is as follows (It is illustrated in Figure 2). First, we convert
the keyframe of a shot to the YCbCr color space. Then, we
cut it in distinct blocks of 8 by 8 pixels. On these blocks,
we perform the discrete cosine transform (DCT) for each of
the 3 color channels. We now take the first 10 DCT coeffi-
cients from the Y-channel and only the DC coefficient from
both the Cb and the Cr channels to describe the samples.
These feature vectors are then fed to the EM algorithm to
find the parameters (p, X, and P(6.)). The EM algorithm
first assigns each sample to a random component. Next, we

3Looking at a single shot, we can drop the class subscripts i.

compute the parameters (y., X, and P(8.)) for each com-
ponent, based on the samples assigned to that component.
We re-estimate the class assignments, that is, we compute the
posterior probabilities (P(6.|x) for all ¢). We iterate between
estimating class assignments (expectation step) and estimat-
ing class parameters (maximisation step) until the algorithm
converges. Figure 3 shows a query image and the component
assignments after different iterations of the EM algorithm.
Instead of a random initialisation, we initially assigned the
left-most part of the samples to component 1, the samples in
the middle to component 2, and the right-most samples to
component 3. This way it is clearly visible how the compo-
nent assignments move about the image. Finally, after con-
vergence of the EM algorithm, we describe the position in the
image plane of each component as a 2D-Gaussian with mean
and covariance computed from the positions of the samples
assigned to this component.

2.2.2 Bags of blocks

Just like in our textual approach, for the query model, we
can simply take the empirical distribution of the query sam-
ples. If a query image x, consists of N, samples x, =
(%1, X0,25 .. ., %uN, )> then P(x,;lwg) = 1/N,. For the doc-
ument model, we take a mixture of foreground and back-
ground probabilities, that is, the (foreground) probability of
drawing a query sample from the document’s Gaussian mix-
ture model, and the (background) probability of drawing it
from any Gaussian mixture in the collection. In other words,
the query image is viewed as a bag of blocks (BoB), and
its probability is estimated as the joint probability of all its
blocks. The BoB measure for query images then becomes

N,
w] = arg max Ni Z log [kP (xy,; | w;) + (1 — ©)P(xy,;) ],

V=1

(19)

where x is a mixing parameter and the background proba-
bility P(x,,;) can be found by marginalising over all M docu-
ments in the collection

M

P(x,;) = > P(xy,;| w;) P(w;). (20)
i-1

Again, we assume uniform document priors (P(w;) =
1/M for all 7). In text retrieval, one of the reasons for mix-
ing the document model with a collection model is to as-
sign nonzero probabilities to words that are not observed in
a document. Smoothing is not necessary in the visual case
since the documents are modelled as mixtures of Gaussians
having infinite support. Another motivation for mixing is to
weight term importance: a common sample x (i.e., a sam-
ple that occurs frequently in the collection) has a relatively

4In practice, a sample does not always belong entirely to one compo-
nent. In fact, we compute means, covariances, and priors on the weighted
feature vectors, where the feature vectors are weighted by their proportion
of belonging to the class under consideration.
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FIGURE 2: Building a Gaussian mixture model from an image.

high probability P(x) (equal for all documents) and, there- 2.2.3 Asymptotic likelihood approximation

fore, P(x|w) has only little influence on the probability esti-

A disadvantage of using the BoB measure is its computa-

mate. In other words, common terms and common blocks  tional complexity. In order to rank the collection, given a

influence the final ranking only marginally.

query we need to compute the posterior probability P(x,|w;)
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2 iterations

Initial

30 iterations

10 iterations

F1GuUre 3: Class assignments (3 classes) for the image at the top after different numbers of iterations.

of each image block x, in the query for each document w; in
the collection. For evaluating a retrieval method, this is fine,
but for an interactive retrieval system, optimisation is neces-
sary.

An alternative is to represent the query image, like the
document image, as a Gaussian model (instead of by its
empirical distribution as a bag of blocks) and then com-
pare these two models using the KL-divergence. Yet, if we
use Gaussians to model the class conditional densities of
the mixture components, there is no closed-form solution
for the visual part of the resulting ranking formula (13).
As a solution, Vasconcelos assumes that the Gaussians are
well separated and derives an approximation ignoring the
overlap between the mixture components: the asymptotic
likelihood approximation (ALA) [11]. Starting from (8), he
arrives at

*

wf = argmaXJ‘ P(xy | wg) log P(x, | w;)dx,
i Yo

~ argmax ALA [Py(x,)|[Pi(x,) ]

= argmax > P(6,c) SL log P(0;a(c))
c
+ log(g ([/lq,c: Hia(c)s z:i,ot(c))
1 _
-5 trace [zi,;(c)zq,c] },

where a(c) =k <= |lugc — piklly,, <llpge — pitlls,, VI # k.
(21)

In this equation, subscripts indicate, respectively, classes
and components (e.g., y; is the mean for component 6, of
class w;).

2.3. ALAassumptions

The main assumption behind the ALA is that the Gaussians
for the components 6. within a class model w; have small

overlap; in fact, there are two parts to this [11]. The first as-
sumption is that each image sample is assigned to one and
only one of the mixture components. The second is that sam-
ples from the support set from a single query component
are all assigned to the same document component. More for-
mally, we have the following assumptions.

Assumption 1. For each sample, the component with maxi-
mum posterior probability has posterior probability one

Y wj, X : mkaxP(H,;k |x) = 1. (22)

Assumption 2. For any document w;, the component with
maximum posterior probability is the same for all samples of
the support set of a single query component 6,

VO w;Al*, Vx, P(x[04k) >0 = arg max P(81]x) =1*.
(23)

We used Monte Carlo simulation to test these assump-
tions on our collection (the TREC-2002 video collection, see
Section 3.1) as follows. First, we took a random document w;
from the search collection and then a random mixture com-
ponent 6; from the mixture model of this document. We
then drew 10,000 random samples from this component and,
for each sample x, computed

(i) P(0;1]x), the posterior component assignment within
document i for all components 6;;

(ii) P(0jmlx), the posterior component assignment in a
different randomly chosen document j, for all com-
ponents 6 ;.

For the first measure, we simply took the maximum
posterior probability for each sample. We averaged the sec-
ond measure over all 10,000 samples and took the max-
imum over all components to approximate the propor-
tion of samples assigned to the most probable component
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FIGURE 4: Testing the ALA assumptions 1 (histogram (a)) and 2
(histogram (b)), samples x are drawn from P(x|6;).

(remember, there should be a component that explains all
samples). We repeated this process 100,000 iterations for dif-
ferent documents and components selected at random, and
histogrammed the results (Figure 4). Both measures should
be close to 1, the first to satisfy Assumption 1 and the second
to satisfy Assumption 2.

As we can see from the plots in Figure 4, the first assump-
tion appears reasonable, but the second does not hold.> We
investigate the effect of this observation in the retrieval ex-
periments below.

5The bar at probability zero results from a truncation error in the
Bayesian inversion to compute P(6;,|x) from a (too small) probability
P(x16jm).

3. EXPERIMENTS

We evaluated the model outlined above and the presented
measures on the search task of the video track of the Text
REtrieval Conference TREC-2002 [13].

TREC video track

TREC is a series of workshops for large scale evaluation of
information retrieval technology [24, 25]. The goal is to test
retrieval technology on realistic test collection using uniform
and appropriate scoring procedures. The general procedure
is as follows:

3.1.

(i) a set of statements of an information need (topic) is
created;
(ii) participants search the collection and return the top N
results for each topic;
(iii) returned documents are pooled and judged for rele-
vance to the topic;
(iv) systems are evaluated using the relevance judgements.

The measures used in evaluation are usually precision
and recall oriented. Precision and recall are defined as fol-
lows:

number of relevant shots retrieved

recision = -
P total number of shots retrieved (24)
24

number of relevant shots retrieved

recall = - —,
total number of relevant shots in collection

The video track was introduced at TREC-2001 to evalu-
ate content-based retrieval from digital video [12]. Here, we
use the data from the TREC-2002 video track [13]. The track
defines three tasks: shot boundary detection, feature detec-
tion, and general information search. The goal of the shot
boundary task is to identify shot boundaries in a given video
clip. In the feature detection task, we have to assign a set of
predefined features to a shot, for example, indoor, outdoor,
people, and speech. In the search task, the goal is to find rel-
evant shots given a description of an information need, ex-
pressed by a multimedia topic. Both in the feature detection
task and in the search task, a predefined set of shots is to be
used. In our experiments, we focus on the search task.

The collection to be searched in this task consists of ap-
proximately 40 hours of MPEG-1 encoded video; in addition,
a set of 23 hours of training material was available. The top-
ics consist of a textual description of the information need,
accompanied by images, video fragments, and/or audio frag-
ments illustrating what is needed. For each topic, a system
could return a ranked list of 100 video fragments. The top 50
returned shots of each run are then pooled and judged.

We report experimental results using the standard TREC
measures, average precision, and mean average precision
(MAP). Average precision is the average of the precision
value obtained after each relevant document is retrieved
(when a relevant document is not retrieved at all, its preci-
sion is assumed to be 0). MAP is the mean of the average
precision values over all topics.
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FiGURE 5: MAP on video search task for different «.

For the textual descriptions of the shots, we used speech
transcripts kindly provided by LIMSI. These transcripts were
aligned to the predefined video shots. We did not have or
define a semantic division of the video into scenes but de-
fined scenes simply as overlapping windows of 5 consecu-
tive shots.® We removed common words from the transcripts
(stopping) and stemmed all terms using the Porter stemmer
[26]. For the visual description, we took keyframes from the
common video shots, and we used EM to find the param-
eters of Gaussian mixture models. Keyframe selection was
straightforward: we simply used the middle frame from each
shot as representative for the shot.

3.2. Estimating the mixture parameters

The model does not specify the value of mixing parameters
A, Ashot> Ascene> and x. An optimal value can only be found
a posteriori by evaluating retrieval performance for different
values on a test collection; a priori, we must make an edu-
cated guess for the right values.

Figure 5 shows the MAP scores on the TREC-2002 video
track search task for x ranging from 0.0 to 1.0. We can see that
retrieval results are insensitive to the value of the mixing pa-
rameter as long as we take both foreground and background
into account. The plot has a similar shape as that found in
Hiemstra’s thesis for the A parameter in the standard lan-
guage model [10].

For the transcripts, we tried over thirty combinations of
settings, using two sets of text queries (see also Section 3.4).
For query set Tlong, this resulted in optimal settings for MAP
with Aghot = 0.090, Ascene = 0.210, and Acon = 0.700. Here,
modelling the hierarchy in the video makes sense because
shot and scene both contribute to results in the ranking (Aspot
and Agcene are larger than zero). For set Tshort, however, the
optimal settings had Ashor = 0.000 and the resulting model is

%In preliminary experiments on the TREC-2001 collection, when vary-
ing the window lengths, 5 shots were the optimum.

identical to the original language model. Summarizing and
ranking transcript units longer than shots is important, but
we cannot conclude from these experiments whether model-
ing the hierarchy is really necessary.

In all experiments, the differences between the better pa-
rameter choices are not significant, but a particularly bad
choice may seriously degrade retrieval effectiveness. In the
remainder of this work, we have used k = 0.9, Asno: = 0.090,
Ascene = 0.210, and Acon = 0.700.

3.3. Using all or some image examples

In general, it is hard to guess what would be a good example
image for a specific query. If we look for shots of the Golden
Gate Bridge, we might not care from what angle the bridge
was filmed, or if the clip was filmed on a sunny or a cloudy
day; visually, however, such examples may be quite different
(Figure 6). If a user has presented three examples and no ad-
ditional information, the best we can do is to try to find doc-
uments that describe all example images well. Unfortunately,
a document may be ranked low even though it models the
samples from one example image well as it may not explain
the samples from the other images.

For each topic, we computed which of the example im-
ages would have given the best results if it had been used
as the only example for that topic. We compared these best
example results to the full topic results in which we used all
available visual examples. The experiment was done using
both the ALA and the BoB measure. In the full topic case,
the set of available topics was regarded as one large bag of
samples. For the ALA measure, we built one mixture model
to describe all available visual examples. For BoB, we ranked
documents by their probability of generating all samples in
all query images. For the single image queries in the best ex-
ample, we built a separate mixture model from each example
and used it for ALA ranking. For BoB ranking, we used all
samples from the single visual example. Since it is problem-
atic to use multiple examples in a query, we wanted to see if
it is possible to guess in advance what would be a good ex-
ample for a specific topic. Therefore, for each topic, we also
hand-picked a single representative from the available exam-
ples and compared these manual example results to the other
two result sets.

The results for the different settings are listed in Table 1.
A first thing to notice is that all scores are rather low. When
we take a closer look at the topics with higher average preci-
sion scores, we see that these mainly contain examples from
the search collection. In other words, we can find similar
shots from within the same video, but generalisation is a
problem.

Comparing BoB to ALA, we see that, averaged over all
topics for each set of examples, BoB outperforms ALA. For
some specific topics, the ALA gives higher scores, but again
these are cases with examples from within the collection. In
general, the BoB approach, which uses fewer assumptions,
performs better.

The fact that using the best image example outperforms
the use of all examples shows that combining results from
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FIGURE 6: Visual examples of the Golden Gate Bridge.

TaBLE 1: MAP for full topics, best examples, and manual examples.

Full topic Best example Manual example
Topic BoB ALA BoB ALA BoB ALA
vt075 0.0038 0.0100 0.2438 0.0591  0.2438 0.0560
vt076 0.4854 0.1117 0.4323  0.1327 0.1760 0.0958
vt077 0.0000  0.0000  0.0000 0.0000 0.0000 0.0000
vt078 0.0000  0.0000  0.0000 0.0000  0.0000 0.0000
vt079 0.0000 0.0000 0.0040 0.0015  0.0000 0.0000
vt080 0.0048 0.0020 0.0977  0.0007  0.0977 0.0007
vt081 0.0000 0.0000  0.0000  0.0000  0.0000 0.0000
vt082 0.0330  0.0203  0.0234  0.0022  0.0234 0.0022
vt083 0.0000  0.0000  0.0000  0.0000  0.0000 0.0000
vt084 0.0046 0.0000 0.0046  0.0000  0.0046 0.0000
vt085 0.0000 0.0000  0.0000 0.0000  0.0000 0.0000
vt086 0.0053  0.0000 0.0704 0.0149 0.0704 0.0005
vt087 0.0000 0.0000 0.0000  0.0000  0.0000 0.0000
vt088 0.0046  0.0000  0.0069 0.0139  0.0069 0.0139
vt089 0.0000 0.0000 0.0000 0.0000  0.0000 0.0000
vt090 0.0000 0.0000 0.0305 0.0003 0.0305 0.0003
vt091 0.0095 0.0000 0.0095 0.0000  0.0095 0.0000
vt092 0.0003  0.0000 0.0106 0.0213  0.0000 0.0000
vt093 0.0006  0.0000  0.0006  0.0003  0.0000 0.0000
vt094 0.0021  0.0004 0.0021 0.0013  0.0021 0.0013
vt095 0.0000 0.0000 0.0000 0.0000  0.0000 0.0000
vt096 0.0323  0.0000 0.0323 0.0383  0.0323 0.0383
vt097 0.1312  0.0002  0.1408 0.0496  0.0000 0.0000
vt098 0.0000  0.0000  0.0003  0.0006 0.0003 0.0000
vt099 0.0000  0.0000  0.0000  0.0000  0.0000 0.0000
MAP 0.0287 0.0058 0.0444 0.0135 0.0279 0.0084

different visual examples can indeed degrade results. Look-
ing at the results, manually selecting good examples seems
a nontrivial task, but the drop in performance is partly due
to the generalisation problem. If one of the image examples
happens to come from the collection, it scores high. If we fail
to select that particular example, the score for the manual
example run drops. Simply counting how often the manu-
ally selected example was the same as the best-performing
example, we see that this was the case for 8 out of 13 topics.”

71f we ignore the topics for which there is only one example and the ones
for which the best example scored 0.

3.4. Using example transcripts

We took two different approaches in building textual queries
from the multimedia topics. The first set of textual queries,
Tshort, was constructed simply by taking the textual descrip-
tion from the topic. In the second set of queries, Tlong, we
augmented these with the speech transcripts from the video
examples available for a topic. The assumption here is that
relevant shots share a vocabulary with example shots; thus,
using example transcripts might improve retrieval results.
In both sets of queries, we removed common words and
stemmed all terms. We found that across topics, Tlong out-
performed Tshort with a MAP of 0.1212 against 0.0916. For
detailed per-topic information, see Table 2.

3.5. Combining textual and visual runs

We combined textual and visual runs using our combined
ranking formula (13). Since we had no data to estimate the
parameters for mixing textual and visual information, we
used P(t) = P(v) = 0.5. For the textual part, we tried
both short and long queries; for the visual part, we used
full queries and best-example queries. Table 2 shows the re-
sults for combinations with the BoB measure. We also exper-
imented with combinations with the ALA measure, but we
found that in the ALA case, it is difficult to combine textual
and visual scores because they are on different scales. The
BoB measure is closer to the KL-divergence and, on top of
that, more similar to our textual approach, and thus easier to
combine with the textual scores.

For most of the topics, textual runs give the best results;
however, for some topics, using the visual examples is useful.
This is mainly the case when either the topics come from the
search collection or when the relevant documents are outliers
in the collection. This illustrates how difficult it is to search
a generic video collection using visual information only. We
succeed only if the relevant documents are either highly simi-
lar to the examples provided or very dissimilar from the other
documents in the collection (and, therefore, relatively similar
to the query examples). When both textual and visual runs
have reasonable scores, combining the runs can improve on
the individual runs; however, when one of them has inferior
performance, a combination only adds noise and lowers the
scores.

4. CONCLUSIONS

We presented a probabilistic framework for multimodal
retrieval in which textual and visual retrieval models are
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TABLE 2: Average precision per topic for textual runs, BoB runs, and combined runs.

Topic  Tshort Tlong BoBfull BoBbest BoBfull BoBfull BoBbest BoBbest
+Tshort +Tlong +Tshort +Tlong
vt075 0.0000 0.0082 0.0038 0.2438 0.0189 0.0569 0.2405 0.3537
vt076 0.4075 0.6242 0.4854 0.4323 0.5931 0.7039 0.5757 0.6820
vt077 0.1225 0.5556 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
vt078 0.1083 0.2778 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
vt079  0.0003 0.0006 0.0000 0.0040 0.0003 0.0000 0.0063 0.0050
vt080 0.0000 0.0000 0.0048 0.0977 0.0066 0.0059 0.0845 0.0931
vt081 0.0154 0.0333 0.0000 0.0000 0.0037 0.0000 0.0000 0.0000
vt082 0.0080 0.0262 0.0330 0.0234 0.0181 0.0335 0.0145 0.0210
vt083 0.1669 0.1669 0.0000 0.0000 0.0962 0.0962 0.0078 0.0078
vt084  0.7500 0.7500 0.0046 0.0046 0.6875 0.6875 0.6875 0.6875
vt085  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
vt086 0.0554 0.0676 0.0053 0.0704 0.0536 0.0215 0.0791 0.0600
vt087 0.0591 0.0295 0.0000 0.0000 0.0052 0.0003 0.0052 0.0003
vt088 0.0148 0.0005 0.0046 0.0069 0.0052 0.0046 0.0069 0.0069
vt089 0.0764 0.0764 0.0000 0.0000 0.0503 0.0503 0.0045 0.0045
vt090  0.0229 0.0473 0.0000 0.0305 0.0006 0.0075 0.0356 0.0477
vt091 0.0000 0.0000 0.0095 0.0095 0.0000 0.0086 0.0000 0.0086
vt092 0.0627 0.0687 0.0003 0.0106 0.0191 0.0010 0.0078 0.0106
vt093 0.1977 0.1147 0.0006 0.0006 0.0099 0.0021 0.0071 0.0012
vt094 0.0232 0.0252 0.0021 0.0021 0.0122 0.0036 0.0122 0.0036
vt095  0.0034 0.0021 0.0000 0.0000 0.0008 0.0012 0.0011 0.0010
vt096 0.0000 0.0000 0.0323 0.0323 0.0161 0.0161 0.0323 0.0323
vt097 0.1002 0.0853 0.1312 0.1408 0.1228 0.1752 0.1521 0.1474
vt098 0.0225 0.0086 0.0000 0.0003 0.0068 0.0000 0.0004 0.0003
vt099 0.0726 0.0606 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MAP 0.0916 0.1212 0.0287 0.0444 0.0691 0.0750 0.0784 0.0870

integrated seamlessly, and evaluated the framework using the
search task from the TREC-2002 video track. We found that
even though the topics were specifically designed for content-
based retrieval and relevance was defined visually, a textual
search outperforms visual search for most topics. As we have
seen before [6], standard image retrieval techniques cannot
readily be applied to satisfy a variety of information requests
from a generic video collection. Future work has to show
how incorporating different sources of additional informa-
tion (e.g., contextual frames, the movement in video, or user
interaction) can help improve results.

In the text-only experiments, we saw that using the tran-
scripts from the example videos in queries improves results.
We also found that it is useful to take transcripts from sur-
rounding shots into account to describe a shot. However, it is
still unclear whether a hierarchical description of scenes and
shots is necessary.

In our visual experiments, we found that the general
probabilistic framework is useful for image retrieval. How-
ever, we found that one of the assumptions underlying the
ALA of the KL-divergence does not hold for the generic video
collection we used. This was reflected in the difference in
performance of the ALA and the BoB model. Unfortunately,
computing the joint block probabilities in the BoB model is

computationally expensive and unsuitable for an interactive
retrieval system. Future work will investigate ways to speed
up the process.

Furthermore, we noticed generalisation problems. The
visual models only gave satistying results if the relevant doc-
uments were either highly similar to the query image(s) (i.e.,
the query images came from the collection) or highly dissim-
ilar to the rest of the collection (i.e., the relevant documents
were outliers in the collection).

When either textual or visual results are poor, combining
them, thus adding noise, seems to degrade the scores. How-
ever, when both modalities yield reasonable scores, a com-
bined run outperforms the individual runs.
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marc.moonen@esat.kuleuven.be

Paul Van Dooren, Department of Mathematical Engineer-
ing, Catholic University of Louvain, Belgium;
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Sabine Van Huffel, Department of Electrical Engineering,
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EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING

Special Issue on

Human-Activity Analysis in Multimedia Data

Call for Papers

Many important applications of multimedia revolve around
the detection of humans and the interpretation of human be-
havior, for example, surveillance and intrusion detection, au-
tomatic analysis of sports videos, broadcasts, movies, ambi-
ent assisted living applications, video conferencing applica-
tions, and so forth. Success in this task requires the integra-
tion of various data modalities including video, audio, and
associated text, and a host of methods from the field of ma-
chine learning. Additionally, the computational efficiency of
the resulting algorithms is critical since the amount of data to
be processed in videos is typically large and real-time systems
are required for practical implementations.

Recently, there have been several special issues on the hu-
man detection and human-activity analysis in video. The
emphasis has been on the use of video data only. This special
issue is concerned with contributions that rely on the use of
multimedia information, that is, audio, video, and, if avail-
able, the associated text information.

Papers on the following and related topics are solicited:

e Video characterization, classification, and semantic
annotation using both audio and video, and text (if
available).

e Video indexing and retrieval using multimedia infor-
mation.

e Segmentation of broadcast and sport videos based on
audio and video.

e Detection of speaker turns and speaker clustering in
broadcast video.

e Separation of speech and music/jingles in broadcast
videos by taking advantage of multimedia informa-
tion.

e Video conferencing applications taking advantage of
both audio and video.

e Human mood detection, and classification of interac-
tivity in duplexed multimedia signals as in conversa-
tions.

e Human computer interaction, ubiquitous computing
using multimedia.

e Intelligent audio-video surveillance and other securi-
ty-related applications.

Authors  should follow the EURASIP JASP
manuscript format described at the journal site bellow
http://www.hindawi.com/GetJournal.aspx?journal=ASP.
Prospective authors should submit an electronic copy
of their complete manuscript through the EURASIP
JASP manuscript tracking system at the following site
http://www.hindawi.com/mts/, according to the following
timetable:

Manuscript Due February 1, 2007

Acceptance Notification June 1, 2007

Final Manuscript Due Qctober 1, 2007

Publication Date 1st Quarter, 2008

GUEST EDITORS:

A. Enis Cetin, Department of Electrical and Electron-
ics Engineering, Bilkent University, Ankara 06800, Turkey;
cetin@ee.bilkent.edu.tr

Eric Pauwels, Signals and Images Research Group, Centre
for Mathematics and Computer Science (CWTI), 1098 S] Am-
sterdam, The Netherlands; eric.pauwels@cwi.nl

Ovidio Salvetti, Institute of Information Science and Tech-
nologies (ISTI), Italian National Research Council (CNR),
56124 Pisa, Italy; ovidio.salvetti@isti.cnr.it
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Special Issue on

Advanced Signal Processing and Pattern Recognition

Methods for Biometrics

Call for Papers

Biometric identification has established itself as a very im-
portant research area primarily due to the pronounced need
for more reliable and secure authentication architectures in
several civilian and commercial applications. The recent in-
tegration of biometrics in large-scale authentication systems
such as border control operations has further underscored
the importance of conducting systematic research in biomet-
rics. Despite the tremendous progress made over the past few
years, biometric systems still have to reckon with a number
of problems, which illustrate the importance of developing
new biometric processing algorithms as well as the consid-
eration of novel data acquisition techniques. Undoubtedly,
the simultaneous use of several biometrics would improve
the accuracy of an identification system. For example the use
of palmprints can boost the performance of hand geome-
try systems. Therefore, the development of biometric fusion
schemes is an important area of study. Topics related to the
correlation between biometric traits, diversity measures for
comparing multiple algorithms, incorporation of multiple
quality measures, and so forth need to be studied in more de-
tail in the context of multibiometrics systems. Issues related
to the individuality of traits and the scalability of biometric
systems also require further research. The possibility of us-
ing biometric information to generate cryptographic keys is
also an emerging area of study. Thus, there is a definite need
for advanced signal processing, computer vision, and pattern
recognition techniques to bring the current biometric sys-
tems to maturity and allow for their large-scale deployment.

This special issue aims to focus on emerging biometric
technologies and comprehensively cover their system, pro-
cessing, and application aspects. Submitted articles must not
have been previously published and must not be currently
submitted for publication elsewhere. Topics of interest in-
clude, but are not limited to, the following:

e Fusion of biometrics

e Analysis of facial/iris/palm/fingerprint/hand images

e Unobtrusive capturing and extraction of biometric
information from images/video

e Biometric identification systems based on
face/iris/palm/fingerprint/voice/gait/signature

e Emerging biometrics: ear, teeth, ground reaction
force, ECG, retina, skin, DNA

e Biometric systems based on 3D information

e User-specific parameterization

e Biometric individuality

e Biometric cryptosystems

e Quality measure of biometrics data

e Sensor interoperability

e Performance evaluation and statistical analysis

Authors should follow the EURASIP JASP manuscript
format described at http://www.hindawi.com/journals/asp/.
Prospective authors should submit an electronic copy of
their complete manuscript through the EURASIP JASP man-
uscript tracking system at http://www.hindawi.com/mts/, ac-
cording to the following timetable:

Manuscript Due May 1, 2007

Acceptance Notification September 1, 2007

Final Manuscript Due December 1, 2007

Publication Date

1st Quarter, 2008

GUEST EDITORS:

Nikolaos V. Boulgouris, Department of Electronic
Engineering, Division of Engineering, King’s College
London, London WC2R 2LS, UK;
nikolaos.boulgouris@kcl.ac.uk

Juwei Lu, EPSON Edge, EPSON Canada Ltd., Toronto,
Ontario M1W 3Z5, Canada; juwei@ieee.org
Konstantinos N. Plataniotis, The Edward S. Rogers Sr.
Department of Electrical and Computer Engineering,
University of Toronto, Toronto, Ontario, Canada, M5S 3G4;
kostas@dsp.utoronto.ca

Arun Ross, Lane Department of Computer Science &
Electrical Engineering, West Virginia University,
Morgantown WV, 26506, USA; arun.ross@mail.wvu.edu

Hindawi Publishing Corporation
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EURASIP JOURNAL ON BIOINFORMATICS AND SYSTEMS BIOLOGY

Special Issue on

Information Theoretic Methods for Bioinformatics

Call for Papers

Information theoretic methods for modeling are at the cen-
ter of the current efforts to interpret bioinformatics data.
The high pace at which new technologies are developed for
collecting genomic and proteomic data requires a sustained
effort to provide powerful methods for modeling the data
acquired. Recent advances in universal modeling and mini-
mum description length techniques have been shown to be
well suited for modeling and analyzing such data. This spe-
cial issue calls for contributions to modeling of data arising
in bioinformatics and systems biology by information theo-
retic means. Submissions should address theoretical develop-
ments, computational aspects, or specific applications. Suit-
able topics for this special issue include but are not limited
to:

e Normalized maximum-likelihood (NML) universal
models

e Minimum description length (MDL) techniques

e Microarray data modeling

e Denoising of genomic data

e Pattern recognition

e Data compression-based modeling

Authors should follow the EURASIP JBSB manuscript
format described at http://www.hindawi.com/journals/bsb/.
Prospective authors should submit an electronic copy of their
complete manuscript through the EURASIP JBSB’s manu-
script tracking system at http://www.hindawi.com/mts/, ac-
cording to the following timetable.

Manuscript Due February 1, 2007

Acceptance Notification May 1, 2007

Final Manuscript Due July 1, 2007

Publication Date 3rd Quarter, 2007

GUEST EDITORS:

Jorma Rissanen, Computer Learning Research Center,
University of London, Royal Holloway, TW20 0EX, UK;
jorma.rissanen@mdl-research.org

Peter Griinwald, Centrum voor Wiskunde en Informatica
(CWI), National Research Institute for Mathematics and
Computer Science, P.O. Box 94079, 1090 GB Amsterdam,
The Netherlands; pdg@cwi.nl

Jukka Heikkonen, Laboratory of Computational
Engineering, Helsinki University of Technology, P.O. Box
9203, 02015 HUT, Finland; jukka.heikkonen@tkk.fi

Petri Myllymaki, Department of Computer Science,
University of Helsinki, P.O. Box 68 (Gustaf Hallstromin katu
2b), 00014, Finland; petri.myllymaki@cs.helsinki.fi

Teemu Roos, Complex Systems Computation Group,
Helsinki Institute for Information Technology, University of
Helsinki, P.O.Box 68, 00014, Finland; teemu.roos@hiit.fi

Juho Rousu, Department of Computer Science, University
of Helsinki, P.O. Box 68 (Gustaf Hillstromin katu 2b),
00014, Finland; juho.rousu@cs.helsinki.fi
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2007 International Conference on Multimedia
& Expo (ICME)

July 2-5, 2007
Beijing International Convention Center, Beijing, China
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Sponsored by: Circuits and Systems Society, Communications Society, Computer Society, and Signal Processing Society.

IEEE International Conference on Multimedia & EXpo is a major annua international

conference with the objective of bringing together researchers, developers, and practitioners from academia
and industry working in al areas of multimedia. ICME serves as a forum for the dissemination of state-of-
the-art research, development, and implementations of multimedia systems, technologies and applications.
ICME is co-sponsored by four IEEE societies including the Circuits and Systems Society, the
Communications Society, the Computer Society, and the Signal Processing Society. The conference will
feature world-class plenary speakers, exhibits, special sessions, tutorials, and paper presentations.

Prospective athors are invited to submit a four-page paper in double-column format including authors'
names, affiliations, and a short abstract. Only electronic submissions will be accepted. Topics include but
arenot limited to:

Audio, image, video processing

Virtual reality and 3-D imaging

Signal processing for media integration
Multimedia communications and networking
Multimedia security and content protection
Multimedia human-machine interface and interaction
Multimedia databases

Multimedia computing systems and appliances
Hardware and software for multimedia systems
Multimedia standards and related issues
Multimedia applications

Multimedia and social media on the Internet

A number of awards will be presented to the Best Papers and Best Student Papers at the conference.
Participation for special sessions and tutorial proposals are encouraged.

SCHEDULE

. Special Session Proposals Due: December 1, 2006
. Tutorial Proposals Due: December 1, 2006

. Regular Paper Submissions Due: January 5, 2007
. Notification of A cceptance: March 19, 2007

. Camera-Ready Papers Due: April 16, 2007

Check the conference website http://www.icme2007.org for updates.

International Advisory Board
Sadaoki Furui, Tokyo Inst. Tech., Japan (Chair) Chung-Sheng Li, IBM Watson Research, USA

Ming Liou, HKUST, China (Co-Chair) Xing-Gang Lin, Tsinghua Univ., China
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Liang-Gee Chen, National Taiwan University Qi Tian, Institute for Inforcomm Research, Singapore
Robert M. Haralick, City Univ. of New York, USA  B. W. Wah, UIUC, USA

T. S Huang, UIUC, USA Hong-Jiang Zhang, Microsoft, China

Anil Jain, Michigan State University, USA Ya-Qin Zhang, Microsoft, China
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First Call For Papers

Creating exact 3D moving images as ghost-like replicas of 3D objects has been an ultimate
goal in video science. Capturing 3D scenery, processing the captured data for transmission,
and displaying the result for 3D viewing are the main functional components. These
components encompass a wide range of disciplines: imaging and computer graphics, signal
processing, telecommunications, electronics, optics and physics are needed.

The objective of the 3DTV-Conference is to bring together researchers and developers
from academia and industry with diverse experience and activity in distinct, yet
complementary, areas so that full scale 3D video capabilities are seemlessly integrated.

Topics of Interest

3D Visualization
- 3D mesh representation
- Texture and point representation
- 3D photography algorithms - Object-based representation and segmentation
- Synchronization and calibration of camera - Volume representation
arrays - 3D motion animation
- 3D view registration - Dense stereo and 3D reconstruction
- Multi-view geometry and calibration - Stereoscopic display techniques
- Holographic camera techniques - Holographic display technology
- 3D motion analysis and tracking - Reduced parallax systems and integral imaging
- Surface modeling for 3-D scenes - Underlying optics and VLSI technology
- Multi-view image and 3D data processing - Projection and display technology for 3D videos
- Human factors

3D Capture and Processing
- 3D time-varying scene capture technology
- Multi-camera recording

3D Transmission

- Systems, architecture and transmission
aspects of 3D - 3D imaging in virtual heritage and virtual

- 3D streaming archaeology

- Error-related issues and handling of 3d video - 3D Teleimmersion and remote collaboration

- Hologram compression - Augmented reality and virtual environments

- Multi-view video coding - 3D television, cinema, games and entertainment

- 3D mesh compression - Medical and biomedical applications

- Multiple description coding for 3D - 3D Content-based retrieval and recognition

- Signal processing for diffraction and - 3D Watermarking
holographic 3DTV

3D Applications

Paper Submission

Prospective contributors are invited to submit full papers electronically using the on-line
submission interface, following the instructions available at http://www.3dtv-con.org. Papers
should be in Adobe PDF format, written in English, with no more than four pages including
figures, using a font size of 11. Conference proceedings will be published online by the IEEE.

Important Dates

Special sessions and tutorials proposals
Regular Paper submission

Notification of acceptance

Submission of camera-ready papers
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3DTV NoE ITI-CERTH Technologies Electronics Engineers ~ Signal and Image Processing

1 December 2006
15 December 2006
9 February 2007

2 March 2007




