A Probabilistic Multimedia Retrieval Model and Its Evaluation #### Thijs Westerveld National Research Institute for Mathematics and Computer Science (CWI), P.O. Box 94079, 1090 GB Amsterdam, The Netherlands Email: thijs@cwi.nl #### Arjen P. de Vries National Research Institute for Mathematics and Computer Science (CWI), P.O. Box 94079, 1090 GB Amsterdam, The Netherlands Email: arjen@cwi.nl #### Alex van Ballegooij National Research Institute for Mathematics and Computer Science (CWI), P.O. Box 94079, 1090 GB Amsterdam, The Netherlands Email: alexb@cwi.nl #### Franciska de Jong University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands Email: fdejong@cs.utwente.nl #### **Djoerd Hiemstra** University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands Email: hiemstra@cs.utwente.nl Received 21 March 2002 and in revised form 1 November 2002 We present a probabilistic model for the retrieval of multimodal documents. The model is based on Bayesian decision theory and combines models for text-based search with models for visual search. The textual model is based on the language modelling approach to text retrieval, and the visual information is modelled as a mixture of Gaussian densities. Both models have proved successful on various standard retrieval tasks. We evaluate the multimodal model on the search task of TREC's video track. We found that the disclosure of video material based on visual information only is still too difficult. Even with purely visual information needs, text-based retrieval still outperforms visual approaches. The probabilistic model is useful for text, visual, and multimedia retrieval. Unfortunately, simplifying assumptions that reduce its computational complexity degrade retrieval effectiveness. Regarding the question whether the model can effectively combine information from different modalities, we conclude that whenever both modalities yield reasonable scores, a combined run outperforms the individual runs. Keywords and phrases: multimedia retrieval, evaluation, probabilistic models, Gaussian mixture models, language models. #### 1. INTRODUCTION Both image analysis and video motion processing have been unable to meet the requirements for disclosing the content of large scale unstructured video archives. There appear to be two major unsolved problems in the indexing and retrieval of video material on the basis of these technologies, namely, (a) image and video processing is still far away from understanding the content of a picture in the sense of a knowledge-based understanding and (b) there is no effective query language (in the wider sense) for searching image and video databases. Unlike the target content in the field of text retrieval, the content of video archives is hard to capture at the conceptual level. An increasing number of developers that accept this analysis of the state-of-the-art in the field have started to use human language as the media interlingua, making the assumption that as long as there is no possibility to carry out both a broad scale recognition of visual objects and an automatic mapping from such objects to linguistic representations, the detailed content of video material is best disclosed through the linguistic content (text) that may be associated with the images: speech transcripts, manually generated annotations, subtitles, captions, and so on [1]. Since the recent advances in automatic speech recognition, the potential role of speech transcripts in improving the disclosure of multimedia archives has been especially given a lot of attention. One of the insights gained by these investigations is that for the purpose of indexing and retrieval, perfect word recognition is not an indispensable condition since not every word will have to make it into the index, relevant words are likely to occur more than once, and not every expression in the index is likely to be queried. Research into the differences between text retrieval and spoken document retrieval indicates that, given the current level of performance of information retrieval techniques, recognition errors do not add new problems to the retrieval task [2, 3]. The limitations inherent in the deployment of language features only have already lead to several attempts to deal with the requirements of video retrieval by more closer integration of human language technology and image processing. The notion of multimodal and even more ambitious cross-modal retrieval have come in use to refer to the exploitation of the analysis of a variety of feature types in representing and indexing aspects of video documents [4, 5, 6, 7, 8, 9]. As indicated, many useful tools and techniques have become available from various research areas that have contributed to the domain of multimedia retrieval, but the integration of automatically generated multimodal metadata is most often done in an ad hoc manner. The various information modalities that play a role in video documents are each handled by different tools. How the various analyses affect the retrieval performance is hard to establish, and it is impossible to give an explanation of performance results in terms of a formal retrieval model. This paper describes an approach which employs both textual and image features and represents them in terms of one uniform theoretical framework. The output from various feature extraction tools is represented in probabilistic models based on Bayesian decision theory and the resulting model is a transparent combination of two similar models, one for textual features based on language models for text and speech retrieval [10], and the other for image features based on a mixture of Gaussian densities [11]. Initial deployment of the approach within the search tasks for the video retrieval tracks in TREC-2001 [12] and TREC-2002 [13] has demonstrated the possibility of using this model in retrieval experiments for unstructured video content. Additional experiments have taken place for smaller test collections. Section 2 of this paper describes the general probabilistic retrieval model, its textual (Section 2.1), and visual constituents (Section 2.2). Section 3 presents the experimental setup followed by a number of experimental results to evaluate the effectiveness of the retrieval model. Finally, Section 4 summarises our main conclusions. #### 2. PROBABILISTIC RETRIEVAL MODEL If we reformulate the information retrieval problem to one of pattern classification, the goal is to find the class to which the query belongs. Let $\Omega = \{\omega_1, \omega_2, ..., \omega_M\}$ be the set of classes underlying our document collection and Q be a query representation. Using the optimal Bayes or maximum a posteriori classifier, we can then find the class ω^* , with minimal probability of classification error, $$\omega^* = \arg\max_{i} P(\omega_i | Q). \tag{1}$$ In a retrieval setting, the best strategy is to rank classes by increasing probability of classification error. When no classification is available, we can simply let each document be a separate class. It is hard to estimate (1) directly; therefore, we reverse the probabilities using Bayes' rule $$\omega^* = \arg\max_{i} \frac{P(Q \mid \omega_i) P(\omega_i)}{P(Q)} = \arg\max_{i} P(Q \mid \omega_i) P(\omega_i).$$ (2) If the a priori probabilities of all classes are equal (i.e., $P(\omega_i)$ is uniform), the maximum a posteriori classifier (2) reduces to the maximum likelihood classifier, which is approximated by the Kullback-Leibler (KL) divergence between query model and class model $$\omega^* = \arg\min_{i} KL [P_q(x)||P_i(x)].$$ (3) The KL-divergence measures the amount of information there is to discriminate one model from another. The best matching document is the document with the model that is hardest to discriminate from the query model. Figure 1 illustrates the retrieval framework. We build models for queries and documents and compare them using the KL-divergence between the models. The visual part is modelled as a mixture of Gaussians (see Section 2.2); for the textual part, we use the language modelling approach in which documents are treated as *bags of words* (see Section 2.1). The KL-divergence between query model and document model is defined as follows: $$KL[P_{q}(x)||P_{i}(x)] = \int P(x|\omega_{q}) \log \frac{P(x|\omega_{q})}{P(x|\omega_{i})} dx$$ $$= \int P(x|\omega_{q}) \log P(x|\omega_{q}) dx \qquad (4)$$ $$- \int P(x|\omega_{q}) \log P(x|\omega_{i}) dx.$$ The first integral is independent of ω_i and can be ignored; thus, ¹The query model is here, like the document models, represented as a Gaussian mixture model but it can also be represented as a *bag of blocks* (see Section 2.2). FIGURE 1: Retrieval framework: image represented as Gaussian mixture and text as language model ("bags of words"). $$\omega^* = \arg\min_{i} KL \left[P_q(x) || P_i(x) \right]$$ $$= \arg\max_{i} \int P(x | \omega_q) \log P(x | \omega_i) dx.$$ (5) When working with multimodal material like video, the documents in our collection contain features in different modalities. This means that the classes underlying our document collection may contain different feature subclasses. The class conditional densities can thus be described as mixtures of feature densities $$P(x | \omega_i) = \sum_{f=1}^{F} P(x | \omega_{i,f}) P(\omega_{i,f}),$$ (6) where F is the number of underlying feature subclasses, $P(\omega_{i,f})$ is the probability of subclass f of class ω_i , and $P(x|\omega_{i,f})$ is the subclass conditional density for this subclass. When we draw a random sample from class ω_i , we first select a feature subclass according to $P(\omega_{i,f})$ and then draw a sample from this subclass using $P(x|\omega_{i,f})$. To arrive at a generic expression for similarity between mixture models, Vasconcelos [11] partitions the feature space into disjoint subspaces, where each point in the feature space is assigned to the subspace corresponding to the most probable
feature subclass $$\gamma_k = \{ x : P(\omega_{i,k} \mid x) \ge P(\omega_{i,l} \mid x), \ \forall l \ne k \}. \tag{7}$$ Using this partition, (5) can be rewritten as (the proof is given in [11]) $$\int P(x | \omega_{q}) \log P(x | \omega_{i}) dx$$ $$= \sum_{f,k} P(\omega_{q,f}) \left[\log P(\omega_{i,k}) + \int_{\chi_{k}} P(x | \omega_{q,f}, x \in \chi_{k}) \log \frac{P(x | \omega_{i,k})}{P(\omega_{i,k} | x)} dx \right]$$ $$\times \int_{\chi_{k}} P(x | \omega_{q,f}) dx.$$ (8) When the subspaces χ_k form the same hard partitioning of the features space for all query and document models, that is, when $$P(\omega_{i,k} \mid x) = P(\omega_{q,k} \mid x) = \begin{cases} 1, & \text{if } x \in \chi_k, \\ 0, & \text{otherwise,} \end{cases}$$ (9) then $$\int_{\chi_k} P(x \mid \omega_{q,f}) dx \begin{cases} 1, & \text{if } f = k, \\ 0, & \text{otherwise,} \end{cases}$$ $$P(\omega_{i,k} \mid x) = 1, \quad \forall x \in \chi_k.$$ (10) This reduces (8) to $$\int P(x | \omega_{q}) \log P(x | \omega_{i}) dx$$ $$= \sum_{f} P(\omega_{q,f}) \log P(\omega_{i,f})$$ $$+ \sum_{f} P(\omega_{q,f}) \int_{\chi_{f}} P(x | \omega_{q,f}) \log P(x | \omega_{i,f}) dx.$$ (11) This ranking formula is general and can, *in principle*, be used for any kind of multimodal document collection. In the rest of the paper, we limit ourselves to video collections represented by still frames and speech-recognized transcripts. The classes underlying our collection are defined through the shots in the videos. Furthermore, we assume that we have two feature subclasses, namely, a subclass generating textual features and another generating visual features. We can now partition the feature space into two distinct subspaces for textual and visual features: χ_t and χ_v . This partitioning is hard, that is, a feature can be textual or visual but never both. Our ranking formula becomes $$\omega^* = \arg \max_{i} \int P(x | \omega_q) \log P(x | \omega_i) dx$$ $$= \arg \max_{i} \left[P(\omega_{q,t}) \log P(\omega_{i,t}) + P(\omega_{q,t}) \int_{\chi_t} P(x | \omega_{q,t}) \log P(x | \omega_{i,t}) dx + P(\omega_{q,v}) \log P(\omega_{i,v}) + P(\omega_{q,v}) \int_{\chi_v} P(x | \omega_{q,v}) \log P(x | \omega_{i,v}) dx \right].$$ (12) The mixture probabilities for the textual and visual models $P(\omega_{i,t})$ and $P(\omega_{i,v})$ might be derived from background knowledge about the class ω_i . If, for example, we know that ω_i is a class from a news broadcast, we might assign a higher value to $P(\omega_{i,t})$ since the probability that there is text that helps us in finding relevant information is relatively high. On the other hand, if ω_i is from a documentary or a silent movie, we might gain less information from the text from ω_i and assign a lower value to $P(\omega_{i,t})$. At the moment, however, we have no background information; therefore, we do not distinguish between classes and use uniform mixture probabilities. This means that the first and third terms from (12) are independent of ω_i and can be ignored. Our final (general) ranking formula becomes $$\omega^* = \arg\max_{i} \left[P(t) \int_{\chi_t} P(x \mid \omega_{q,t}) \log P(x \mid \omega_{i,t}) dx + P(v) \int_{\chi_v} P(x \mid \omega_{q,v}) \log P(x \mid \omega_{i,v}) dx \right],$$ (13) where P(t) and P(v) are the class-independent probabilities of drawing textual and visual features, respectively. #### 2.1. Text retrieval For the textual part of our ranking function, we use statistical language models. A famous application of these models is Shannon's illustration of the implications of coding and information theory using models of letter sequences and word sequences [14]. In the 1970s, statistical language models were developed as a general natural language-processing tool, first for automatic speech recognition [15] and later also for, for example, part-of-speech tagging [16] and machine translation [17]. Recently, statistical language models have been suggested for information retrieval by Ponte and Croft [18], Hiemstra [19], and Miller et al. [20]. The language modeling approach to information retrieval defines a simple unigram language model for each document in a collection. For each document $\omega_{i,t}$, the language model defines the probability $P(x_{t,1}, \ldots, x_{t,N_t} | \omega_{i,t})$ of a sequence of N_t textual features (i.e., words) $x_{t,1}, \ldots, x_{t,N_t}$ and the documents are ranked by that probability. The standard language modelling approach to information retrieval uses a linear interpolation of the document model $P(x_{t,j} | \omega_i)$ with a general collection model $P(x_{t,j})$ [19, 20, 21, 22]. As these models operate on discrete signals, the integral from (13) can be replaced by a sum. Furthermore, if we use the empirical distribution of the query as the query model, then the standard textual part of (13) is $$\omega_t^* = \arg\max_i \frac{1}{N_t} \sum_{j=1}^{N_t} \log \left[\lambda P(x_{t,j} \mid \omega_i) + (1 - \lambda) P(x_{t,j}) \right]. \tag{14}$$ The linear combination needs a smoothing parameter λ which is set empirically on some test collection or alternatively estimated by the expectation-maximisation (EM)-algorithm [23] on a test collection. The probability of drawing textual feature $x_{t,j}$ from document ω_i ($P(x_{t,j}|\omega_i)$) is computed as follows: if the document contains 100 terms in total and the term $x_{t,j}$ occurs 2 times, this probability would simply be 2/100 = 0.02. Similarly, $P(x_{t,j})$ is the probability of drawing $x_{t,j}$ from the entire document collection. Using the statistical language modelling approach for video retrieval, we would like to exploit the hierarchical data model of video, in which a video is subdivided into scenes which are subdivided into shots which are, in turn, subdivided into frames. Statistical language models are particularly well suited for modelling such complex representations of the data. We can simply extend the mixture to include the different levels of the hierarchy, with models for shots and scenes,² Shot* = $$\arg \max_{i} \frac{1}{N_{t}}$$ $$\times \sum_{j=1}^{N_{t}} \log \left[\lambda_{\text{Shot}} P(x_{t,j} \mid \text{Shot}_{i}) + \lambda_{\text{Scene}} P(x_{t,j} \mid \text{Scene}_{i}) + \lambda_{\text{Coll}} P(x_{t,j}) \right]$$ with $\lambda_{\text{Coll}} = 1 - \lambda_{\text{Shot}} - \lambda_{\text{Scene}}$. (15) The main idea behind this approach is that a good shot contains the query terms and is part of a scene having more occurrences of the query terms. Also, by including scenes in ²We assume that each shot is a separate class and replace ω_i with Shot_i. the ranking function, we hope to retrieve the shot of interest even if the video's speech describes the shot just before it begins or just after it is finished. Depending on the information need of the user, we might use a similar strategy to rank scenes or complete videos instead of shots, that is, the best scene might be a scene that contains a shot in which the query terms (co-)occur. #### 2.2. Image retrieval In order to specialise the visual part of our ranking formula (13), we need to estimate the class conditional densities for the visual features $P(x_v|\omega_i)$. We follow Vasconcelos [11] and model them using Gaussian mixture models. The idea behind modelling shots as a mixture of Gaussians is that each shot contains a certain number of classes or components and that each sample from a shot (i.e., each block of 8 by 8 pixels extracted from a frame) was generated by one of these components. The class conditional densities for a Gaussian mixture model are defined as follows: $$P(x_{\nu} | \omega_{i}) = \sum_{c=1}^{C} P(\theta_{i,c}) \mathcal{G}(x_{\nu}, \mu_{i,c}, \Sigma_{i,c}),$$ (16) where *C* is the number of components in the mixture model, $\theta_{i,c}$ is component *c* of class model ω_i , and $\mathcal{G}(x, \mu, \Sigma)$ is the Gaussian density with mean vector μ and covariance matrix Σ , $$\mathcal{G}(x,\mu,\Sigma) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} e^{-(1/2)\|x-\mu\|_{\Sigma}},$$ (17) where *n* is the dimensionality of the feature space and $$||x - \mu||_{\Sigma} = (x - \mu)^T \Sigma^{-1} (x - \mu).$$ (18) #### 2.2.1 Estimating model parameters The parameters of the models for a given shot can be estimated using the EM algorithm. This algorithm iterates between estimating the a posteriori class probabilities for each sample $P(\theta_c|x_v)$ (the E-step) and re-estimating the components parameters $(\mu_c, \Sigma_c, \text{ and } P(\theta_c))$ based on the sample distribution (M-step).³ The approach is rather general: any kind of feature vectors can be used to describe samples. Our sampling process is as follows (It is illustrated in Figure 2). First, we convert the keyframe of a shot to the YCbCr color space. Then, we cut it in distinct blocks of 8 by 8 pixels. On these blocks, we perform the discrete cosine transform (DCT) for each of the 3 color channels. We now take the first 10 DCT coefficients from the Y-channel and only the DC coefficient from both the Cb and the Cr channels to describe the samples. These feature vectors are then fed to the EM algorithm to find the parameters (μ_c , Σ_c , and $P(\theta_c)$). The EM algorithm first assigns each sample to a random component. Next, we compute the parameters $(\mu_c, \Sigma_c, \text{ and } P(\theta_c))$ for each component, based on the samples assigned to that component.⁴ We re-estimate the class assignments, that is, we compute the posterior probabilities ($P(\theta_c|x)$ for all c). We iterate between estimating class assignments (expectation step) and estimating class parameters (maximisation step) until the algorithm converges. Figure 3 shows a query image and the component assignments after different iterations of the EM algorithm. Instead of a random initialisation, we initially assigned the left-most part of the samples to component 1,
the samples in the middle to component 2, and the right-most samples to component 3. This way it is clearly visible how the component assignments move about the image. Finally, after convergence of the EM algorithm, we describe the position in the image plane of each component as a 2D-Gaussian with mean and covariance computed from the positions of the samples assigned to this component. ### 2.2.2 Bags of blocks Just like in our textual approach, for the query model, we can simply take the empirical distribution of the query samples. If a query image x_{ν} consists of N_{ν} samples $x_{\nu} = (x_{\nu,1}, x_{\nu,2}, \ldots, x_{\nu,N_{\nu}})$, then $P(x_{\nu,i}|\omega_q) = 1/N_{\nu}$. For the document model, we take a mixture of foreground and background probabilities, that is, the (foreground) probability of drawing a query sample from the document's Gaussian mixture model, and the (background) probability of drawing it from any Gaussian mixture in the collection. In other words, the query image is viewed as a bag of blocks (BoB), and its probability is estimated as the joint probability of all its blocks. The BoB measure for query images then becomes $$\omega_{\nu}^{*} = \arg\max_{i} \frac{1}{N_{\nu}} \sum_{j=1}^{N_{\nu}} \log \left[\kappa P(x_{\nu,j} \mid \omega_{i}) + (1 - \kappa) P(x_{\nu,j}) \right],$$ (19) where κ is a mixing parameter and the background probability $P(x_{\nu,j})$ can be found by marginalising over all M documents in the collection $$P(x_{\nu,j}) = \sum_{i=1}^{M} P(x_{\nu,j} | \omega_i) P(\omega_i).$$ (20) Again, we assume uniform document priors $(P(\omega_i) = 1/M \text{ for all } i)$. In text retrieval, one of the reasons for mixing the document model with a collection model is to assign nonzero probabilities to words that are not observed in a document. Smoothing is not necessary in the visual case since the documents are modelled as mixtures of Gaussians having infinite support. Another motivation for mixing is to weight term importance: a common sample x (i.e., a sample that occurs frequently in the collection) has a relatively $^{^{3}}$ Looking at a single shot, we can drop the class subscripts i. ⁴In practice, a sample does not always belong entirely to one component. In fact, we compute means, covariances, and priors on the weighted feature vectors, where the feature vectors are weighted by their proportion of belonging to the class under consideration. FIGURE 2: Building a Gaussian mixture model from an image. high probability P(x) (equal for all documents) and, therefore, $P(x|\omega)$ has only little influence on the probability estimate. In other words, common terms and common blocks influence the final ranking only marginally. ### 2.2.3 Asymptotic likelihood approximation A disadvantage of using the BoB measure is its computational complexity. In order to rank the collection, given a query we need to compute the posterior probability $P(x_v|\omega_i)$ FIGURE 3: Class assignments (3 classes) for the image at the top after different numbers of iterations. of each image block x_{ν} in the query for each document ω_i in the collection. For evaluating a retrieval method, this is fine, but for an interactive retrieval system, optimisation is necessary. An alternative is to represent the query image, like the document image, as a Gaussian model (instead of by its empirical distribution as a bag of blocks) and then compare these two models using the KL-divergence. Yet, if we use Gaussians to model the class conditional densities of the mixture components, there is no closed-form solution for the visual part of the resulting ranking formula (13). As a solution, Vasconcelos assumes that the Gaussians are well separated and derives an approximation ignoring the overlap between the mixture components: the asymptotic likelihood approximation (ALA) [11]. Starting from (8), he arrives at $$\begin{split} \omega_{v}^{*} &= \arg\max_{i} \int_{\chi_{v}} P(x_{v} \mid \omega_{q}) \log P(x_{v} \mid \omega_{i}) dx_{v} \\ &\approx \arg\max_{i} \operatorname{ALA} \left[P_{q}(x_{v}) || P_{i}(x_{v}) \right] \\ &= \arg\max_{i} \sum_{c} P(\theta_{q,c}) \left\{ \log P(\theta_{i,\alpha(c)}) + \log \mathcal{G}(\mu_{q,c}, \mu_{i,\alpha(c)}, \Sigma_{i,\alpha(c)}) - \frac{1}{2} \operatorname{trace} \left[\Sigma_{i,\alpha(c)}^{-1} \Sigma_{q,c} \right] \right\}, \end{split}$$ where $$\alpha(c) = k \iff ||\mu_{q,c} - \mu_{i,k}||_{\Sigma_{i,k}} < ||\mu_{q,c} - \mu_{i,l}||_{\Sigma_{i,l}}, \quad \forall l \neq k.$$ (21) In this equation, subscripts indicate, respectively, classes and components (e.g., $\mu_{i,c}$ is the mean for component θ_c of class ω_i). #### 2.3. ALA assumptions The main assumption behind the ALA is that the Gaussians for the components θ_c within a class model ω_i have small overlap; in fact, there are two parts to this [11]. The first assumption is that each image sample is assigned to one and only one of the mixture components. The second is that samples from the support set from a single query component are all assigned to the same document component. More formally, we have the following assumptions. Assumption 1. For each sample, the component with maximum posterior probability has posterior probability one $$\forall \omega_i, x : \max_k P(\theta_{i,k} | x) = 1. \tag{22}$$ Assumption 2. For any document ω_j , the component with maximum posterior probability is the same for all samples of the support set of a single query component $\theta_{q,k}$, $$\forall \theta_{q,k}, \omega_j \exists l^*, \forall x, \quad P(x \mid \theta_{q,k}) > 0 \Longrightarrow \arg \max_l P(\theta_{j,l} \mid x) = l^*.$$ (23) We used Monte Carlo simulation to test these assumptions on our collection (the TREC-2002 video collection, see Section 3.1) as follows. First, we took a random document ω_i from the search collection and then a random mixture component $\theta_{i,k}$ from the mixture model of this document. We then drew 10,000 random samples from this component and, for each sample x, computed - (i) $P(\theta_{i,l}|x)$, the posterior component assignment within document *i* for all components $\theta_{i,l}$; - (ii) $P(\theta_{j,m}|x)$, the posterior component assignment in a different randomly chosen document j, for all components $\theta_{j,m}$. For the first measure, we simply took the maximum posterior probability for each sample. We averaged the second measure over all 10,000 samples and took the maximum over all components to approximate the proportion of samples assigned to the most probable component FIGURE 4: Testing the ALA assumptions 1 (histogram (a)) and 2 (histogram (b)), samples x are drawn from $P(x|\theta_{i,k})$. (remember, there should be a component that explains all samples). We repeated this process 100,000 iterations for different documents and components selected at random, and histogrammed the results (Figure 4). Both measures should be close to 1, the first to satisfy Assumption 1 and the second to satisfy Assumption 2. As we can see from the plots in Figure 4, the first assumption appears reasonable, but the second does not hold.⁵ We investigate the effect of this observation in the retrieval experiments below. #### 3. EXPERIMENTS We evaluated the model outlined above and the presented measures on the search task of the video track of the Text REtrieval Conference TREC-2002 [13]. #### 3.1. TREC video track TREC is a series of workshops for large scale evaluation of information retrieval technology [24, 25]. The goal is to test retrieval technology on realistic test collection using uniform and appropriate scoring procedures. The general procedure is as follows: - (i) a set of statements of an information need (topic) is created; - (ii) participants search the collection and return the top N results for each topic; - (iii) returned documents are pooled and judged for relevance to the topic; - (iv) systems are evaluated using the relevance judgements. The measures used in evaluation are usually precision and recall oriented. Precision and recall are defined as follows: $$precision = \frac{number of relevant shots retrieved}{total number of shots retrieved},$$ $$recall = \frac{number of relevant shots retrieved}{total number of relevant shots in collection}.$$ (24) The video track was introduced at TREC-2001 to evaluate content-based retrieval from digital video [12]. Here, we use the data from the TREC-2002 video track [13]. The track defines three tasks: shot boundary detection, feature detection, and general information search. The goal of the shot boundary task is to identify shot boundaries in a given video clip. In the feature detection task, we have to assign a set of predefined features to a shot, for example, *indoor*, *outdoor*, *people*, and *speech*. In the search task, the goal is to find relevant shots given a description of an information need, expressed by a multimedia topic. Both in the feature detection task and in the search task, a predefined set of shots is to be used. In our experiments, we focus on the search task. The collection to be searched in this task consists of approximately 40 hours of MPEG-1 encoded video; in addition, a set of 23 hours of training material was available. The topics consist of a textual description of the information need, accompanied by images, video fragments, and/or audio fragments illustrating what is needed. For each topic, a system could return a ranked list of 100 video fragments. The top 50 returned shots of each run are then pooled and judged. We report experimental results using the standard TREC measures, average precision, and mean average precision (MAP). Average precision is the average of the precision value obtained after each relevant document is retrieved (when a relevant document is not retrieved at all, its precision is assumed to be 0). MAP is the mean of the average precision values over all topics. ⁵The bar at probability zero results
from a truncation error in the Bayesian inversion to compute $P(\theta_{j,m}|x)$ from a (too small) probability $P(x|\theta_{j,m})$. FIGURE 5: MAP on video search task for different κ . For the textual descriptions of the shots, we used speech transcripts kindly provided by LIMSI. These transcripts were aligned to the predefined video shots. We did not have or define a semantic division of the video into scenes but defined scenes simply as overlapping windows of 5 consecutive shots.⁶ We removed common words from the transcripts (stopping) and stemmed all terms using the Porter stemmer [26]. For the visual description, we took keyframes from the common video shots, and we used EM to find the parameters of Gaussian mixture models. Keyframe selection was straightforward: we simply used the middle frame from each shot as representative for the shot. #### 3.2. Estimating the mixture parameters The model does not specify the value of mixing parameters λ , λ_{Shot} , λ_{Scene} , and κ . An optimal value can only be found a posteriori by evaluating retrieval performance for different values on a test collection; a priori, we must make an educated guess for the right values. Figure 5 shows the MAP scores on the TREC-2002 video track search task for κ ranging from 0.0 to 1.0. We can see that retrieval results are insensitive to the value of the mixing parameter as long as we take both foreground and background into account. The plot has a similar shape as that found in Hiemstra's thesis for the λ parameter in the standard language model [10]. For the transcripts, we tried over thirty combinations of settings, using two sets of text queries (see also Section 3.4). For query set *Tlong*, this resulted in optimal settings for MAP with $\lambda_{\text{Shot}} = 0.090$, $\lambda_{\text{Scene}} = 0.210$, and $\lambda_{\text{Coll}} = 0.700$. Here, modelling the hierarchy in the video makes sense because shot and scene both contribute to results in the ranking (λ_{Shot} and λ_{Scene} are larger than zero). For set *Tshort*, however, the optimal settings had $\lambda_{\text{Shot}} = 0.000$ and the resulting model is identical to the original language model. Summarizing and ranking transcript units longer than shots is important, but we cannot conclude from these experiments whether modeling the hierarchy is really necessary. In all experiments, the differences between the better parameter choices are not significant, but a particularly bad choice may seriously degrade retrieval effectiveness. In the remainder of this work, we have used $\kappa = 0.9$, $\lambda_{\text{Shot}} = 0.090$, $\lambda_{\text{Scene}} = 0.210$, and $\lambda_{\text{Coll}} = 0.700$. #### 3.3. Using all or some image examples In general, it is hard to guess what would be a good example image for a specific query. If we look for shots of the *Golden Gate Bridge*, we might not care from what angle the bridge was filmed, or if the clip was filmed on a sunny or a cloudy day; visually, however, such examples may be quite different (Figure 6). If a user has presented three examples and no additional information, the best we can do is to try to find documents that describe all example images well. Unfortunately, a document may be ranked low even though it models the samples from one example image well as it may not explain the samples from the other images. For each topic, we computed which of the example images would have given the best results if it had been used as the only example for that topic. We compared these best example results to the full topic results in which we used all available visual examples. The experiment was done using both the ALA and the BoB measure. In the *full topic* case, the set of available topics was regarded as one large bag of samples. For the ALA measure, we built one mixture model to describe all available visual examples. For BoB, we ranked documents by their probability of generating all samples in all query images. For the single image queries in the best example, we built a separate mixture model from each example and used it for ALA ranking. For BoB ranking, we used all samples from the single visual example. Since it is problematic to use multiple examples in a query, we wanted to see if it is possible to guess in advance what would be a good example for a specific topic. Therefore, for each topic, we also hand-picked a single representative from the available examples and compared these manual example results to the other two result sets. The results for the different settings are listed in Table 1. A first thing to notice is that all scores are rather low. When we take a closer look at the topics with higher average precision scores, we see that these mainly contain examples from the search collection. In other words, we can find similar shots from within the same video, but generalisation is a problem. Comparing BoB to ALA, we see that, averaged over all topics for each set of examples, BoB outperforms ALA. For some specific topics, the ALA gives higher scores, but again these are cases with examples from within the collection. In general, the BoB approach, which uses fewer assumptions, performs better. The fact that using the best image example outperforms the use of all examples shows that combining results from ⁶In preliminary experiments on the TREC-2001 collection, when varying the window lengths, 5 shots were the optimum. FIGURE 6: Visual examples of the Golden Gate Bridge. Table 1: MAP for full topics, best examples, and manual examples. | TABLE 1. WITH 101 full topics, best examples, and manual examples | | | | | | |---|---|---|--|--
---| | Full topic | | Best example | | Manual example | | | BoB | ALA | ВоВ | ALA | ВоВ | ALA | | 0.0038 | 0.0100 | 0.2438 | 0.0591 | 0.2438 | 0.0560 | | 0.4854 | 0.1117 | 0.4323 | 0.1327 | 0.1760 | 0.0958 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0040 | 0.0015 | 0.0000 | 0.0000 | | 0.0048 | 0.0020 | 0.0977 | 0.0007 | 0.0977 | 0.0007 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0330 | 0.0203 | 0.0234 | 0.0022 | 0.0234 | 0.0022 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0046 | 0.0000 | 0.0046 | 0.0000 | 0.0046 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0053 | 0.0000 | 0.0704 | 0.0149 | 0.0704 | 0.0005 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0046 | 0.0000 | 0.0069 | 0.0139 | 0.0069 | 0.0139 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0305 | 0.0003 | 0.0305 | 0.0003 | | 0.0095 | 0.0000 | 0.0095 | 0.0000 | 0.0095 | 0.0000 | | 0.0003 | 0.0000 | 0.0106 | 0.0213 | 0.0000 | 0.0000 | | 0.0006 | 0.0000 | 0.0006 | 0.0003 | 0.0000 | 0.0000 | | 0.0021 | 0.0004 | 0.0021 | 0.0013 | 0.0021 | 0.0013 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0323 | 0.0000 | 0.0323 | 0.0383 | 0.0323 | 0.0383 | | 0.1312 | 0.0002 | 0.1408 | 0.0496 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0003 | 0.0006 | 0.0003 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0287 | 0.0058 | 0.0444 | 0.0135 | 0.0279 | 0.0084 | | | BoB 0.0038 0.4854 0.0000 0.0000 0.0000 0.0008 0.0048 0.0000 0.0046 0.0000 0.0046 0.0000 0.0046 0.0000 0.0095 0.0003 0.0006 0.0021 0.0000 0.0323 0.1312 0.0000 0.0000 | BoB ALA 0.0038 0.0100 0.4854 0.1117 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0048 0.0020 0.0000 0.0000 0.0330 0.0203 0.0000 0.0000 0.0046 0.0000 0.0053 0.0000 0.0046 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0002 0.0000 0.0003 0.0000 0.0021 0.0004 0.0323 0.0000 0.1312 0.0002 0.0000 0.0000 0.0000 0.0000 | BoB ALA BoB 0.0038 0.0100 0.2438 0.4854 0.1117 0.4323 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0040 0.0048 0.0020 0.0977 0.0000 0.0000 0.0000 0.0330 0.0203 0.0234 0.0000 0.0000 0.0000 0.0046 0.0000 0.0000 0.0053 0.0000 0.0000 0.0046 0.0000 0.0000 0.0046 0.0000 0.0000 0.0046 0.0000 0.0000 0.0046 0.0000 0.0000 0.0046 0.0000 0.0000 0.0046 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0002 0.0000 0.0005 0.0003 0.0000 0.0006 0.0004 0.0001 | BoB ALA BoB ALA 0.0038 0.0100 0.2438 0.0591 0.4854 0.1117 0.4323 0.1327 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0007 0.0048 0.0020 0.0977 0.0007 0.0000 0.0000 0.0000 0.0000 0.0330 0.0203 0.0234 0.0022 0.0000 0.0000 0.0000 0.0000 0.0046 0.0000 0.0000 0.0000 0.0053 0.0000 0.0000 0.0000 0.0046 0.0000 0.0000 0.0000 0.0046 0.0000 0.0000 0.0000 0.0046 0.0000 0.0000 0.0000 0.0046 0.0000 0.0000 0.0000 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 </td <td>BoB ALA BoB ALA BoB 0.0038 0.0100 0.2438 0.0591 0.2438 0.4854 0.1117 0.4323 0.1327 0.1760 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0040 0.0015 0.0000 0.0048 0.0020 0.0977 0.0007 0.0977 0.0000 0.0000 0.0000 0.0000 0.0000 0.0330 0.0203 0.0234 0.0022 0.0234 0.0000 0.0000 0.0000 0.0000 0.0000 0.046 0.0000 0.0046 0.0000 0.0046 0.0001 0.0000 0.0000 0.0000 0.0000 0.0053 0.0000 0.0000 0.0000 0.0000 0.0046 0.0000 0.0000 0.0000 0.0000 0.0046 0.0000 0.0000 0.0000 <</td> | BoB ALA BoB ALA BoB 0.0038 0.0100 0.2438 0.0591 0.2438 0.4854 0.1117 0.4323 0.1327 0.1760 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0040 0.0015 0.0000 0.0048 0.0020 0.0977 0.0007 0.0977 0.0000 0.0000 0.0000 0.0000 0.0000 0.0330 0.0203 0.0234 0.0022 0.0234 0.0000 0.0000 0.0000 0.0000 0.0000 0.046 0.0000 0.0046 0.0000 0.0046 0.0001 0.0000 0.0000 0.0000 0.0000 0.0053 0.0000 0.0000 0.0000 0.0000 0.0046 0.0000 0.0000 0.0000 0.0000 0.0046 0.0000 0.0000 0.0000 < | different visual examples can indeed degrade results. Looking at the results, manually selecting good examples seems a nontrivial task, but the drop in performance is partly due to the generalisation problem. If one of the image examples happens to come from the collection, it scores high. If we fail to select that particular example, the score for the manual example run drops. Simply counting how often the manually selected example was the same as the best-performing example, we see that this was the case for 8 out of 13 topics.⁷ #### 3.4. Using example transcripts We took two different approaches in building textual queries from the multimedia topics. The first set of textual queries, *Tshort*, was constructed simply by taking the textual description from the topic. In the second set of queries, *Tlong*, we augmented these with the speech transcripts from the video examples available for a topic. The assumption here is that relevant shots share a vocabulary with example shots; thus, using example transcripts might improve retrieval results. In both sets of queries, we removed common words and stemmed all terms. We found that across topics, *Tlong* outperformed *Tshort* with a MAP of 0.1212 against 0.0916. For detailed per-topic information, see Table 2. #### 3.5. Combining textual and visual runs We combined textual and visual runs using our combined ranking formula (13). Since we had no data to estimate the parameters for mixing textual and visual information, we used P(t) = P(v) = 0.5. For the textual part, we tried both short and long queries; for the visual part, we used full queries and best-example queries. Table 2 shows the results for combinations with the BoB measure. We also experimented with combinations with the ALA measure, but we found that in the ALA case, it is difficult to combine textual and visual scores because they are on different scales. The BoB measure is closer to the KL-divergence and, on top of that, more similar to our textual approach, and thus easier to combine with the textual scores. For most of the topics, textual runs give the best results; however, for some topics, using the visual examples is useful. This is mainly the case when either the topics come from the search collection or when the relevant documents are outliers in the collection. This illustrates how difficult it is to search a generic video collection using visual information only. We succeed only if the relevant documents are either highly similar to the examples provided or very dissimilar from the other documents in the collection (and, therefore, relatively similar to the query examples). When both textual and visual runs have reasonable scores, combining the runs can improve on the individual runs; however, when one of them has inferior performance, a combination only adds noise and lowers the scores. #### 4. CONCLUSIONS We presented a probabilistic framework for multimodal retrieval in which textual and visual retrieval models are ⁷If we ignore the topics for which there is only one example and the ones for which the best example scored 0. | Topic | T-14 | Tlong | D - D C - 11 | D - Dl4 | BoBfull | BoBfull | BoBbest | BoBbest | |-------|--------|--------|--------------|---------|---------|---------|---------|---------| | торіс | Tshort | Tiong | BoBfull | BoBbest | +Tshort | +Tlong | +Tshort | +Tlong | | vt075 | 0.0000 | 0.0082 | 0.0038 | 0.2438 | 0.0189 | 0.0569 | 0.2405 | 0.3537 | | vt076 | 0.4075 | 0.6242 | 0.4854 | 0.4323 | 0.5931 | 0.7039 | 0.5757 | 0.6820 | | vt077 | 0.1225 | 0.5556 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | vt078 | 0.1083 | 0.2778 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | vt079 | 0.0003 | 0.0006 | 0.0000 | 0.0040 | 0.0003 | 0.0000 | 0.0063 | 0.0050 | | vt080 | 0.0000 | 0.0000 | 0.0048 | 0.0977 | 0.0066 | 0.0059 | 0.0845 | 0.0931 | | vt081 | 0.0154 | 0.0333 | 0.0000 | 0.0000 | 0.0037 | 0.0000 | 0.0000 | 0.0000 | | vt082 | 0.0080 | 0.0262 | 0.0330 | 0.0234 | 0.0181 | 0.0335 | 0.0145 | 0.0210 | | vt083 | 0.1669 | 0.1669 | 0.0000 | 0.0000 | 0.0962 | 0.0962 | 0.0078 | 0.0078 | | vt084 | 0.7500 | 0.7500 | 0.0046 | 0.0046 | 0.6875 | 0.6875 | 0.6875 | 0.6875 | | vt085 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | vt086 | 0.0554 | 0.0676 | 0.0053 | 0.0704 | 0.0536 | 0.0215 | 0.0791 | 0.0600 | | vt087 | 0.0591 | 0.0295 | 0.0000 | 0.0000 | 0.0052 | 0.0003 | 0.0052 | 0.0003 | | vt088 | 0.0148 | 0.0005 | 0.0046 | 0.0069 | 0.0052 | 0.0046 | 0.0069 | 0.0069 | | vt089 | 0.0764 | 0.0764 | 0.0000 | 0.0000 | 0.0503 | 0.0503 | 0.0045 | 0.0045 | | vt090 | 0.0229 | 0.0473 | 0.0000 | 0.0305 | 0.0006 | 0.0075 | 0.0356 | 0.0477 | | vt091 | 0.0000 | 0.0000 | 0.0095 | 0.0095 | 0.0000 | 0.0086 | 0.0000 | 0.0086 | | vt092 | 0.0627 | 0.0687 | 0.0003 | 0.0106 | 0.0191 | 0.0010 | 0.0078 | 0.0106 | |
vt093 | 0.1977 | 0.1147 | 0.0006 | 0.0006 | 0.0099 | 0.0021 | 0.0071 | 0.0012 | | vt094 | 0.0232 | 0.0252 | 0.0021 | 0.0021 | 0.0122 | 0.0036 | 0.0122 | 0.0036 | | vt095 | 0.0034 | 0.0021 | 0.0000 | 0.0000 | 0.0008 | 0.0012 | 0.0011 | 0.0010 | | vt096 | 0.0000 | 0.0000 | 0.0323 | 0.0323 | 0.0161 | 0.0161 | 0.0323 | 0.0323 | | vt097 | 0.1002 | 0.0853 | 0.1312 | 0.1408 | 0.1228 | 0.1752 | 0.1521 | 0.1474 | | vt098 | 0.0225 | 0.0086 | 0.0000 | 0.0003 | 0.0068 | 0.0000 | 0.0004 | 0.0003 | | vt099 | 0.0726 | 0.0606 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | MAP | 0.0916 | 0.1212 | 0.0287 | 0.0444 | 0.0691 | 0.0750 | 0.0784 | 0.0870 | TABLE 2: Average precision per topic for textual runs, BoB runs, and combined runs. integrated seamlessly, and evaluated the framework using the search task from the TREC-2002 video track. We found that even though the topics were specifically designed for content-based retrieval and relevance was defined visually, a textual search outperforms visual search for most topics. As we have seen before [6], standard image retrieval techniques cannot readily be applied to satisfy a variety of information requests from a generic video collection. Future work has to show how incorporating different sources of additional information (e.g., contextual frames, the movement in video, or user interaction) can help improve results. In the text-only experiments, we saw that using the transcripts from the example videos in queries improves results. We also found that it is useful to take transcripts from surrounding shots into account to describe a shot. However, it is still unclear whether a hierarchical description of scenes and shots is necessary. In our visual experiments, we found that the general probabilistic framework is useful for image retrieval. However, we found that one of the assumptions underlying the ALA of the KL-divergence does not hold for the generic video collection we used. This was reflected in the difference in performance of the ALA and the BoB model. Unfortunately, computing the joint block probabilities in the BoB model is computationally expensive and unsuitable for an interactive retrieval system. Future work will investigate ways to speed up the process. Furthermore, we noticed generalisation problems. The visual models only gave satisfying results if the relevant documents were either highly similar to the query image(s) (i.e., the query images came from the collection) or highly dissimilar to the rest of the collection (i.e., the relevant documents were outliers in the collection). When either textual or visual results are poor, combining them, thus adding noise, seems to degrade the scores. However, when both modalities yield reasonable scores, a combined run outperforms the individual runs. #### **REFERENCES** - [1] F. de Jong, J.-L. Gauvain, D. Hiemstra, and K. Netter, "Language-based multimedia information retrieval," in *Proc. RIAO 2000 Content-Based Multimedia Information Access*, pp. 713–722, Paris, France, April 2000. - [2] J.-L. Gauvain, L. Lamel, and G. Adda, "Transcribing broadcast news for audio and video indexing," *Communications of the ACM*, vol. 43, no. 2, pp. 64–70, 2000. - [3] G. J. F. Jones, J. T. Foote, K. Sparck Jones, and S. J. Young, "The video mail retrieval project: experiences in retrieving - spoken documents," in *Intelligent Multimedia Information Retrieval*, M. T. Maybury, Ed., pp. 191–214, AAAI Press/MIT Press, Cambridge, Mass, USA, 1997. - [4] K. Barnard and D. Forsyth, "Learning the semantics of words and pictures," in *Proc. International Conf. on Computer Vision*, vol. 2, pp. 408–415, Vancouver, Canada, 2001. - [5] M. La Cascia, S. Sethi, and S. Sclaroff, "Combining textual and visual cues for content-based image retrieval on the world wide web," in *Proc. IEEE Workshop on Content-Based Access* of *Image and Video Libraries*, pp. 24–28, Santa Barbara, Calif, USA, June 1998. - [6] The lowlands team, "Lazy users and automatic video retrieval tools in (the) lowlands," in *The 10th Text REtrieval Conference (TREC-2001)*, E. M. Voorhees and D. K. Harman, Eds., vol. 10, pp. 159–168, National Institute of Standards and Technology, NIST, Gaithersburg, Md, USA, 2002. - [7] T. Westerveld, "Image retrieval: Content versus context," in *Proc. RIAO 2000 Content-Based Multimedia Information Access*, pp. 276–284, Paris, France, April 2000. - [8] T. Westerveld, "Probabilistic multimedia retrieval," in *Proc.* the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 437–438, Tampere, Finland, 2002. - [9] T. Westerveld, A. P. de Vries, and A. van Ballegooij, "CWI at the TREC-2002 video track," in *The 11th Text Retrieval Conference (TREC-2002)*, E. M. Voorhees and D. K. Harman, Eds., National Institute of Standards and Technology, NIST, Gaithersburg, Md, USA, 2002. - [10] D. Hiemstra, Using language models for information retrieval, Ph.D. thesis, Centre for Telematics and Information Technology, University of Twente, The Netherlands, 2001. - [11] N. Vasconcelos, *Bayesian models for visual information retrieval*, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, Mass, USA, 2000. - [12] P. Over and R. Taban, "The TREC-2001 video track framework," in *Proc. the 10th Text REtrieval Conference (TREC-2001)*, E. M. Voorhees and D. K. Harman, Eds., vol. 10, pp. 79–87, National Institute of Standards and Technology, NIST, Gaithersburg, Md, USA, 2002. - [13] A. F. Smeaton and P. Over, "The TREC-2002 video track report," in *The 11th Text REtrieval Conference (TREC-2002)*, E. M. Voorhees and D. K. Harman, Eds., National Institute of Standards and Technology, NIST, Gaithersburg, Md, USA, 2002. - [14] C. E. Shannon, "A mathematical theory of communication," Bell System Technical Journal, vol. 27, pp. 379–423, 623–656, 1948 - [15] F. Jelinek, Statistical Methods for Speech Recognition, MIT Press, Cambridge, Mass, USA, 1997. - [16] D. Cutting, J. Kupiec, J. Pedersen, and P. Sibun, "A practical part-of-speech tagger," in *Proc. the 3rd Conference on Applied Natural Language Processing*, pp. 133–140, Trento, Italy, 1992. - [17] P. F. Brown, J. Cocke, S. A. Della Pietra, et al., "A statistical approach to machine translation," *Computational Linguistics*, vol. 16, no. 2, pp. 79–85, 1990. - [18] J. M. Ponte and W. B. Croft, "A language modeling approach to information retrieval," in Proc. the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 275–281, Melbourne, Australia, 1998 - [19] D. Hiemstra, "A linguistically motivated probabilistic model of information retrieval," in *Proc. the 2nd European Conference on Research and Advanced Technology for Digital Libraries*, C. Nicolaou and C. Stephanidis, Eds., pp. 569–584, Heraklion, Crete, Greece, September 1998. - [20] D. R. H. Miller, T. Leek, and R. M. Schwartz, "A hidden Markov model information retrieval system," in *Proc. the* 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 214–221, Berkeley, Calif, USA, August 1999. - [21] J. Lafferty and C. Zhai, "Document language models, query models, and risk minimization for information retrieval," in *Proc. the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 111–119, New Orleans, La, USA, September 2001. - [22] K. Ng, "A maximum likelihood ratio information retrieval model," in *Proc. the 8th Text Retrieval Conference, TREC-8*, NIST Special Publications, National Institute of Standards and Technology, NIST, Gaithersburg, Md, USA, 2000. - [23] A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," *Journal of the Royal statistical Society, Series B*, vol. 39, no. 1, pp. 1–38, 1977. - [24] E. M. Voorhees and D. K. Harman, Eds., The 11th Text REtrieval Conference (TREC-2002), National Institute of Standards and Technology, NIST, Gaithersburg, Md, USA, 2002. - [25] E. M. Voorhees and D. K. Harman, Eds., The 10th Text REtrieval Conference (TREC-2001), vol. 10, National Institute of Standards and Technology, NIST, Gaithersburg, Md, USA, 2002. - [26] M. F. Porter, "An algorithm for suffix stripping," *Program*, vol. 14, no. 3, pp. 130–137, 1980. Thijs Westerveld received the M.S. degree in computer science from the University of Twente. As a Research Assistant at the same university, he has participated in a number of EU projects in the area of multimedia information retrieval. Working on the national Waterland project at the CWI, the National Research Institute for Mathematics and Computer Science in the Netherlands, he investigates, for his Ph.D., the use of probabilistic models for retrieval from generic multimedia collections. Arjen P. de Vries received his Ph.D. in computer science from the University of Twente in 1999, on the integration of content management in database systems. He is especially interested in the design of database systems that support search in multimedia digital libraries. Arjen works as a Postdoctoral Researcher at the CWI, the National Research Institute for Mathematics and Computer Science in the Netherlands. Alex van Ballegooij received the M.S. degree in computer science from the Vrije Universiteit of Amsterdam in 1999. He works towards his Ph.D. on the national ICES-KIS MIA project at the CWI, the National Research Institute for Mathematics and Computer Science in the Netherlands. His current research activities entail the investigation of aspects that make a database system suitable for computationally inten- sive tasks, specifically search in multimedia digital libraries. Franciska de Jong is Full Professor of language technology at the Computer Science Department of the University of Twente, Enschede since 1992. She is also affiliated to the TNO TPD in Delft. She has a background in theoretical and computational linguistics and received the Ph.D. degree
at the University of Utrecht in 1991. She worked as a Researcher at Philips Research on the Rosetta machine translation project (1985–1992). Currently, her main research interest is in the field of multimedia indexing and retrieval. She is frequently involved in international program committees, expert groups, and review panels and has initiated a number of EU projects. Djoerd Hiemstra is an Assistant Professor in the Database Group in the Computer Science Department of the University of Twente since 2001. At this same university, he studied computer science and graduated in the field of language technology (1996). In 2000, he worked for three months at Microsoft Research in Cambridge. He wrote a Ph.D. thesis on probabilistic retrieval using language models. Multimedia databases, cross-language information retrieval, and statistical language modeling are among the research themes he is currently working on. Together with Arjen de Vries, he initiated the project CIRQUID, funded by NWO. # **Special Issue on** # Advanced Signal Processing and Computational Intelligence Techniques for Power Line Communications ## **Call for Papers** In recent years, increased demand for fast Internet access and new multimedia services, the development of new and feasible signal processing techniques associated with faster and low-cost digital signal processors, as well as the deregulation of the telecommunications market have placed major emphasis on the value of investigating hostile media, such as powerline (PL) channels for high-rate data transmissions. Nowadays, some companies are offering powerline communications (PLC) modems with mean and peak bit-rates around 100 Mbps and 200 Mbps, respectively. However, advanced broadband powerline communications (BPLC) modems will surpass this performance. For accomplishing it, some special schemes or solutions for coping with the following issues should be addressed: (i) considerable differences between powerline network topologies; (ii) hostile properties of PL channels, such as attenuation proportional to high frequencies and long distances, high-power impulse noise occurrences, time-varying behavior, and strong inter-symbol interference (ISI) effects; (iv) electromagnetic compatibility with other well-established communication systems working in the same spectrum, (v) climatic conditions in different parts of the world; (vii) reliability and QoS guarantee for video and voice transmissions; and (vi) different demands and needs from developed, developing, and poor countries. These issues can lead to exciting research frontiers with very promising results if signal processing, digital communication, and computational intelligence techniques are effectively and efficiently combined. The goal of this special issue is to introduce signal processing, digital communication, and computational intelligence tools either individually or in combined form for advancing reliable and powerful future generations of powerline communication solutions that can be suited with for applications in developed, developing, and poor countries. Topics of interest include (but are not limited to) - Multicarrier, spread spectrum, and single carrier techniques - Channel modeling - Channel coding and equalization techniques - Multiuser detection and multiple access techniques - Synchronization techniques - Impulse noise cancellation techniques - FPGA, ASIC, and DSP implementation issues of PLC modems - Error resilience, error concealment, and Joint sourcechannel design methods for video transmission through PL channels Authors should follow the EURASIP JASP manuscript format described at the journal site http://asp.hindawi.com/. Prospective authors should submit an electronic copy of their complete manuscripts through the EURASIP JASP manuscript tracking system at http://www.hindawi.com/mts/, according to the following timetable: | Manuscript Due | October 1, 2006 | | |-------------------------|-------------------|--| | Acceptance Notification | January 1, 2007 | | | Final Manuscript Due | April 1, 2007 | | | Publication Date | 3rd Quarter, 2007 | | #### **GUEST EDITORS:** **Moisés Vidal Ribeiro**, Federal University of Juiz de Fora, Brazil; mribeiro@ieee.org **Lutz Lampe**, University of British Columbia, Canada; lampe@ece.ubc.ca **Sanjit K. Mitra**, University of California, Santa Barbara, USA; mitra@ece.ucsb.edu **Klaus Dostert**, University of Karlsruhe, Germany; klaus.dostert@etec.uni-karlsruhe.de **Halid Hrasnica**, Dresden University of Technology, Germany hrasnica@ifn.et.tu-dresden.de # **Special Issue on** # Numerical Linear Algebra in Signal Processing Applications ## **Call for Papers** The cross-fertilization between numerical linear algebra and digital signal processing has been very fruitful in the last decades. The interaction between them has been growing, leading to many new algorithms. Numerical linear algebra tools, such as eigenvalue and singular value decomposition and their higher-extension, least squares, total least squares, recursive least squares, regularization, orthogonality, and projections, are the kernels of powerful and numerically robust algorithms. The goal of this special issue is to present new efficient and reliable numerical linear algebra tools for signal processing applications. Areas and topics of interest for this special issue include (but are not limited to): - Singular value and eigenvalue decompositions, including applications. - Fourier, Toeplitz, Cauchy, Vandermonde and semiseparable matrices, including special algorithms and architectures. - Recursive least squares in digital signal processing. - Updating and downdating techniques in linear algebra and signal processing. - Stability and sensitivity analysis of special recursive least-squares problems. - Numerical linear algebra in: - Biomedical signal processing applications. - Adaptive filters. - Remote sensing. - Acoustic echo cancellation. - Blind signal separation and multiuser detection. - Multidimensional harmonic retrieval and direction-of-arrival estimation. - Applications in wireless communications. - Applications in pattern analysis and statistical modeling. - Sensor array processing. Authors should follow the EURASIP JASP manuscript format described at http://www.hindawi.com/journals/asp/. Prospective authors should submit an electronic copy of their complete manuscript through the EURASIP JASP manuscript tracking system at http://www.hindawi.com/mts/, according to the following timetable: | Manuscript Due | October 1, 2006 | | |-------------------------|-------------------|--| | Acceptance Notification | February 1, 2007 | | | Final Manuscript Due | May 1, 2007 | | | Publication Date | 3rd Quarter, 2007 | | #### **GUEST EDITORS:** **Shivkumar Chandrasekaran**, Department of Electrical and Computer Engineering, University of California, Santa Barbara, USA; shiv@ece.ucsb.edu **Gene H. Golub**, Department of Computer Science, Stanford University, USA; golub@sccm.stanford.edu **Nicola Mastronardi**, Istituto per le Applicazioni del Calcolo "Mauro Picone," Consiglio Nazionale delle Ricerche, Bari, Italy; n.mastronardi@ba.iac.cnr.it **Marc Moonen**, Department of Electrical Engineering, Katholieke Universiteit Leuven, Belgium; marc.moonen@esat.kuleuven.be **Paul Van Dooren**, Department of Mathematical Engineering, Catholic University of Louvain, Belgium; vdooren@csam.ucl.ac.be **Sabine Van Huffel**, Department of Electrical Engineering, Katholieke Universiteit Leuven, Belgium; sabine.vanhuffel@esat.kuleuven.be # **Special Issue on** # **Human-Activity Analysis in Multimedia Data** # **Call for Papers** Many important applications of multimedia revolve around the detection of humans and the interpretation of human behavior, for example, surveillance and intrusion detection, automatic analysis of sports videos, broadcasts, movies, ambient assisted living applications, video conferencing applications, and so forth. Success in this task requires the integration of various data modalities including video, audio, and associated text, and a host of methods from the field of machine learning. Additionally, the computational efficiency of the resulting algorithms is critical since the amount of data to be processed in videos is typically large and real-time systems are required for practical implementations. Recently, there have been several special issues on the human detection and human-activity analysis in video. The emphasis has been on the use of video data only. This special issue is concerned with contributions that rely on the use of multimedia information, that is, audio, video, and, if available, the associated text information. Papers on the following and related topics are solicited: - Video characterization, classification, and semantic annotation using both audio and video, and text (if available). - Video indexing and retrieval using multimedia information. - Segmentation of broadcast and sport videos based on audio and video. - Detection of speaker turns and speaker clustering in broadcast video. - Separation of speech and music/jingles in broadcast videos by taking advantage of multimedia information. - Video conferencing applications taking advantage of both audio and video. - Human mood detection, and classification of interactivity in duplexed multimedia signals as in conversations. - Human computer interaction, ubiquitous computing using multimedia. - Intelligent audio-video surveillance and other security-related applications. Authors should follow the EURASIP JASP manuscript format described at the journal site bellow http://www.hindawi.com/GetJournal.aspx?journal=ASP. Prospective authors should submit an electronic copy of their complete manuscript through the EURASIP JASP manuscript tracking system at the following site http://www.hindawi.com/mts/, according to the following timetable: | Manuscript Due | February 1, 2007 | | |-------------------------|-------------------|--| | Acceptance
Notification | June 1, 2007 | | | Final Manuscript Due | October 1, 2007 | | | Publication Date | 1st Quarter, 2008 | | #### **GUEST EDITORS:** **A. Enis Cetin**, Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; cetin@ee.bilkent.edu.tr **Eric Pauwels**, Signals and Images Research Group, Centre for Mathematics and Computer Science (CWI), 1098 SJ Amsterdam, The Netherlands; eric.pauwels@cwi.nl **Ovidio Salvetti**, Institute of Information Science and Technologies (ISTI), Italian National Research Council (CNR), 56124 Pisa, Italy; ovidio.salvetti@isti.cnr.it # **Special Issue on** # Advanced Signal Processing and Pattern Recognition Methods for Biometrics ## **Call for Papers** Biometric identification has established itself as a very important research area primarily due to the pronounced need for more reliable and secure authentication architectures in several civilian and commercial applications. The recent integration of biometrics in large-scale authentication systems such as border control operations has further underscored the importance of conducting systematic research in biometrics. Despite the tremendous progress made over the past few years, biometric systems still have to reckon with a number of problems, which illustrate the importance of developing new biometric processing algorithms as well as the consideration of novel data acquisition techniques. Undoubtedly, the simultaneous use of several biometrics would improve the accuracy of an identification system. For example the use of palmprints can boost the performance of hand geometry systems. Therefore, the development of biometric fusion schemes is an important area of study. Topics related to the correlation between biometric traits, diversity measures for comparing multiple algorithms, incorporation of multiple quality measures, and so forth need to be studied in more detail in the context of multibiometrics systems. Issues related to the individuality of traits and the scalability of biometric systems also require further research. The possibility of using biometric information to generate cryptographic keys is also an emerging area of study. Thus, there is a definite need for advanced signal processing, computer vision, and pattern recognition techniques to bring the current biometric systems to maturity and allow for their large-scale deployment. This special issue aims to focus on emerging biometric technologies and comprehensively cover their system, processing, and application aspects. Submitted articles must not have been previously published and must not be currently submitted for publication elsewhere. Topics of interest include, but are not limited to, the following: - Fusion of biometrics - Analysis of facial/iris/palm/fingerprint/hand images - Unobtrusive capturing and extraction of biometric information from images/video - Biometric identification systems based on face/iris/palm/fingerprint/voice/gait/signature - Emerging biometrics: ear, teeth, ground reaction force, ECG, retina, skin, DNA - Biometric systems based on 3D information - User-specific parameterization - Biometric individuality - Biometric cryptosystems - Quality measure of biometrics data - Sensor interoperability - Performance evaluation and statistical analysis Authors should follow the EURASIP JASP manuscript format described at http://www.hindawi.com/journals/asp/. Prospective authors should submit an electronic copy of their complete manuscript through the EURASIP JASP manuscript tracking system at http://www.hindawi.com/mts/, according to the following timetable: | Manuscript Due | May 1, 2007 | | |-------------------------|-------------------|--| | Acceptance Notification | September 1, 2007 | | | Final Manuscript Due | December 1, 2007 | | | Publication Date | 1st Quarter, 2008 | | #### **GUEST EDITORS:** **Nikolaos V. Boulgouris**, Department of Electronic Engineering, Division of Engineering, King's College London, London WC2R 2LS, UK; nikolaos.boulgouris@kcl.ac.uk **Juwei Lu**, EPSON Edge, EPSON Canada Ltd., Toronto, Ontario M1W 3Z5, Canada; juwei@ieee.org **Konstantinos N. Plataniotis**, The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada, M5S 3G4; kostas@dsp.utoronto.ca **Arun Ross**, Lane Department of Computer Science & Electrical Engineering, West Virginia University, Morgantown WV, 26506, USA; arun.ross@mail.wvu.edu ## **EURASIP JOURNAL ON BIOINFORMATICS AND SYSTEMS BIOLOGY** # **Special Issue on** # Information Theoretic Methods for Bioinformatics # **Call for Papers** Information theoretic methods for modeling are at the center of the current efforts to interpret bioinformatics data. The high pace at which new technologies are developed for collecting genomic and proteomic data requires a sustained effort to provide powerful methods for modeling the data acquired. Recent advances in universal modeling and minimum description length techniques have been shown to be well suited for modeling and analyzing such data. This special issue calls for contributions to modeling of data arising in bioinformatics and systems biology by information theoretic means. Submissions should address theoretical developments, computational aspects, or specific applications. Suitable topics for this special issue include but are not limited to: - Normalized maximum-likelihood (NML) universal models - Minimum description length (MDL) techniques - Microarray data modeling - Denoising of genomic data - Pattern recognition - Data compression-based modeling Authors should follow the EURASIP JBSB manuscript format described at http://www.hindawi.com/journals/bsb/. Prospective authors should submit an electronic copy of their complete manuscript through the EURASIP JBSB's manuscript tracking system at http://www.hindawi.com/mts/, according to the following timetable. | Manuscript Due | February 1, 2007 | | |-------------------------|-------------------|--| | Acceptance Notification | May 1, 2007 | | | Final Manuscript Due | July 1, 2007 | | | Publication Date | 3rd Quarter, 2007 | | #### **GUEST EDITORS:** **Jorma Rissanen**, Computer Learning Research Center, University of London, Royal Holloway, TW20 0EX, UK; jorma.rissanen@mdl-research.org **Peter Grünwald**, Centrum voor Wiskunde en Informatica (CWI), National Research Institute for Mathematics and Computer Science, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands; pdg@cwi.nl **Jukka Heikkonen**, Laboratory of Computational Engineering, Helsinki University of Technology, P.O. Box 9203, 02015 HUT, Finland; jukka.heikkonen@tkk.fi **Petri Myllymäki**, Department of Computer Science, University of Helsinki, P.O. Box 68 (Gustaf Hällströmin katu 2b), 00014, Finland; petri.myllymaki@cs.helsinki.fi **Teemu Roos**, Complex Systems Computation Group, Helsinki Institute for Information Technology, University of Helsinki, P.O.Box 68, 00014, Finland; teemu.roos@hiit.fi **Juho Rousu**, Department of Computer Science, University of Helsinki, P.O. Box 68 (Gustaf Hällströmin katu 2b), 00014, Finland; juho.rousu@cs.helsinki.fi #### **General Co-Chairs** Xinhua Zhuang, U. Missouri-Columbia, USA Wen Gao, Peking University, China #### **Technical Program Chair** Yun Q. Shi, NJIT, USA #### **Technical Program Vice-Chairs** Mark Liao (Circ. & Sys. Society) Acad. Sinica Yu-Hen Hu (Comm. Society) U. Wisconsin, USA Philip Sheu (Comp. Society) UC Irvine, USA Joern Ostermann (Sig. Pr. Soc.) LUH, Germany #### Conference Manager Hong Man, Stevens Inst. Tech., USA #### **Special Session Chairs** John Aa. Sorenson, ECC, Denmark Shipeng Li, Microsoft Research Asia, China #### **Tutorial Chairs** Ming-Ting Sun, University of Washington, USA Oscar Au, HKUST, China #### Finance Chairs Belle Tseng, NEC Lab America, USA Shiqiang Yang, Tsinghua University, China #### **Publicity Chairs** Bo Li, Beihang University, China Ed Wong, Brooklyn Poly. Univ., USA #### **Registration Chair** Yun He, Tsinghua University, China Hong Man, Stevens Inst. Tech., USA #### **Electronic Media Chairs** Zicheng Liu, Microsoft Research, USA Chiren Shyu, U. Missouri-Columbia, USA #### **Publications Chairs** Wenjun Zeng, U. Missouri-Columbia, USA Yuanchun Shi, Tsinghua University, China #### Demo-Exhibit Chairs Jian Lu, Vobile Inc., USA Feng Wu, Microsoft Research Asia, China #### Local Arrangement Chairs Hanqing Lu, IA of CAS, China Xilin Chen, ICT of CAS, China #### North America Liaison Heather Yu, *Panasonic*, *USA* Yong Rui, *Microsoft*, *China* #### Europe Liaison Murat Kunt, *EPFL*, *Switzerland* Jean-Luc Dugelay, *EUROCOM*, *France* # IEEE ICME 2007 Call for Papers # 2007 International Conference on Multimedia & Expo (ICME) July 2-5, 2007 Beijing International Convention Center, Beijing, China Sponsored by: Circuits and Systems Society, Communications Society, Computer Society, and Signal Processing Society. **IEEE International Conference on Multimedia & Expo** is a major annual international conference with the objective of bringing together researchers, developers, and practitioners from academia and industry working in all areas of multimedia. ICME serves as a forum for the dissemination of state-of-the-art research, development, and implementations of multimedia systems, technologies and applications. ICME is co-sponsored by four IEEE societies including the Circuits and Systems Society, the Communications Society, the Computer Society, and the Signal Processing Society. The conference will feature world-class plenary speakers, exhibits, special sessions, tutorials, and paper presentations. Prospective authors are invited to submit a four-page paper in double-column format including authors' names, affiliations, and a short abstract. Only electronic submissions will be accepted. Topics include but are not limited to: - Audio, image, video processing - Virtual reality and 3-D imaging - Signal processing for media integration - Multimedia communications
and networking - Multimedia security and content protection - Multimedia human-machine interface and interaction - Multimedia databases - · Multimedia computing systems and appliances - Hardware and software for multimedia systems - Multimedia standards and related issues - Multimedia applications - Multimedia and social media on the Internet A number of awards will be presented to the Best Papers and Best Student Papers at the conference. Participation for special sessions and tutorial proposals are encouraged. #### **SCHEDULE** Special Session Proposals Due: December 1, 2006 Tutorial Proposals Due: December 1, 2006 Regular Paper Submissions Due: January 5, 2007 Notification of Acceptance: March 19, 2007 ■ Camera-Ready Papers Due: April 16, 2007 Check the conference website http://www.icme2007.org for updates. #### **International Advisory Board** Ramesh Jain, UC Irvine, USA Sadaoki Furui, Tokyo Inst. Tech., Japan (Chair) Ming Liou, HKUST, China (Co-Chair) Peter Pirsch, LUH, Germany (Co-Chair) Jan Bie mond, Delft Univ. Tech., Netherlands Shih-Fu Chang, Columbia Univ., USA Rama Chellappa, University of Maryland, USA Chang-Wen Chen, Florida Inst. Tech., USA Liang-Gee Chen, National Taiwan University Robert M. Haralick, City Univ. of New York, USA T. S. Huang, UIUC, USA Anil Jain, Michigan State University, USA Chung-Sheng Li, IBM Watson Research, USA Xing-Gang Lin, Tsinghua Univ., China K. J. Ray Liu, University of Maryland, USA Songde Ma, Ministry of Science and Technology, China Timothy K. Shih, Tamkang University T. Sikora, Technical Univ. Berlin, Germany Ming-Ting Sun, Univ. Washington, USA Qi Tian, Institute for Inforcomm Research, Singapore B. W. Wah, UIUC, USA Hong-Jiang Zhang, Microsoft, China Ya-Qin Zhang, Microsoft, China # **3DTV CONFERENCE 2007** ## THE TRUE VISION - CAPTURE, TRANSMISSION AND DISPLAY OF 3D VIDEO # May 7-9, 2007, KICC Conference Center, Kos Island, Greece #### **General Chairs** Georgios Triantafyllidis Centre for Research and Technology Hellas, GR Levent Onural, Bilkent University, TR ### **Technical Chairs** Aljoscha Smolic, Fraunhofer Gesellschaft, DE Jörn Ostermann Leibniz University of Hannover, DE John Watson University of Aberdeen, UK Reha Civanlar Koc University, TR Thomas Sikora, Technical University of Berlin, DE #### **Finance Chair** Nikos Grammalidis Centre for Research and Technology Hellas, GR #### **Publication Chair** Xenophon Zabulis Centre for Research and Technology Hellas, GR #### **Publicity Chair** Atanas Gotchev Tampere University of Technology, FI #### **Industry Liaison** Ismo Rakkolainen FogScreen, Fl #### **American Liaison** Yiannis Aloimonos University of Maryland, US # **Special Sessions and Tutorials Chair** Aydin Alatan METU, TR #### Webmaster Georgios Litos Centre for Research and Technology Hellas, GR ### First Call For Papers Creating exact 3D moving images as ghost-like replicas of 3D objects has been an ultimate goal in video science. Capturing 3D scenery, processing the captured data for transmission, and displaying the result for 3D viewing are the main functional components. These components encompass a wide range of disciplines: imaging and computer graphics, signal processing, telecommunications, electronics, optics and physics are needed. The objective of the **3DTV-Conference** is to bring together researchers and developers from academia and industry with diverse experience and activity in distinct, yet complementary, areas so that full scale 3D video capabilities are seemlessly integrated. ### **Topics of Interest** #### **3D Capture and Processing** - 3D time-varying scene capture technology - Multi-camera recording - 3D photography algorithms - Synchronization and calibration of camera arrays - 3D view registration - Multi-view geometry and calibration - Holographic camera techniques - 3D motion analysis and tracking - Surface modeling for 3-D scenes - Multi-view image and 3D data processing #### **3D Transmission** - Systems, architecture and transmission aspects of 3D - 3D streaming - Error-related issues and handling of 3d video - Hologram compression - Multi-view video coding - 3D mesh compression - Multiple description coding for 3D - Signal processing for diffraction and holographic 3DTV #### 3D Visualization - 3D mesh representation - Texture and point representation - Object-based representation and segmentation - Volume representation - 3D motion animation - Dense stereo and 3D reconstruction - Stereoscopic display techniques - Holographic display technology - Reduced parallax systems and integral imaging - Underlying optics and VLSI technology - Projection and display technology for 3D videos - Human factors #### **3D Applications** - 3D imaging in virtual heritage and virtual archaeology - 3D Teleimmersion and remote collaboration - Augmented reality and virtual environments - 3D television, cinema, games and entertainment - Medical and biomedical applications - 3D Content-based retrieval and recognition - 3D Watermarking # Paper Submission Prospective contributors are invited to submit full papers electronically using the on-line submission interface, following the instructions available at http://www.3dtv-con.org. Papers should be in Adobe PDF format, written in English, with no more than four pages including figures, using a font size of 11. Conference proceedings will be published online by the IEEE. ## **Important Dates** 1 December 2006 15 December 2006 9 February 2007 2 March 2007 Special sessions and tutorials proposals Regular Paper submission Notification of acceptance Submission of camera-ready papers Information Society Technologies Institute of Electrical and Electronics Engineers European Association for Signal and Image Processing