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Switched Networks and Complementarity
M. K. Çamlıbel, W. P. M. H. Heemels, A. J. van der Schaft, Fellow, IEEE, and J. M. Schumacher

Abstract—A modeling framework is proposed for circuits that
are subject both to externally induced switches (time events) and
to state events. The framework applies to switched networks with
linear and piecewise-linear elements, including diodes. We show
that the linear complementarity formulation, which already has
proved effective for piecewise-linear networks, can be extended in
a natural way to also cover switching circuits. To achieve this, we
use a generalization of the linear complementarity problem known
as the cone-complementarity problem. We show that the proposed
framework is sound in the sense that existence and uniqueness of
solutions is guaranteed under a passivity assumption. We prove
that only first-order impulses occur and characterize all situations
that give rise to a state jump; moreover, we provide rules that de-
termine the jump. Finally, we show that within our framework,
energy cannot increase as a result of a jump, and we derive a sta-
bility result from this.

Index Terms—Complementarity systems, hybrid systems, ideal
diodes, ideal switches, piecewise-linear systems.

I. INTRODUCTION

THE standard literature on dynamical systems is mostly
concerned with systems that evolve in time according to

a set of rules depending smoothly on the current state of the
system. However, in electrical engineering as well as in other
fields, one is often confronted with systems that are most easily
modeled as going through a succession of periods of smooth
evolution separated by instantaneous events that mark transi-
tions of one set of laws of evolution to another. Events may
be externally induced (as in the case of switches) or internally
induced (as in the case of diodes). To come up with a precise
mathematical formulation of systems with events is a nontrivial
matter, in particular because one has, in general, to allow for the
possibility that a state jump is associated with events and so it
would be too restrictive to require solutions to be continuous,
let alone differentiable.
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It is the main purpose of this paper to propose a modeling
framework for systems with events, designed in particular, for
switched piecewise-linear networks. Our approach is based
on the complementarity modeling that was used in [15] for
dynamic networks with diodes. Here, we extend the framework
of [15] to include also external switches. It turns out that the
extension can be carried out in a very natural way. Instead of
working with the cone of elementwise nonnegative vectors
as in [15], we use here cones of a more general type. This
corresponds to the generalization of the linear complemen-
tarity problem (LCP) of mathematical programming to a
“cone-complementarity problem” (cf. for instance [10, p. 31]).
This generalization brings a more geometric flavor to the
setting of [15] and may be useful as well in the modeling of
mode-switching elements other than diodes. Essentially, we
describe switched piecewise-linear networks as cone-comple-
mentarity systems that are switched in time, from between
several different cones from a given family. In addition to
the notion of cone complementarity, the concept of passivity
is central to the development of this paper; in fact, our main
results all assume passivity.
As already noted, one of themain problems in setting up a rig-

orous framework for switched systems is to take into account the
possibility of state jumps. We need a sufficiently rich solution
space that allows discontinuities in state trajectories, and, con-
sequently even impulses in input trajectories. In this paper, we
choose a distributional framework. Although this choice effec-
tively limits us to considering only (piecewise) linear networks,
an advantage of using distributions is that we do not need to im-
pose a priori a restriction on the nature of the jumps; rather we
can prove that only first-order impulses arise, even though our
setting in principle allows distributional solutions of arbitrarily
high order.

II. NOTATION AND PRELIMINARIES

The following notational conventions will be in force.
For any set , denotes the power set, i.e., the set of all

subsets of . The tuples of elements of will be denoted
by as usual. The set of real numbers is denoted by .
stands for the set of nonnegative real numbers, i.e.,

. denotes the set of complex numbers. For a complex
number , stands for the real part. The notations and
denote the transpose and conjugate transpose of a vector .

When two vectors and are orthogonal, i.e., , we
write . Inequalities for real vectors must be understood
componentwise.
The notation denotes the set of matrices

with real elements. The transpose of is denoted by .
Let be a matrix. We write for the th element
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of . For , and ,
denotes the submatrix . If
( ), we also write ( ). If and

, the submatrix is called a principal matrix of
and the determinant of is called a principal minor of .
In order to avoid bulky notation, we use and instead
of and , respectively.
Let be the square matrix. As usual, we say that is sym-

metric if and skew-symmetric if . The
matrix (not necessarily symmetric) is said to be nonnegative
definite if for all vectors . We say that is pos-
itive definite if is nonnegative definite and im-
plies . Sometimes, we write ( ) by meaning
that is nonnegative (positive) definite. In the obvious way,
we define nonpositive definite and negative definite matrices.
For two matrices and with the same number of columns,

will denote the matrix obtained by stacking over
. The identity matrix will be denoted by , the zero matrix by

0.
A triple of matrices

is said to be minimal if and
.

A rational matrix is said to be proper if
is well-defined and finite. It is said to be strictly proper if it is
proper and the above-mentioned limit is zero.
A subset of is said to be polyhedral if it is of the form

for some matrix and a vector .
Let be a function. We write for the restriction of to

the set . The notation ( ) will denote the limit
( ) whenever it is well defined.

The set of all Lebesgue measurable, square integrable func-
tions will be denoted . In case, , we
write only . The notation denotes locally functions,
i.e., the set .
Dirac distribution supported at will be denoted by and its
th derivative by . When it is supported at zero, we usually
write and .
We say that a proposition holds for all sufficiently small

(large) if there exists such that holds for all
( ).

A. Cones and Dual Cones

Definition II.1: A set is said to be a cone if
implies that for all .
Definition II.2: For any nonempty set , we define the

dual cone as the set . It will
be denoted by .
Note that the dual cone of a set can be defined even if the set

is not a cone. It is immediate that a dual cone is always closed
and convex.

B. Complementarity Problems

The LCP plays quite an important role in the sequel. In what
follows, wewill quote somewell-known facts from complemen-
tarity theory.

Definition II.3: LCP : Given a vector and a
matrix find a vector such that

(1a)
(1b)

We say that the LCP is solvable if such a exists. In this
case, we also say that solves (is a solution) of LCP . The
set of all solutions of LCP is denoted by . A
weaker notion than solvability is feasibility. The LCP is
said to be feasible if there exists such that (1a) is satisfied.
Theorem II.4: The following statements hold.
1) [10, Th. 3.3.7]: LCP has a unique solution for all

, if and only if all principal minors of are
positive.

2) [10, Cor. 3.8.10, Th. 3.8.13]: Suppose that is nonneg-
ative definite. Then, the following statements are equiva-
lent:
a) ;
b) LCP is feasible;
c) LCP is solvable.

Remark II.5: Matrices all of whose principal minors are pos-
itive are known as matrices in complementarity theory (see,
e.g., [10, Def. 3.3.1]). In particular, positive definite matrices
are in this class.
One interesting generalization of the can be obtained by

modifying the conditions (1a) as follows.
Definition II.6: LCP : Given a cone , a vector
, and a matrix find a vector such that

(2a)
(2b)

We define solvability and feasibility as in Definition II.3. If
then LCP becomes the ordinary defined

in Definition II.3. The following theorem can be proven by fol-
lowing the footsteps of the proof of Theorem II.4 [10].
Theorem II.7: Let . Suppose that

is nonnegative definite. Then, the
following statements are equivalent:
1) ;
2) LCP is feasible;
3) LCP is solvable.

Moreover, is polyhedral and equal to

where is an arbitrary solution of LCP .

III. LINEAR NETWORK MODELS

Consider a linear -port electrical network consisting of only
resistors (R), inductors (L), capacitors (C), gyrators (G), and
transformers (T). Under suitable conditions (the network does
not contain all-capacitor/voltage sources loops or nodes with the
only elements incident being inductors/current sources, see [1,

Authorized licensed use limited to: UNIVERSITEIT TWENTE. Downloaded on December 27, 2009 at 10:21 from IEEE Xplore.  Restrictions apply. 



1038 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 50, NO. 8, AUGUST 2003

ch. 4] for more details), this RLCGT circuit can be described by
the state–space model

(3a)
(3b)

where , , , and
denote real matrices of appropriate dimensions, and denotes
the state variable of the network (typically consisting of linear
combinations of the fluxes through the inductors and charges
at the capacitors). The pair ( ) denotes the voltage–current
variables at the ports of the circuit.
Since (3) is a model for an RLCGT-multiport network, the

matrix quadruple ( ) is not arbitrary, but has a certain
structure. Indeed, the system matrices satisfy a property called
passivity, which is well known in circuit theory.
Definition III.1 [33]: A system ( ) given by (3) is

called passive, or dissipativewith respect to the supply rate ,
if there exists a nonnegative-valued function , (a
storage function), such that for all and all time func-
tions satisfying (3) the following
inequality holds:

(4)

The above inequality is called the dissipation inequality. The
storage function represents a notion of “stored energy” in the
network.
Proposition III.2 [33]: Consider a system ( ) in

which ( ) is a minimal representation. The following
statements are equivalent.
• ( ) is passive.
• The transfer matrix is pos-
itive real, i.e., for all complex
vectors and all such that and is not
an eigenvalue of .

• The matrix inequalities

(5)

and have a solution .
Moreover, in case ( ) is passive, all solutions to the
linear matrix inequalities (5) are positive definite and a sym-
metric is a solution to (5) if and only if
defines a storage function of the system ( ).
An assumption that we will often use is the following.
Assumption III.3: The matrix has full

column rank and the triple ( ) is a minimal representa-
tion.
These assumptions imply that (specific kinds of) redundancy

have been removed from the circuit (see [15] for a discussion).
We note the following consequence of passivity.
Lemma III.4 [15, Lemma III.4] : Consider a system

( ) in which ( ) is a minimal representation
and ( ) is passive. If satisfies
(or equivalently, ), then for any
satisfying (5).

Fig. 1. Voltage–current characteristic of an ideal diode and an ideal switch.

IV. SWITCHED NETWORK MODELS

In Section III, we concentrated on linear networks of the form
(3). Adding the switches, diodes, and sources will lead to the
class of circuits that form the object of study of the paper.

A. Adding Diodes, Switches, and Sources
The equations that are added to (3) if the terminals are termi-

nated by diodes, switches and sources are given as follows.
• If the th port is connected to a diode

where and are the voltage across and current through
the th diode, respectively, and denotes the Boolean “or”
and , the Boolean “and”-operator. The ideal diode char-
acteristics are described by the relations

(6)

as shown in Fig. 1. Putting the above equations together
leads to where means that the
product is zero or stated otherwise, that either
or .

• If the th port is connected to a switch

or stated differently, as shown in Fig. 1.
• If the th port is connected to a source: is actually being
described by a suitable function of time, which reflects the
applied voltage or current related to the port.

For the sake of brevity, we exclude voltage–current sources
in the sequel. All of our results are still valid in the presence
of external sources with slight modifications (see [7] for the
detailed discussion).
Based on the previous discussion, we obtain network models

of the form

(7a)
(7b)
(7c)

where we assumed that the first ports are terminated with
diodes and the last ports by pure switches. The variable

denotes time, the state, and and the switch
variables at time .
System (7) without the switch conditions (7c) is called a

linear complementarity system (LCS). System descriptions
of this form were introduced in [28] and were further studied
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in [6], [15]–[17], [29]. Systems without complementarity
conditions (7b) have been studied in [13] under a Hamiltonian
structure and were called switched Hamiltonian systems (SHS).
This paper provides a unified framework that has LCS and SHS
as special cases and therefore encompasses a large class of
switching circuits. We will use the terminology switched-com-
plementarity systems (SCS) for systems of the form (7) together
with the notation .

B. Cone-Complementarity Systems
A certain similarity between diodes and switches can bemade

apparent by using a formulation in terms of cones. The constitu-
tive equations for a -tuple of diodes may be written in the form

(8)

where denotes the nonnegative cone in , i.e., the set
of vectors with nonnegative entries. The conditions (8) how-
ever become the specification of a set of switches in a particular
configuration if we let denote a set of the form where
each is either or . This set is a subspace and so, in par-
ticular, it is a cone. The cones corresponding to diodes and to
switchesmay be taken together in a product cone. Consequently,
linear RLCTG networks with diodes and switches can always be
written in the form

(9a)
(9b)
(9c)

where is a switching sequence taking values in a finite set
, and for each the set is a closed convex cone

in .
Early work on cone-complementarity systems in the context

of unilaterally constrained systems can be found in [24].

V. DYNAMICS IN A GIVEN MODE

Note that (7b) and (7c) imply that for all
either or must be satisfied. In other words,
each diode is either conducting or blocking, and each switch is
either open or closed. Accordingly, diodes and switches can be
replaced by a short or an open circuit.
This results in a multimodal system with modes, where

each mode is characterized by a subset of , in-
dicating that if and if
with . We split as with

and , where
denotes the status of the diodes and of the switches.1
For each such mode (also called “topology,” “configuration,”

or “discrete state”) the laws of motion are given by differential
and algebraic equations (DAEs). Specifically, in mode they
are given by

(10a)
(10b)

1In the sequel of the paper, whenwe write or , we alwaysmean a subset of
or , respectively. By and , we will

denote the sets and , respectively.

During the time evolution of the system, the mode will vary
whenever some of the diodes and/or switches change their state
(i.e., diodes go from conducting to blocking or vice versa and/or
switches from open to close or vice versa). The switch can be
considered as time events since an external device triggers the
mode change, while the mode transition of the diodes are due
to state events: the current mode remains active as long as the
inequality conditions in (7b) are satisfied. If they tend to be vi-
olated (e.g., the current through the diode tends to become neg-
ative) a mode transition occurs.

VI. SOLUTION CONCEPT

The time evolution of SCS is a sequence of smooth continu-
ations followed by mode transitions.
During the smooth continuations, system trajectories satisfy

the DAEs (10) for some mode in the classical sense. Hence,
it suffices to consider the so-called Bohl functions (see [14]).
More precisely, a function is called a Bohl function (or Bohl
type) if for some matrices , , and of
appropriate sizes. We denote the set of all Bohl function by .
At the event of a mode transition, the systemmay in principle

display jumps in the state variable . Jumping phenomena are
well-known in the theory of unilaterally constrained mechan-
ical systems [4], where at impacts the change of velocity of the
colliding bodies is often modeled as being instantaneous. These
discontinuous and impulsive motions are also observed in elec-
trical networks (see, e.g., [11], [22], [25]–[27], [31], [32]).
To obtain a mathematically precise solution concept, we will

use a distributional framework. In particular, the Dirac distribu-
tion and its derivatives will play a key role.
Definition VI.1: A Bohl distribution is a distribution of the

form , where
• is a linear combination of and its derivatives, i.e.,

for real numbers ,
and

• is a Bohl function on [0, ).
The class of Bohl distributions is denoted by . For a distri-
bution , is called the impulsive part and is
called the regular or smooth part. In case we call a
regular or smooth distribution.
Note that the Laplace transform of a Bohl distribution is a ra-

tional function. It can be easily verified that a Bohl distribution
is regular if and only if its Laplace transform is strictly proper. In
what follows, Bohl distributions having a proper Laplace trans-
form will play an important role. We call them first order Bohl
distributions. Note that a Bohl distribution is of first order if
and only if its impulsive part does not contain the derivatives of
Dirac distribution.
With this machinery we can now introduce the concept of an

initial solution given an initial state and a switch
configuration for the pure switches. This actually implies that

is contained in the cone

(11)

and should be in the dual cone . Note that

(12)
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Hence, that means that given the governing (7) are reduced to

(13a)
(13b)

Note that this system can be considered as an extension of the
standard LCS in [17] as it used general positive cones . The
problem(13) becomes an ordinary LCS when .
Note that the “modes” of the diodes are not specified by

the formulation (13), i.e., in (10) is not completely
known. Hence, a solution in a mode being governed by (10)
is valid as long as does not change. This means that mode
will only be valid for a limited amount of time in general, since
a change of mode (diode going from conducting to blocking
or vice versa) may be triggered by the inequality constraints.
Therefore, we would like to express some kind of “local satis-
faction of the constraints.”
We call a (smooth) Bohl function initially in the cone if

there exists an such that for all . We
know from the initial value theorem (see, e.g., [12]) that there is
a connection between small time values of time functions and
large values of the indeterminate in the Laplace transform. In
fact, one can show that is initially in the cone if and only if
there exists a such that its Laplace transform
for all .
The definition of being initially in the cone for Bohl distri-

butions will be based on this observation (see also [16]).
Definition VI.2: We call a Bohl distribution initially in the

cone if its Laplace transform satisfies for all
sufficiently large real .
Remark VI.3: To relate the definition to the time domain,

note that a scalar-valued2 first-order Bohl distribution (i.e.,
for some ) is initially in the cone if and

only if:
1) or
2) and there exists an such that
for all .

Now, we are in a position to define a local solution concept.
Definition VI.4: We call a Bohl distribution

an initial solution to (7) with initial state and pure
switch configuration if:
1) there is a diode configuration such that ( ) satisfies
(10) for mode and initial state in the
distributional sense, i.e., satisfies

(14a)
(14b)

as equalities of distributions;
2) the pair ( ) is initially in the cone ( ).

Note that condition 2), together with real analyticity of Bohl
functions, already implies that (14b) hold for and ,
respectively.
For examples of initial solutions in networks without pure

switches one can consider [15, Example V.4 , V.5].

2In this case, the cone can only be equal to , , or {0}.

Theorem VI.5: Consider an SCS given by (7) such that
Assumption III.3 is satisfied and ( ) represents
a passive system. Let a pure switch configuration be
given and let be the solution set of LCP , i.e.,

and . Then, the
following statements hold.
1) For each initial state , there exists exactly one initial
solution to SCS.

2) This solution is of first order. Stated differently, its impul-
sive part is of the form ( ) for some .

3) This impulsive part results in a reinitialization (jump) -if
applicable- of the state from to .

4) For all , .
5) The initial solution is smooth (i.e., ) if and only if

.
Proof:

1) If , the proof follows from [5, Th. 6.1]. In
the general case, we will employ the ideas and
techniques that are used in this reference. Define

, ,
and . Further, de-
fine and

. Now,
consider the following complementarity problem:

and
for all sufficiently large real

for all

Problems of this type are called rational comple-
mentarity problems (RCPs). The RCP has been in-
troduced in [28] and further studied in [16]. It is
already well-known that there is a one-to-one corre-
spondence between the initial solutions of LCSs and
the solutions of RCPs (see [16]). We first suppose
that the RCP has a solution ( ). De-
fine ,

, ,
and finally . Now, we
claim that the inverse Laplace transform of the triple
( ), say ( ), is an initial solution
to SCS (7) with the initial state and pure switch
configuration . Indeed, one can verify that ( )
satisfies all the requirements of Definition VI.4 for the
diode configuration . So
far, we proved existence of an initial solution provided
that the RCP has a solution. Note that is the Schur
complement of with respect to . It follows
from [5, Lemma 3.2, (v)] that and hence
are positive definite for all sufficiently large real . This
implies, together with Theorem II.4 item 1, Remark II.5
and [16, Th. 4.1 and Th. 4.9], that the RCP has a unique
solution. At this point, we already showed the existence.
Suppose now there are two different initial solutions.
Their Laplace transforms should satisfy the relations of
the RCP. However, we know that it has a unique solution.
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Note that ( ) determines uniquely since
is invertible due to [5, Lemma 3.2, (v)]. This concludes
the uniqueness proof.

2) Let ( ) be the unique initial solution with the Laplace
transform ( ). Define

, and . The (14) yield
in the Laplace do-

main. Note that the first summand of the right hand side
is strictly proper, is invertible as a rational matrix
(due to [5, Lemma 3.2, (v)]), and is proper
(due to [5, Lemma 3.2, (vi)]). Consequently,

is proper. We can conclude
from (14a) that both and are also proper. There-
fore, ( ) is of first order. Let the impulsive part of
be of the form for some . It is clear from
(14a) that has no impulsive part and is the impul-
sive part of . Note that and due to
Definition VI.4 item 2, and is orthogonal to due to
(14b). Therefore, solves LCP . Theorem II.7
implies that .

3) Immediately follows from (14a).
4) Note that (14b) implies that for all values
of . Take any . Then, for all sufficiently
large we have

since ( ), ,
and they are pairwise orthogonal. Substituting

, we get

for all sufficiently large . Since is nonnegative
definite due to the hypotheses (see [5, Lemma 3.2 (i)]),
we have even

. Multiplying this relation by and
letting tend to infinity yields

(15)

Now, let the series expansion of around infinity be
. Hence, we get

(16)

Note that as proven in 2. Since is
nonnegative definite due to the hypotheses , we have even

. This means that (16) implies

(17)

Together with (15), this results in .
Since is arbitrary, we get .

5) The “only if” part follows from 4. If
then we get since
as shown in 2. From the proof of the previous
item, we already know and

. This implies from [8, Lemma
20] that . Hence, we get

and hence . Finally, [8,
Lemma 20] gives .

The fact that solutions of linear passive networks with ideal
diodes and pure switches do not contain derivatives of Dirac
impulses is widely believed true on “intuitive” grounds, but the
authors are not aware of any previous rigorous proof. The frame-
work proposed here makes it possible to prove the intuition.
Only for the diode case it was proven in [15].
A direct implication of the statements 3, 4, and 5 in

Theorem VI.5 is that if smooth continuation is not possible for
, it is possible after one reinitialization. Indeed, by 3 the state

after the reinitialization is equal to where as in 2.
Since due to 4, it follows from statement
5 that from there exists a smooth initial solution.
This immediately implies local existence (on a time interval [0,
]) of a solution.
In [16] and [17] a (global) solution concept for LCS has been

introduced that is based on concatenation of initial solutions. In
principle, this allows impulses at any mode transition time (nec-
essary for, e.g., unilaterally constrained mechanical systems).
However, it has been shown in [15] that such a general notion
of solution will not be needed in the context of linear passive
electrical networks with diodes.
At this point, we need to introduce some nomenclature. The

function space consists of the distributions of the form
, where with and

.
The following theorem shows the existence and uniqueness

of solutions to SCS for a fixed switch configuration.
Theorem VI.6: Consider an SCS given by (7) such that As-

sumption III.3 is satisfied and ( ) represents a pas-
sive system. Let a pure switch configuration be given. For
all initial states and all , there exists a unique triple

such that the following hold.
1) There exists an initial solution ( ) such that

2) with given by
.

3) For almost all

Proof: Since the set of initial states that lead to a smooth
initial solution (i.e., ) is a closed set, one can
follow the same line of argumentation of the proof of [15, Th.
VII.2] step by step.
So far, we were interested in the behavior of SCSs for a fixed

switch configuration . Our next step is to allow changes in
switch configuration. To do so, we first describe the allowed
switching sequences.
Definition VI.7: A function is

said to be an admissible switching function if it is piecewise
constant and it changes value at most finitely many times on
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every finite-length interval. The set of point at which changes
value will be denoted by .
Note that is set of isolated points due to the fact that there

are finitely many points at which changes value on every in-
terval of finite length. By considering only admissible switching
sequences, we exclude the so-called Zeno behavior.3
As we showed earlier jumps may occur only at switching in-

stants. In what follows, we will adopt a global solution concept
which allows jumps at isolated points in time. First, the defini-
tion of the trajectory set that we consider is in order.
Definition VI.8: The distribution space is defined as the

set of all , where for
with a set of isolated points, and .
The isolatedness of the points of the set is required to pre-

vent the occurrence of an accumulation of Dirac impulses in the
solution trajectories. One could very well relax this requirement
by making some extra assumptions. However, we prefer to keep
the definition simpler and avoid technical details which might
blur the main picture.
Definition VI.9: Let the impulsive part of the distribu-

tion be supported on a set of isolated
points , i.e., for

. Then, we call ( ) a (global)
solution to SCS (7) for the initial state and the admissible
switching function if the following properties hold.
1) For any interval ( ) such that the re-
striction is absolutely continuous and satisfies
for almost all

2) For each the corresponding impulse
( ) is equal to the impulsive part of
the unique initial solution to (7) with initial state

(taken equal to for ).
3) For times it holds that

.
Note that the solution in the above sense satisfies the equations

and in the distributional sense.
The following theorem establishes existence and uniqueness

of solutions to SCS.
Theorem VI.10: Consider an SCS given by (7) such that As-

sumption III.3 is satisfied and ( ) represents a passive
system. The SCS (7) has a unique (global) solution

for any initial state and admissible switching func-
tion . Moreover, and impulses in ( ) only show up
at the initial time and times for which changes value (i.e.,
in Definition VI.9 should be a subset of ).

Proof: A global solution for the switching function can
be easily constructed by using Theorem VI.6 repeatedly. For
the uniqueness proof, let ( ) and ( ) be two dif-

3The term “Zeno behavior” refers to the phenomenon of an infinite number
of events (mode transitions) in a finite-length time interval.

ferent global solutions of SCS (7) for the initial state and the
switching function . Let be such that

(18)
(19)

for some with . It follows from [15, Th.
VII.2] that both and are well defined.
Moreover, (18) implies that they are equal. Uniqueness of initial
solutions for a given initial state (TheoremVI.5 item 1), together
with Definition VI.9 item 2, implies that the impulsive parts of
both solutions are the same at . Hence, (19) results in

(20)

Note that . This means that

is a trajectory of the linear system (3) with zero initial state. By
using the dissipation inequality, we get

Definition VI.9 item 1 implies that the left-hand side is nonpos-
itive. However, the right-hand side is nonnegative due to the fact
that is positive definite. Therefore, for all

. This immediately results in

(21)
(22)

due to Definition VI.9. Premultiplying (22) by
, one can show that

Since is nonnegative definite, this implies

(23)

We can conclude from Assumption III.3, (21), and (23) that
for all . Finally, (22) gives
for all . As a consequence, we

reached a contradiction with (19).

VII. REGULAR STATES

Another consequence of Theorem VI.5 is the characteriza-
tion of so-called regular states (sometimes also called consis-
tent states) as introduced in the following definition.
Definition VII.1: A state is called regular for

with respect to a pure switch configu-
ration if the corresponding initial solution for the same pure
switch configuration is smooth. The collection of regular states
for a given quadruple ( ) with respect to the pure
switch configuration is denoted by .
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We have the following equivalent characterizations of regular
states.
Theorem VII.2: Consider an SCS given by (7) such that

Assumption III.3 is satisfied and ( ) represents
a passive system. Let a pure switch configuration be
given and let be the solution set of LCP , i.e.,

. The fol-
lowing statements are equivalent.
1) is a regular state for (7) with respect to the pure switch
configuration .

2) .
3) LCP has a solution.
4) There exist two vectors and such that

.4
Proof:

: This is clear from Theorem VI.5 item 5.
: It follows from Theorem II.7.
: Note that if is a solution of LCP then

we can choose and .
: Let and be such that
. Take any . Then, we have

since impliies
since and

As a consequence, .
Hence, several tests are available for deciding the regularity

of an initial state . In [2] it is stated that a well-designed cir-
cuit does not exhibit impulsive behavior. As a consequence, the
characterization of regular states forms a verification of the syn-
thesis of the network.
In Section VIII, it will be shown that the characterization of

the regular states plays a key role in the proof of global existence
of solutions as the set of such initial states will be proven to be
invariant under the dynamics.

VIII. JUMP RULES

If a state jump occurs at time , the new state is given by
, see Theorem VI.5 item 3. We now give a

characterization of this jump multiplier for SCS.
Theorem VIII.1 (Characterization of ): Let a switch con-

figuration and an initial state be given. The following char-
acterizations can be obtained for .
1) The jump multiplier is the unique solution to

(24)

2) The cone is equal to pos
and for some real matrix .
The reinitialized state is equal to
and where is a solution of the following
ordinary LCP:

(25)
4When is the usual positive cone (i.e., equals to ), this comes down to

saying that is a positive linear combination of the columns of .

3) The reinitialized state is the unique minimum
of

minimize (26a)

subject to (26b)

and the multiplier is uniquely determined by
.

4) The jump multiplier is the unique minimizer of

minimize (27)
subject to (28)

Proof:
1) It is already known from Theorem VI.5 items 2) and 4)
that

(29)
(30)

Furthermore, (17) readily shows

It remains to prove that is uniquely determined by (24).
Suppose that is a solution of the generalized LCP

for ,2. Note that

and hence

(31)

Since , we have
. Hence,

due to [5, Lemma
3.2 (iii)]. Together with the above inequality, this gives

. Since is of full column rank and
is positive definite, we get . Consequently, the
jump multiplier is uniquely determined by (24).

2) Since ( ) is passive, is necessarily nonnega-
tive definite. It follows fromTheorem II.7 that
is a polyhedral cone, i.e., the solution set of a homoge-
neous system of inequalities of the form for
some matrix . Minkowski’s theorem [30, Th. 2.8.6]
states that every polyhedral cone has a finite set of gen-
erators. Therefore, one can find a matrix such that

. It can be checked that the
dual cone can be given in the form .
Since , there exists such that .
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Note that . Hence,
. Note that we have

due to previous item. This means that is a solution of
the LCP (25).

3) The minimization problem (26) admits a unique solution
since is a polyhedron and is positive
definite. Let be the solution of (26). Dorn’s duality the-
orem [21, Th. 8.2.4] implies that there exists a such that
the pair ( ) solves

minimize (32a)
subject to (32b)

Since for all , it follows
that for all due to Lemma III.4.
Thus

(33)

whenever . So, the vector solves the minimization
problem

minimize (34a)
subject to (34b)

Since is nonnegative definite, the
Karush–Kuhn–Tucker conditions

(35a)
(35b)
(35c)

are necessary and sufficient for the vector to be a glob-
ally optimal solution of (34). For a detailed discussion
on this equivalence, the reader is referred to [9] or [10,
Sec. 1.2]. Note that the LCP given by (35) is the same
as the one in (ii). It follows from (ii) that
and . Since and

is of full column rank (due to Assump-
tion III.3), the equation determines
the multiplier uniquely.

IX. STABILITY

In this section, we discuss the stability of SCS under a
passivity assumption. The Lyapunov stability of hybrid and
switched systems in general has already received considerable
attention [3], [18]–[20], [23], [34]. We have narrowed down
the definitions and theorems on the stability of general hybrid
systems from [19] and [34] to apply to SCS. From now on, we
denote the unique global trajectory for a given switch function
and initial state of an SCS by ( ). For the

study of stability we consider the source-free case.
Definition IX.1 (Equilibrium Point): A state is an equilib-

rium point of the SCS (7), if for all admissible switching func-

tions for almost all and all , i.e., for all
solutions starting in the state stays in .
Note that in an equilibrium point , which leads in a

simple way to the following characterization of equilibria of an
SCS.
Lemma IX.2: A state is an equilibrium point of the SCS (7),

if and only if for all there exist
and satisfying

(36a)
(36b)
(36c)

Moreover, this means that for all , i.e., is a regular
state for all switch configurations.
From this lemma it follows that is an equilibrium. Note

that if is invertible we get and

which is a homogeneous LCP over a cone.
Definition IX.3: Let be an equilibrium point of the SCS (7)

and denote a metric on .
1) is called stable, if for every there exists a
such that for almost all when-
ever and being an admissible switching
function.

2) is called asymptotically stable if is stable and there
exists such that
whenever and being an admissible
switching function. By we
mean that for every there exists a such that

whenever .
In the proof of the main theorem on stability we will need the

following lemma.
Lemma IX.4: For a given and vectors

and , it holds that .
Proof: Since and , it holds that

. Note that implies that
and thus . Hence

the result follows.
Theorem IX.5: Consider an SCS given by (7) such that As-

sumption III.3 is satisfied and ( ) represents a passive
system. This SCS has only stable equilibrium points . More-
over, if is invertible5 is the only equi-
librium point, which is asymptotically stable.

Proof: Let be an equilibrium. The proof will be based
on taking as a Lyapunov func-
tion with a positive definite solution to (5). Take an ini-
tial state and an admissible switching function and de-
note the corresponding solution by ( ). If we
apply the same switching function to with ini-
5This implies that the linear matrix inequality (5) is strict in the variable

and thus that is stable. In the case of a Hamiltonian framework this means in
the current setting that .
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tial state , then the solution is equal to ,
where and are the vectors that satisfy the conditions
in Lemma IX.2. Note that the difference trajectory (

) is a (distributional) solution to
the linear system (3). From Definition VI.9, it follows that that
jumps of this trajectory only take place at the initial time 0 and
the discontinuity points of being . In intervals between
these “jump times,” the difference trajectory is smooth and sat-
isfies the dissipation inequality meaning that for (we
drop the “reg” subscript as we consider times intervals [ ]
in which no impulses are active)

Since , ,
and , it follows that

for all intervals [ ] not containing jumps and impulses.
Hence, the Lyapunov function cannot increase on these inter-
vals.
The only issue left to prove, to obtain stability according

to the standard theorems from [19] and [34], is the fact that
the decreases during jumps of the state trajectory satis-
fying the equations of . If a jump occurs it
obeys the rules as indicated in item 4 in Theorem VIII.1. Let
a jump take place from (or any other state) and the cor-
responding multiplier. As it follows from item 4, that

, or stated differently

(37)

Consider the difference between the value of the Lyapunov
function after and before the jump

Then, we get

from
from Lemma III.4 as

due to Lemma IX.2
Lemma IX.4 and

This means that during jumps and smooth continuation the Lya-
punov function never increases.
Consider the Lyapunov function for . It can ac-

tually be shown that

along a solution trajectory, which implies that only the origin is
an equilibrium and it is asymptotically stable.

X. CONCLUSIONS

Our aim in this paper has been to demonstrate that a suitable
framework for switched piecewise-linear networks is provided
by the notion of cone-complementarity systems. The dynamics
described by cone-complementarity systems can be very com-
plicated but nevertheless is given by two simple components, to
wit a linear system and a closed convex cone. Switching may be
described within this context in a conceptually straightforward
way as switching between cones, while the underlying linear
system remains the same.
Making use of impulsive-smooth distributions to define a suf-

ficiently flexible notion of solution, we have shown that the
framework of cone-complementarity systems is sound in the
sense that, under the passivity assumption, it produces unique
solutions for any given initial state. Moreover, the framework
allows formal proofs for intuitive properties concerning jumps
and stability. We have obtained a characterization of the situa-
tions in which jumps occur as well as of the extent of the jump
in these cases; this information should be useful both for theo-
retical and for simulation purposes.
The cones that we have considered are in fact of a special type

in which each component is either unconstrained, constrained
to be zero, or constrained to be nonnegative. The formulation
of cone-complementarity systems however invites a less coor-
dinate based and more geometric perspective, which helps to
achieve a focus on basic issues. Some of the results that we have
obtained in this paper still make use of the special properties of
cones obtained from diodes and switches; it is a natural question
to ask whether these results can be obtained at a more general
level, and we intend to return to this in future work.
Another possible direction of generalization is concerned

with nonlinear networks. The notion of passivity of course does
not depend on linearity and so it seems reasonable to expect
that many of the results in this paper can be generalized to the
nonlinear case. However, the distributional framework seems
less suited in connection with nonlinear dynamics and so a
different setting will have to be chosen.
The notion of passivity has been crucial in this paper. In fact,

it is remarkable that this energy-related concept turns out to play
an important role even in establishing existence and uniqueness
of solutions in a context that involves switching.
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