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Abstract 

This paper reviews the theoretical and numerical analysis of stochastic multi-echelon systems. We discuss both 
production (assembly) and distribution models, with an emphasis on materials coordination problems. Extensions to 
capacitated systems are also treated. The emphasis of this paper is on applicability of the models; in particular we 
characterize environments where multi-echelon models naturally fit. In particular, we discuss numerical procedures which 
allow for a quick and accurate evaluation of systems of realistic size and show how to use them to arrive at target service 
levels in serial and assembly systems. Extensions to capacitated systems and more flexible production environments are also 
discussed. 
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1. In t roduc t ion  

Multi-echelon systems have received considerable 
attention during the last decades, see e.g. the work of  
Forrester [20] on the cyclical variation of  stocks in 
large production/distribution chains. Using an anal- 
ysis based on systems of  difference equations, For- 
rester clearly illustrated the consequences of  poor 
control strategies by demonstrating how variations in 
end-item demand were amplified throughout a chain 
of  installations, each representing an intermediate 
stockpoint in a multistage production/distribution 
system. These results underlined the importance to 
explore methods for centralized control of  multi- 
stage inventory systems, as opposed to the decentral- 
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ized approach known as Statistical Inventory Con- 
trol (SIC), which was the dominant control proce- 
dure up to that time. 

Multistage Base Stock Control (BSC) is generally 
viewed as the natural analytic extension of  SIC to 
multi-echelon systems, but until recently the models 
based on BSC appeared to be numerically intractable 
already for moderately sized problems. Without any 
doubt, Material Requirements Planning (MRP), cf. 
Orlicky [40], has become the most popular multi- 
stage production control system in industry, despite 
(or perhaps due to) the fact that MRP is in fact only 
a straightforward calculation scheme, based on a 
Master Production Schedule (MPS). Both BSC and 
MRP put an emphasis on materials coordination 
problems, not on capacity planning problems. (The 
extension of  MRP to Manufacturing Resources Plan- 
ning, MRP II, provides for capacity checks, but it 
still does not perform any capacity planning, cf. 
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Wight [55].) This emphasis on materials coordination 
clearly restricts the applicability of both approaches 
to those environments where a sufficient amount of 
capacity flexibility is present, such as discrete prod- 
uct assembly systems and distribution systems (for 
which e.g. Distribution Requirements Planning sys- 
tems have been developed). Typical capacity ori- 
ented production environments, such as process in- 
dustries or small batch parts manufacturing shops, 
are less natural candidates for both MRP and BSC. 
In the latter environments, one often uses either 
linear (integer) programming based capacity plan- 
ning procedures (e.g. Hierarchical Production Plan- 
ning, cf. Hax and Candea [24]) or finite capacity 
scheduling routines. 

The primary goal of both MRP and multi-echelon 
BSC is to weigh investments in work-in-process and 
end-item inventories against high customer service 
levels. Both systems use fixed leadtimes to control 
the materials flow in intermediate production stages 
and focus on the consequences of material shortages 
at any installation for subsequent production stages 
or for end-item demand. These characteristics indi- 
cate that both MRP and BSC are particularly suitable 
to control the materials flow in production-to-stock 
systems (although both can be used in principle for 
production-to-order systems as well). Under specific 
conditions, to be discussed below, it can be shown 
that the optimal planning and control structure in a 
multi-echelon system is a base stock control struc- 
ture. In his initial work on MRP, Orlicky [40] advo- 
cated the use of safety stocks exclusively at the MPS 
level. Later authors (e.g. Wijngaard and Wortmann 
[56]) claimed that additional safety stocks at up- 
stream stockpoints might improve system perfor- 
mance (see also Section 4 in this paper, and in 
particular Table 2). If we extend the initial definition 
of MRP to allow for multilevel safety stock holding, 
then Axs~iter and Rosling [1,2] show that BSC is 
equivalent to MRP with a lot-for-lot policy. 

In this paper, we concentrate on periodic review 
multi-echelon planning and control systems for pro- 
duction: and distribution-to-stock environments un- 
der stationary conditions. Although a decrease of the 
length of the review period can be observed, we feel 
that periodic review reflects practice in most (large) 
companies, in particular in the consumer market. The 
analysis of this paper will be based on a cost frame- 

work, in particular on inventory holding costs at each 
stage and penalty costs in case of shortages at the 
demand level. Relationships with service level con- 
straints and with risk avoidance, in particular in 
distribution systems, will be indicated, but a more 
direct approach to the analysis of multi-echelon sys- 
tems under service level constraints will be presented 
in a companion review paper (see Diks, De Kok, and 
Lagodimos [12]). 

The goal of this paper is to show that multi- 
echelon models, although still limited, provide an 
excellent tool to control the materials flow in large 
production/distribution chains. Therefore, we focus 
on numerical tractability and applicability, much 
less on analytic optimality. For the same reason, we 
do not present an extensive and up-to-date literature 
review (for such a review, see e.g. Federgruen [14]), 
but merely briefly indicate the most important contri- 
butions. 

The work of Clark and Scarf [5,6], who recog- 
nized the importance of the echelon stock concept 
and derived a basic decomposition result for pure 
uncapacitated serial systems under specific condi- 
tions, marked the start of an important research area. 
Clark and Scarf used a discounted cost dynamic 
programming framework; similar techniques were 
used by Schmidt and Nahmias [43] to analyze a 
simple inverse arborescent (assembly) structure. In- 
dependently of each other, Rosling [41] and Langen- 
hoff and Zijm [35] showed the equivalence between 
uncapacitated serial and assembly systems. Concern- 
ing arborescent (distribution) systems, much atten- 
tion has been paid to two-stage systems; in particular 
the single-depot, multi-warehouse system received 
considerable attention. Although recognized already 
by Clark and Scarf [5], the basic imbalance problem 
when allocating stock in a distribution system is 
discussed in detail by Eppen and Schrage [13]; see 
also Zipkin [58]. Important contributions, using a 
similar modelling approach, have been made by 
numerous authors, we mention e.g. Federgruen and 
Zipkin [15-17], Van Donselaar and Wijngaard [50], 
J~Snsson and Silver [31,32] and Inderfurth [25,27,28]. 
Under a service level constraint, De Kok [9] (see also 
Verrijdt and De Kok [54]) discusses the stock alloca- 
tion problem in a production context (common parts, 
to be used in different end items). Numerical proce- 
dures for (two-stage) serial systems subject to nor- 
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mally distributed demand have been studied by Fed- 
ergruen and Zipkin [17], while Van Houtum and 
Zijm [52] have developed both approximate and 
exact algorithms based on incomplete convolutions 
of mixtures of Eflang distributions (for multistage 
systems). Since the latter algorithms are less restric- 
tive and allow for a quick and accurate evaluation of 
fairly large systems, they will be discussed in some 
more detail later on. 

Capacitated systems have received much less at- 
tention up to now. For single-stage systems, Feder- 
gruen and Zipkin [18,19] proved the optimality of 
base stock policies if no fixed costs are present. 
Speck and Van der Wal [45,46] showed that this 
result no longer holds for multistage systems al- 
though there exist close-to-optimal base stock poli- 
cies. Relevant contributions to the computation of 
the optimal base stock policy have  been made by 
Glasserman and Tayur (see [47,21--23])and Zijm 
and Van Houtum [57]. 

This paper is organized as follows. In Section 2, 
we introduce the cost f ramework and elaborate on 
the meaning of input parameters and the way they 
can be used, The next two sections are devoted to the 
analysis of serial and pure assembly systems. Section 
3 presents an average qost analysis and shows the 
optimality of BSC under specific assumptions. Sec- 
tion 4 briefly indicates relationships with service 
levels and presents numerical results and compar- 
isons with systems which only allow for safety stocks 
at the final stage (as advocated by Orlicky [40]). 
Next, we  turn to distribution systemS(or, more gen- 
erally, arborescent systems)and we analyze the so- 
called stock allocation problem which severely com- 

supply production 

plicates the analysis in such systems and makes BSC 
only a close-to-optimal way to manage the materials 
coordination problem. In Section 6, we briefly dis- 
cuss extensions to capacitated systems. Section 7 
presents a different approach to determine optimal 
BSC parameters for the three kinds of multistage 
systems, which is applicable when internal delays in 
the materials flow can be avoided due to sufficient 
operating flexibility. In Section 8, some conclusions 
are drawn and future research possibilities are dis- 
cussed. 

2. Discussion of  the cost f ramework  

Fig. 1 presents an example of a production/distri- 
bution system that will be the subject of analysis in 
this paper. Raw materials are procured from outside 
suppliers and, upon receipt, either stored or used 
directly in Subsequent production processes. Upon 
completion, finished products are distributed to sev- 
eral local warehouses and either stored to fulfill any 
future demand or delivered directly to customers in 
case of  a backlog situation. Following Clark and 
Scarf [5], any stockpoint between two stages is termed 
an installation. A fixed leadtime is assumed to be 
needed for each stage. In the following, we will use 
the term shipment of an order either for a physical 
shipment or for taking materials or parts to complete 
a production stage. We assume a periodic review 
system. Materials ordered at any installatiOn (or from 
an outside supplier) at the beginning of period t, 
arrive at the next downstream installation at the 
beginning of period t + l, where 1 denotes the corre- 

distribution 
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Fig. 1. Example of a logistic chain. 
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sponding leadtime. Any order for materials is also 
issued at the beginning of a period, but after arrival 
of earlier shipped orders at upstream installations. 
Either inventory or backlog is measured at the end 
of each period. Sequencing activities in this way has 
proved to facilitate the analysis of multi-echelon 
systems, without losing any generality. 

With respect to cost parameters, we distinguish 
inventory holding and penalty costs. Inventory hold- 
ing costs (per item, per period) are assumed to be 
proportional to the actual product value and thus in 
general they are nondecreasing when moving down- 
stream, in this way representing added value. In pure 
physical distribution models, holding costs will be 
nearly identical at all stockpoints. Penalty costs (per 
item, per period) are incurred solely when demand 
cannot be met. No fixed and /o r  linear (variable) 
ordering costs are incurred. 

Some discussion on these cost parameters is in 
place. First of all, the assumption of penalty costs 
provides an efficient way to force the system to 
maintain a certain customer service level. We will 
return to this point in detail in Section 4 (where also 
a definition of service level will be given), but 
intuitively it is clear that customer service will im- 
prove when the ratio of  the end-item penalty costs 
and holding costs becomes higher. If  the relation 
between these cost parameters and the service level 
can be quantified, customer service can be controlled 
indirectly. This is the approach adopted in this paper. 
A more direct, approximate analysis of multistage 
systems under service level constraints will be pre- 
sented by Diks et al. [12]. 

The assumption of nondecreasing inventory hold- 
ing costs when items move downstream can be 
interpreted in a similar way. Again intuitively one 
may expect that a sharp increase of inventory hold- 
ing costs will force the system to hold a relatively 
larger amount of materials at upstream installations. 
This becomes crucial in particular in systems where 
common parts are used in several end items (cf. De 
Kok [9]) or in systems where products are distributed 
to several local warehouses (see e.g. Eppen and 
Schrage [13]), since it diminishes the risk of highly 
unbalanced end-item inventories. In almost all publi- 
cations on arborescent systems, the problem of im- 
balance is left aside by introducing a so-called bal- 
ance assumption, roughly stating that it is always 

possible to order such that after ordering all end-item 
stockpoints face an equal shortage probability. When 
complete redistribution (in a distribution context) or 
cannibalization (in a production context) is possible, 
without any further costs, such an assumption is not 
necessary (e.g. J~Snsson and Silver [31]), but in all 
other cases it represents an undesirable model sim- 
plification. It is not hard to see that the risk of 
unbalance decreases with increasing differences in 
inventory holding costs between downstream and 
upstream installations. Therefore, the addition of 
socalled risk aversion parameters to the inventory 
holding costs creates a way to circumvent the (unnat- 
ural) balance assumption, similar to the way in which 
penalty costs are used to attain a target service level. 
The relationship between penalty costs and various 
service levels is quantified in this paper. Unfortu- 
nately, a similar relation has not been derived up to 
now with respect to risk aversion parameters and the 
decrease in imbalance. 

The following arguments support the ignorance of 
ordering costs in our study. First, since we shall 
mainly focus on average costs over an infinite hori- 
zon and we shall assume that any excess demand is 
backlogged, linear (variable) ordering costs do not 
play any role in determining optimal policies and 
hence do not have to be introduced. Further, fixed 
ordering costs make sense in a procurement stage but 
are usually not very realistic in a discrete production 
context (but much more in e.g. semiprocess indus- 
tries). A more natural way to model lotsizing in a 
production context is to relate demand directly to 
available capacity, using e.g. queueing type models 
(see e.g. Karmarkar [33]). Fortunately, Clark and 
Scarf [5] already recognized that fixed costs at the 
most upstream stage would still fit in their decompo- 
sition framework. Approximations have been derived 
for the situation with fixed costs at every stage; see 
Clark and Scarf [6], Lambrecht et al. [34], and Chen 
and Zheng [3,4]. Due to the assumption of capacity 
flexibility (in the environments where BSC is ap- 
plied), we assume that fixed ordering costs are ab- 
sent at every stage. In Section 6, we return to 
capacitated models. 

This concludes our discussion of the cost frame- 
work and the ways in which cost parameters can be 
exploited to arrive at desirable goals not specified in 
financial terms. 
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3. Uncapacitated serial and assembly systems 

In this section, we characterize optimal policies 
for general uncapacitated multistage serial inventory 
systems and we describe how general uncapacitated 
assembly systems can be reduced to equivalent serial 
systems (cf. Rosling [41] and Langenhoff and Zijm 
[35]). The discussion of the uncapacitated systems 
will be restricted to the single-product case, since 
the assumption of uncapacitated (production) stages 
provides that for each product the materials planning 
can be performed independently of the planning for 
the other products (note that this decomposition of 
the multi-product problem ignores commonality ef- 
fects). 

3.1. Characterization o f  optimal policies f o r  serial 
systems 

Consider the N-stage serial system (N > 2) dis- 
played in Fig. 2. Materials, parts or products can be 
ordered from any installation and are then shipped to 
the next downstream installation. Without loss of 
generality usage rates are assumed to be equal to 
one. Any order for materials placed at the beginning 
of a period t with destination installation n arrives at 
that installation at the beginning of period t + l .  
( l ,  E ~) ,  at least if sufficient materials are available 
at the upstream installation. The outside supplier 
preceding installation N can always deliver. Outside 
demand is experienced solely at installation I at the 
end of the chain (this assumption may be relaxed, cf. 
Clark and Scarf [5]). Materials at installation n or in 
transit from installation n to n -  1 are subject to 
inventory holding costs, per item per period, equal to 
h u + - . -  + h ,  (>_ 0), for n = N . . . . .  2. Materials at 
installation 1 are subject to inventory holding costs 
equal to h u + . . -  +h~ ( > 0 ) .  In principle, it is 
allowed to take h, ~ 0 for some n. Any excess 

demand is backlogged. In case of a shortage at 
installation 1, a penalty p ( >  0) per item per period 
is incurred (no penalty costs are incurred in case of a 
shortage at upstream installations, i.e. only real cus- 
tomer delivery problems are penalized). No fixed 
and /or  linear ordering costs are assumed. Finally, in 
each period demand is nonnegative and continuously 
distributed with distribution function F and demands 
in different periods are assumed to be independent; 
the distribution of the /-period cumulative demand is 
given by the /-fold convolution of F and denoted by 

Ft. 
We are interested in ordering policies which mini- 

mize the average costs in the infinite horizon case. 
Before we can describe an optimal policy, we first 
introduce the concepts echelon stock and echelon 
inventory position, as well as some relevant cost 
functions. 

The echelon stock of a given installation denotes 
all stock at that installation plus all materials in 
transit to or on hand at any installation downstream 
minus eventual backlogs at the most downstream 
installation(s). The chain under consideration is called 
the echelon. A n  echelon stock may be negative, 
indicating that the backlogs are larger than the total 
inventory in that echelon. Echelons are numbered 
according to the highest installation in that echelon. 
The echelon inventory position of an installation is 
defined as its echelon stock plus all materials which 
are in transit to the installation. If  it is assumed that 
an installation never orders more than what is avail- 
able at the next upstream installation(s), then this 
definition of echelon inventory position is equivalent 
to defining the echelon inventory position as the 
echelon stock plus all materials which are on order. 

In [57] it has been described in detail how to 
construct echelon cost functions from the definitions 
of installation based holding and penalty, costs. Let 
v, denote t h e  stock of echelon n at the end of a 

IN 
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In l~- i  11 

h~ E~nh~ ~ h 

Fig. 2. The standard N-stage serial inventory system. 
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period (note that the above definitions imply v n > 
vn_ 1 for n = 2 . . . . .  N).  Given the cost structure, 
summarized in Fig. 2, it is easily verified that the 
total system costs are equal to (cf. [57]) 

yN= h . v .  if  > 0 ;  V 1 1 

Y ' . U = l h . V . - ( p + H ) v  I if vl < 0 ,  

where H = E . U l h  .. The costs h . v .  are called the 
costs attached to echelon n, n = 2 . . . . .  N ,  and the 
remaining costs are called the costs attached to 
echelon 1. Note that the terms h . v .  always appear, 
independently of  the sign of  v.. I f  at the beginning 
of a period the echelon stocks of  the installations 
n = 1 . . . . .  N are increased to the levels x~ . . . . .  x N 
(due to the arrival of  goods ordered in previous 
periods), then the echelon cost functions expressing 
the expected costs for each echelon at the end of that 
period naturally follow: 

LI( xl ) = hlf0 ( xl - u) d F ( u )  

+(p+H)£ (U-Xl)dF(u), 
1 

(1)  

L . ( x . ) = h . £  ( x . . u )  d F ( u )  f o r n : 2  . . . . .  N. 

(2) 

Now we are ready to present the main results for 
the average cost analysis of  pure serial systems as 
described above. For these systems, a relevant class 
of  o~dering (or replenishment) policies is constituted 
by the class of  base stock policies. A base stock 
policy is denoted by a tuple (Yl . . . . .  YN), where y.  
denotes the desired order-up-to level f o r  the echelon 
inventory position o f  installation n. Under a base 
stock policy (Yl  . . . . .  YN), at the beginning of each 
period, the echelon inventory position of  installation 
N is increased to Yw, and for each installation n = N 
- 1  . . . . .  1, the echelon inventory position is in- 
creased to the min imum of  y.  and the actual echelon 
stock of the next upstream installation, i.e. of  instal- 
lation n + 1 (the start up phenomena,  occurring in 
case the initial echelon inventory positions are larger 
than the desired levels, may be ignored). For exam- 
ple, for installation N -  1, we may  order up to 
min{ YN- 1, YN -- UIN}, where UrN denotes the demand 
over the preceding l N periods. 

The average costs of  a base stock policy 
(Yl . . . . .  YN) may be determined by introducing cost 
functions D , (y l  . . . . .  y.) ,  n = 1 . . . . .  N. We let 
Dn(y  1 . . . . .  y~) denote the average costs attached to 
the echelons 1 . . . . .  n if at the beginning of each 
period the echelon inventory position of  installation 
n can be increased to the desired order-up-to level 
y , ,  i.e. if the supplier of  installation n can always 
deliver. The following set of  recursive formulae is 
easily derived (cf. [35]): 

¢c 

D I ( Y ' )  = fo LI( Yi -- U) dFll(U), (3)  

D . (  Yl . . . . .  Y.) 

=fo L.(y.-u)dFt.(u) +D._~(y~ . . . . .  y._~) 

+ f [ D . - I ( Y l  . . . . .  y ~ _ z , y . - - u )  -y 
n - - Y n - I  

- - D . - I (  Yl . . . . .  Y . - 2 ,  Yn- 1)1 dFln( U) 
for n = 2 . . . . .  N (4)  

(for n = 2 ;  read D n- I (Y l  . . . . .  Y.-2,  Y . - U ) =  
D 1( Y2 -- u)). The third term in Eq. (4) represents the 
penalty incurred if Yn - UI. < Y~- 1, where Ut. de- 
notes the demand over l n periods, i.e. if insufficient 
material is available at stockpoint n. Using these 
formulae, we find (cf. [35]): 

Theorem 1. Let  the order-up-to levels S 1 . . . . .  S N o f  
the base stock policy (S 1 . . . . .  S N) be recursively 
defined as fol lows: S 1 is the order-up-to level that 
minimizes Dl(y  1 ), and, f o r  n = 2 . . . . .  N, S n is the 
o r d e r - u p - t o  l e v e l  t h a t  m i n i m  i z e s  
D , ( S  1 . . . . .  S ,_  1, y ,) .  The base s tock pol icy  
(S 1 . . . .  , S N) is average cost optimal over all order- 
ing policies f o r  the N-stage serial system as de- 
scribed in this section. 

Theorem 1 states the optimality o f  base stock 
policies. In addition, it states that the optimal base 
stock policy, i.e. the global minimum of the N-di- 
mensional function D N ( y  1 . . . . .  yN ), can be found 
by successively minimizing N one-dimensional 
functions. This basic decomposition result implies a 
very important reduction in the effort needed to 
compute the optimal base stock policy. Both the 
optimality of  base stock policies and the decomposi- 
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tion result initially have been derived by Clark and 
Scarf [5] (under a discounted cost framework) and 
have been extended by Federgruen and Zipkin [17] 
and Langenhoff  and Zijm [35]• The proof of  the 
theorem is based on the convexity of the functions 
D,(S~ . . . . .  S ,_  1, Y,)  (which follows from Eqs. (3) 
and (4)) and in essence is rather simple. Any order- 
ing policy can be shown to be improved (at least, not 
deteriorated) by successively for n = 1 . . . . .  N re- 
placing the ordering for installation n by an ordering 
according to the desired order-up-to level S, for the 
echelon inventory position of  installation n. After 
the last step the base stock policy (S 1 . . . . .  S N) is 
obtained, which thus is at least equally good as any 
other ordering policy. 

The procedure described in Theorem 1 usually 
will lead to an optimal base stock policy (S  1 . . . . .  S N) 
with nondecreasing order-up-to levels S~ < S 2 < 

• • • < S N. However,  it may also happen that S,_ 1 > 
S. for some n > 2, i.e. that for installation n a 
smaller desired order-up-to level is obtained than for 
the next downstream installation n -  1 (it can be 
verified that this happens for sure if h ,_  ~ < 0 and 
h,  > 0, in which case S n_ 1 = oo and S, < ~). In that 
case installation n behaves as a stockless inventory 
point  under the base stock policy (S  1 . . . . .  SN), i.e. 
all products arriving at installation n at the beginning 
of  a period will immediately be forwarded to instal- 
lation n -  1. This will also hold if the order-up-to 
level S n_ 1 is replaced by S._ 1 = S..  Continuing this 
reasoning shows that in general the optimal base 
stock policy (S~ . . . . .  S N) may be replaced by 
(gl . . . . .  SN) with 

S, = m i n { S ,  . . . . .  SN} f o r n =  1 . . . . .  N;  (5) 

the latter base stock policy leads to the same materi- 
als flow and thus also to the same average costs. 
Obviously, for this latter policy, we have by defini- 
tion nondecreasing order-up-to levels ( f f l -  $ 2 -  
" ' "  < SN- It is noted that the optimal base stock 
policy (ffl . . . . .  SN) would have been obtained di- 
rectly, if from the beginning the analysis of  base 
stock policies would have been restricted to policies 
with nondecreasing order-up-to levels. However,  un- 
der that restriction, one does not obtain the simple 
and nice characterization as described in the next 
section for the optimal order-up-to levels S 1 . . . . .  S N 
(see Corollary 1). 

3.2. Reduction o f  assembly systems to serial systems 

Assembly systems may be described as inventory 
systems for which one installation has no successor 
installation (the installation for the end items) and all 
other installations have exactly one successor instal- 
lation. So, in general, they extend serial systems. 
However, for uncapacitated assembly systems, it 
also holds that they can be reduced to serial systems. 
We show this by using the two-stage assembly sys- 

tem displayed in Fig. 3 (cf. [35]). 
In the system of  Fig. 3, N different parts or 

components are assembled into a single end item. 
Components are delivered by (infinite capacity) out- 
side suppliers, where a supply leadtime I, is needed 
for components of  type n, n =  1 . . . . .  N. Let l 0 
denote the assembly leadtime. Without loss of  gener- 
ality, usage rates are assumed to be equal to one, 
while furthermore we a s s u m e  l 1 < l 2 < - ' '  < 1N 
(since all leadtimes are deterministic, components 
with equal order leadtimes can be treated as one 
'aggregate '  component)• 

As before, only end items are subject to outside 
demand and for the outside demand the same as- 
sumptions are made as for the serial system studied 
in Section 3.1; in particular, F is the distribution 
function for the demand per period• Components in 
the systerp (in stock at the component store or as part 
of  work-ih-process in the assembly phase) are sub- 
ject to a holding cost h ,  (for component type n), and 
end items are stored at a holding cost N ho + Y"n = I h,;  
a penalty cost p is incurred if deynand cannot be met 
immediately and has to be backlogged. Again, all 
costs are assessed based on the inventory levels at 
the end of  each period. 

N 

, 

12 
t 

~h~v 
' [ E,=oh, , p 

Fig. 3. A two-stage assembly sysl~m. 

• F 
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The fact that the end items can be assembled only 
if components of all types are available clearly 
demands for some coordination in ordering the dif- 
ferent component types. Suppose that, at the begin- 
ning of some period t, the echelon inventory position 
of component type N is increased to some level YN" 
Let u t _  t._, denote the outside demand in the peri- 
ods t up to and including t + l N - l N_ I - -  l. Then, 
since the echelon stocks of both component types N 
and N -  1 decrease with the same amount in each 
period, at the beginning of period t + l N - -  1 N _  1, it 
does not make sense to increase the echelon inven- 
tory position of component type N -  1 to a level 
higher than YN--Ul~-l~_~ (anY order above Y N -  
UlN_ lu_l would necessarily lead to some excess stock 
of component type N -  1 in period t + I N ) .  Simi- 
larly, for n = N - - 2  . . . . .  1, it is sensible to never 
increase the echelon inventory position o f  component 
type n to a level higher than the actual echelon stock 
o f  component type n + 1 plus the amount that will 
arrive at installation n + 1 in the next l.  periods. 

Following this reasoning, the decision structure in 
the two-stage assembly system becomes identical to 
the decision structure in an (N  + 1)-stage serial sys- 
tem with leadtimes l u - -  l N _  1 . . . . .  12 - -  l l ,  l l ,  I o. As 
a result, the assembly system can be analyzed along 
the same lines as a serial system. Again, we find that 
the class of (modified) base stock policies is optimal. 
Further, the average costs of a base stock policy 
( Yo, Y~ . . . . .  yN ) are expressed in terms of cost func- 
tions /) .(y0 . . . . .  y.), n = 0, 1 . . . . .  N. These func- 
tions are almost identical to the corresponding func- 
tions D . ( y  o . . . . .  y . )  for the equivalent serial sys- 
tem; a small difference is obtained due to the fact 
that in the assembly system components of type 
n >_ 2 arrive in the system only after 1. periods 
(instead of after l. - l ._ 1 periods), which influences 
the holding costs for pipeline inventories. It can be 
shown that D O ( y 0 ) = / ) 0 ( Y 0 ) ,  Dl(Yo,  y l )  = 
DI(Y0, YI), and 

Dn( Y0, Yl . . . . .  Y,) 

= 1~.( Yo, Yl . . . . .  Y.)  - -  ~ hi l i - I  ]& 
i = 2  

for n = 2 . . . . .  N, (6) 

where /x denotes the average demand per period. 

This implies that 

0 0 ^ 

Oy Dn( Yo, Yl . . . . .  Y.) = D.(  Yo, Yl . . . . .  Yn) 

for n = 0 . . . . .  N. 

Summarizing, the following result can be estab- 
lished: 

Theorem 2. An optimal policy for  the two-stage 
assembly system with component leadtimes l 1 < l 2 < 
" ' "  < l N is found by applying Theorem 1 to an 
equivalent serial system with leadtimes l N - -  

l N -  1 . . . . .  l 2 -- 11 , l I , l o. The optimal costs are deter- 
mined from Eq. (6). 

For general uncapacitated assembly systems, the 
reduction to serial systems may be described along 
the same lines as above. In that case, the installations 
first have to be ordered such that they have nonde- 
creasing echelon leadtimes and subsequently order- 
up-to levels for the echelon inventory positions are 
determined by treating the installations according to 
that ordering (installations with equal echelon lead- 
times are treated simultaneously and receive equal 
order-up-to levels). The initial proof of the reduction 
of general assembly systems to serial systems is due 
to Rosling [41], who derived this reduction under a 
discounted cost dynamic programming framework. 

4. Numerical procedures 

In the previous section, we have focussed on the 
characterization of average cost optimal policies for 
multi-echelon serial and assembly systems in the 
infinite horizon case. In this section, we discuss 
procedures for the computation of these optimal 
policies. Further, we present results on how to deter- 
mine optimal policies in case one has to deal with a 
service level constraint instead of penalty costs for 
shortages. These policies can be computed by repeat- 
edly applying numerical procedures for the determi- 
nation of pure cost optimal policies. 

4.1. Numerical procedures for  serial systems 

For a discussion on the computation of optimal 
policies, we may restrict ourselves to multistage 
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serial systems. Only a few numerical approaches 
appear to be available. The oldest approach is the 
dynamic programming technique as used by Clark 
and Scarf [5]. This technique has been very useful 
for proving the optimality of  base stock and related 
policies for several situations, but for computational 
purposes its use is limited, since it requires a dis- 
cretization of  the stock levels and the computation 
times become very large for fine discretizations. 
Further, Federgruen and Zipkin [17] have developed 
an exact approach for serial systems with normally 
distributed demands, but their approach seems to be 
limited to two-stage serial systems. Finally, both an 
exact procedure and an accurate approximation pro- 
cedure have been developed b y  Van Houtum and 
Zijm [52]. The latter two procedures are based on 
alternative and nonrecursive formulae for (the 
der ivat ives  of)  the average  cost  funct ions  
D,( Yl . . . . .  y~) as described in Section 3.1. They are 
discussed in more detail below. 

We start with presenting the alternative formulae 
which are appropriate for the computation of  the 
optimal base stock policy (S 1 . . . . .  S N) and the corre- 
sponding average costs. Preliminary, we have to 
introduce so-called incomplete  convolutions.  Le t  G ~ 
and G 2 be continuous distribution functions on [0, ~)  
and let a be a real-valued,nonnegative variable. Then 
the distribution function G~ is defined by 

( G 2 ( x + a )  if x_>O; 
G ~ ( x ) : =  0 if x < 0 ,  

and the distribution function G~ * G 1, where * de- 
notes the usual convolution operator for the distribu- 
tion functions of  two independent nonnegative 
stochastic variables, is called an incomplete convolu- 
tion because of  its alternative representation: 

( G ~ * G , ) ( x ) =  f o X G 2 ( x + a  u) dGl (U  ) ,  x>_O. 

In the formulae presented below we will observe 
( n -  m + 1 ) - fo ld  i n c o m p l e t e  convolul f ions  
F [y . . . . . .  Y"] m , n ~ { 1 ,  N } a n d m < n ,  w h i c h a r e  

defined by 

F[y  ... . . . .  Y"](X)  m,n 

i = ( ( . . . ( ( F [ : n * F l n _ l  ) . . . .  *Fln_2 ) . . . .  

• I . . . .  ) lm+ 1] * FI.,+ l ( x )  

for all x E N (for m = n, read Fm~Yml(X) = Fl," + l(X) 
for all x ~ N), with 

a i : = y i - - Y i _  1 for i = m +  1 . . . . .  n,  

Yi := min{ Yi . . . . .  Y n }  for i = m . . . . .  n. 

For each i = m . . . . .  n, the level Yi denotes the value 
to which the desired order-up-to level Yi for echelon 
i may be decreased if one of  the higher echelons 
uses an order-up-to level lower than yi, cf. Eq. (5); 
note that Yi = Yi and a i = y~ - Yi-  i for all i in case 
Ym <- Ym + 1 ~ " " " <- Yn" It may be verified that 

1 ~[y ....... Y"]( X] m,n \ J 

: = ( - . . ( ( F l : . , F l n _ l ) a n - l , F , . _ 2 )  an-2 

am+ 1 
* "'" *FI.+~ ( x ) ,  x ~ ,  

(for m = n, read /~[Y'](x) = l ( x ) ,  defined by I ( x )  = m,m 
1 for x > 0 and l ( x )  = 0 for x < O) represents the 
distribution function of  the shortfall (with respect to 
Ym) for the echelon inventory position of  installation 
m at the beginning of a period, if in each period the 
variables y . . . . . .  y,  are used as desired order-up-to 
levels for the echelon inventory positions of  the 
installations m . . . . .  n and if the supplier of  installa- 
tion n can always deliver. And, thus, Fm[Y~ ..... y.l = 
ftYm, n ........ Y'] * Fl., + 1 itself represents the distribution 
function of  the difference between the (adjusted) 
desired order-up-to level Ym for the echelon inven- 
tory position of  installation m and its actual echelon 
stock at the end of  a period, We now can formulate 
the following results for the average cost functions 
D.(  y l ,  . , y . )  (cf. [51,52]). 

Theorem 3. Let  n ~ { 1  . . . . .  N}  and Ym ~ ~ f o r  
m = 1 . . . . .  n. Then 

D,(  Yl . . . . .  Y,) 

: hm Y m _ _ u )  d F [ Y  . . . . . .  Ynl(bl) m,n 
m = l  

+ (  p + . )  ( u -  y , )  d F  [y . . . . . .  Y'I(u) 
1 

where  Ym = min{ y . . . . . .  y~} f o r  m = 1 . . . . .  n. 
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Theorem 4. Let n E { 1  . . . . .  N} and y~ ~ g~ for 
m = 1 . . . . .  n -  1. Then the partial derivative of 
D~( y I . . . . .  y~) to y~ is equal to 

0 
- - D ~ (  el . . . . .  Y~) 
OYn 

n 

E h m - ( P + H ) ( 1 - F [ Y ~  . . . . .  Y n ] ( Y l ) )  
m = l  

n- -1  0 

--  E ~'[ym,. . . . . . .  Y"I(o)'~y Dm(Yl, " " ,  ym), 
m = l  

where Yl = min{yl . . . . .  y~} (for n = 1, read h 1 - 
( p  + H)(1 - F[Y~I(yl)) on the right-hand side of  this 
equation). 

Theorem 4 can be exploited to compute the opti- 
mal base stock policy ( S  1 . . . . .  SN) , while the News- 
boy-type formula in Theorem 3 can be used for the 
computation of  the corresponding average costs 
Du(S 1 . . . . .  SN). Observe that the third term on the 
right-hand side of  the equation in Theorem 4 van- 
ishes if y,, = S m for m = 1 . . . . .  n - 1, i.e. 

0 
D,,( S 1 . . . . .  Sn- 1, Y,,) 

Oy. 

= . . . . .  s . . . .  

m = l  

y, E R, 

with S1 = min {S 1 . . . . .  S ,_ 1, Y~} (note that the func- 
tion F[S~ ..... s._l, Y°](SI) in this formula is continuous 
and nondecreasing in y~). This leads to the following 
simple and important Newsboy-type characterization 
for the optimal order-up-to levels S 1 . . . . .  S N. 

Corollary 1. For each n----1 . . . . .  N, the optimal 
order-up-to level Sn for the echelon inventory posi- 
tion of  installation n satisfies 

N 

P + ~ hm 
V[Sn . . . . .  s " - l ' s " ] ( S 1 )  = rn=n+l  

p + H  ' 

where $1 = min{S1 . . . . .  S,,}. 

This corollary says that S n must be chosen such 
that the probability for a nonnegative stock in instal- 
lation 1 at the end of  a period is equal to ( p +  
EN,,=~+ 1 h , , ) / ( p  + H),  if it is given that the supplier 
of  installation n can always deliver. 

For the incomplete convolutions in the formulae 
for OD~(yl . . . . .  y~)/Oy,, and also for the integrals 
in the formula for D~(y I . . . . .  Yn), it is possible to 
derive closed-form expressions, if the demand distri- 
bution F is a mixture of Erlang distributions with 
the same scale parameter. The optimal base stock 
policy (S 1 . . . . .  S N) can be computed by exploiting 
these closed-form expressions to evaluate the deriva- 
tives OD~(S 1 . . . . .  Sn_ 1, y~)/  Oy~ and applying bisec- 
tion to find the zero points S~; to compute the 
corresponding average costs DN(S 1 . . . . .  SN), one 
only needs the closed-form expressions. The result- 
ing procedure leads to exact results if the demand is 
really distributed according to a mixture of  Erlang 
distributions with the same scale parameter or if it 
may be approximated by such a mixture. In many 
practical situations, only the first moment  /z and the 
deviation tr of  the demand will be known and in 
that case it will be reasonable to approximate the 
demand distribution by an E k_ 1,k distribution (a 
mixture of  an Erlang-(k_ 1) and an Edang-k distribu- 
tion with the same scale parameter) with the same 
first moment  and deviation. This latter approxima- 
tion is possible if the coefficient of  variation of  the 
demand does not exceed 1, i.e. if t r / / z  _< 1; if t r / /z  
> 1, then an El, k distribution might be used, but it 
seems more advisable to first improve the forecasts 
of  the demand in that case. If  also the third a n d / o r  
higher moments of  the demand are known, then 
more advanced mixtures could be used. It is noted 
that in general the demand distribution F can be 
approximated as accurate as desired by a mixture of  
Erlang distributions with the same scale parameter, 
since the class of  these mixtures is dense in the class 
of  all continuous distributions on [0, ~)  (cf. Schass- 
berger [42] and Tijms [48], pp. 358); but, explicit 
formulae for fitting such a mixture on F are only 
available for a few cases. 

Besides the exact procedure, which may require 
(too) large computation times for large systems with 
many installations and a large system leadtime, also 
a simple, efficient and accurate approximation pro- 
cedure has been developed for the computation of  
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(S  l . . . . .  S N) and D N ( S  1 . . . . .  Sly). This approxima- 
tion procedure is similar to the exact procedure, but 
for the incomplete convolutions it uses two-moment 
fits, developed initially by Seidel and De Kok [11]. 
To evaluate F[S~ ' .... s . . . .  Yn](S1) ($1), it starts with 
computing the first two moments  of  Ft and fitting 
an Ek-1.k or a hyperexponential  (HE)" distribution 
with the same first two moments  on F I ,  depending 
on whether the coefficient of  variation is < 1 or 
> 1. Next, the first two moments  of  FI~ - and thus 
also of  Fl~" * Fl,_, can be determined and an E k_ l.k 
or H 2 distribution is fitted on FI a. * F 1 ; and so on. 
After n steps an approximation of ~.[s?._'.., s,_ 1, y,] h,, L1, n ~..7 
an Ek-i .k or H 2 distribution is obtained and the 
value of  F~S~ ..... s . . . .  YoI(S 1) can be determined. 

The accuracy of the approximation procedure is 
shown in Table 1. To a 3-stage serial system with 
varying values of  the deviation o- of  the demand 
(which is assumed to have an E k_ 1.k distribution), 
we have applied both the exact and the approxima- 
tion procedure. In the table, for both procedures we 
have listed the order-up-to levels S~ (denoted by S a 
for the approximation procedure) of  the opt imal  base 
stock policy and the corresponding average costs. In 
the last column we have listed the exact cos ts  of  the 
approximated optimal base stock policy (S~, S~, S~). 
The results show that the approximation procedure 
performs very well. Further, the difference in costs 
between (S~, S~, S~) and the optimal base stock pol- 
icy (S l, S 2, S 3) appears to be almost negligible. The 
computat ion times, on a PC 486 A T / D X 2 ,  66 MHz, 
varied f rom 0.0 to 27.1 seconds for the exact proce- 

dure, f rom 0.0 to only 0.1 seconds for the approxi- 
mation procedure, and from 0.0 to 7.2 seconds for 
the costs listed in the last column (the largest compu- 
tation times were obtained for o-=  10, in which case 
many Erlang phases are obtained for the demand 
distribution F and the approximations of  the incom- 
plete convolutions). For more numerical results and 
more detailed descriptions of the exact and the ap- 
proximation procedure the reader is referred to 
[51,521. 

4.2. Service levels 

Although the average cost analysis presented up 
to now has been focussed on finding ordering poli- 
cies for which the sum of  the inventory holding costs 
and penalty costs is minimal, it can also be exploited 
to find policies which satisfy some service level 
constraint and have (almost) minimal average inven- 
tory holding costs. We will discuss three types of  
service measures. 

Consider a base stock policy (Yl . . . .  'YN) for a 
serial system. From the meaning of  the incomplete 
convolutions presented in the previous subsection, it 
follows that for this policy the fraction o f  periods 
that no backlog occurs (a-service level, also denoted 
as the Type-1 service level) is equal to 

a ( Y l ,  YN) = F I r  . . . . . .  Y N ] ( Y l ) ,  " ' ' '  I ,N  

where Yl = min{yl . . . . .  YN}. Another service mea- 
sure is the fill rate ( [3-service level, also denoted as 
the Type-2 service level), which is defined as the 

Table 1 
The order-up-to levels  of  the optimal  base stock pol icy and the corresponding average costs for the N-stage serial sys tem with N = 3, 

I l = 1, l 2 = 3, 13 = 2, h I = 1, h 2 = 3, h 3 = 6, p = 200, tx = 100 and varying values for the deviation o- of the demand 

O" Exac t  procedure Approximat ion procedure Exac t  costs for 

S 1 S 2 S 3 Costs  S~ S~ S~ Costs (S~, S~, S~') 

10 238.6 549.1 746.6 3246 238.6 546.3 744.2 3199 3249 
20 280.9 600.4 794.3 3819 280.9 595.6 790.3 3742 3822 
30 326.9 653.8 842.9 4417 327.0 647.8 838.1 4327 4420 
40 376.2 709.1 892.3 5037 376.5 702.3 887.5 4952 5040 
50 430.3 766.9 942.8 5690 430.3 760.6 938.1 5617 5691 
60 485.2 825.2 993.4 6347 485.6 820.9 989.4 6304 6348 
70 546.1 886.9 1045 7047 546.3 881.7 1042 7028 7047 
80 602.1 945.8 1096 7713 608.3 947.3 1095 7795 7713 
90 666.0 1009 1149 8434 670.3 1010 1150 8548 8434 

100 748.5 1081 1204 9269 748.5 1083 1204 9414 9269 
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fraction of demand that is satisfied directly from 
stock. It  may be verified that the fill rate for the base 
stock policy (Yl . . . . .  YN) is equal to 

/3(Yx . . . . .  Y~) 

'(Iy = 1 - - -  ( u - y l ) d F [ Y  ~ . . . .  Y N I ( u )  
I x 1 

- - f  (U -- y l )  dlV[Y . . . . . .  y N I ( u  ) 1,N , 
-y  l 

where /7[Yh; .... yNl(x ) = (~[y~; .... y~], F t X x )  for all 
x E N. A related service measure is the modified fi l l  
rate (y-service level), which for a base stock policy 
(Yl . . . . .  y~) is given by 

/3 (y ,  . . . . .  y u ) = l  L f w ( u - Y l ) d F  [y . . . . . .  YN][u~ Ix Jyl l,N t J 

For ordering policies with a high fill rate, the modi- 
fied fill rate will be almost equal to the normal fill 
rate. 

Now suppose that a target service level is given 
for one of the three service measures. I f  a target 
service level /3 o for the fill rate or /30 for the 
modified fill rate is given, then an appropriate order- 
ing policy may be obtained by computing the opti- 
mal base stock policy (S 1 . . . . .  S u)  as defined in 
Theorem 1 for varying values of  the penalty costs p. 
Since both /3(S l . . . . .  S N) and /30(Sx . . . . .  S u)  will 
be increasing as a function of  p ,  a bisection proce- 
dure can be used to tune p such that /3(S l . . . . .  S u)  
=/3o or /30(Sx . . . . .  S ~ ) = / 3 0 .  For the situation 

where a target service level /~0 is given for the  
modified fill rate, we find (cf. [52]): 

T h e o r e m  5. Let (S 1 . . . . .  S N) denote an average 
cost optimal policy with respect to the sum o f  inven- 
tory holding costs and penalty costs, and suppose 
that rio(S1 . . . . .  SN) = riO" Then (S 1 . . . . .  S N) is also 
optimal in the sense that, within the class o f  all 
ordering policies w i t h m o d i f i e d  fi l l  rate at least 
equal to rio, it is a policy with minimal average 
inventory holding costs. 

For the situation with a target service level /3 0 for 
the normal fill rate, the tuning procedure may be 
expected to lead to policy which at least is close to 
optimal. 

If  a target service level a 0 is given for the 
a-service level (i.e. 1 -  a 0 denotes the maximal 
value allowed for the stock-out probability at instal- 
lation 1), then the Newsboy-type characterization 
given in Corollary 1 can be exploited. According to 
this corollary, for the average cost optimal policy 
(S 1, . . . ,  SN), it holds that 

P 
a ( S l  . . . . .  aN) = p + H '  

and thus, by choosing p = a o H / ( 1  - a0),  a policy 
(S l . . . . .  S u)  with a ( S  1 . . . . .  S N) = a 0 is obtained. It 
may be expected that the average inventory holding 
costs for this policy are close to minimal within the 
class of  all ordering policies with a-service level at 

Table 2 
Comparison between BSC 
h 2 = 1.5, h 2 = 1.5, h 3 = 2, 

and EEB for the two-stage assembly system of Figure 3 with N = 3, l o = 2, l~ = 1, 
/x = 100, o" = 70 and varying values for the target /3o of the modified fill rate 

12=2, 13=4, h o = 5 ,  

/3o BSC 

So s, s2 s3 

EEB Cost difference 

Costs SEn B Costs Abs. Rel. 

90.0% 522.3 667.3 781.6 1015 3384 
91.0% 530.1 676.8 792.4 1027 3478 
92.0% 538.7 687.4 804.3 1041 3583 
93.0% 548.5 699.2 817.6 1057 3701 
94.0% 559.8 712.7 832.8 1075 3836 
95.0% 573.0 728.6 850.5 1096 3995 
96.0% 589.1 747.7 871.8 1120 4189 
97.0% 609.6 771.9 898.7 1151 4435 
98.0% 638.2 805.4 935.7 1194 4776 
99.0% 686.3 861.0 996.7 1263 5345 

959.8 3698 314 9.3 % 
97115 3805 327 9.4% 
984.5 3925 342 9.5% 
999.0 4060 359 9.7% 

1015 4215 379 9.9% 
1035 4397 402 10.1% 
1058 4619 430 10.3% 
1087 4900 465 10.5% 
1127 5291 515 10.8% 
1193 5941 596 11.2% 
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least equal to a 0. Note that the inventory holding 
costs itself can easily be obtained by taking the 
formula given in Theorem 3 and subtracting the part 
for the penalty costs. 

Since the presented numerical procedures enable 
us to compute optimal base stock policies for multi- 
stage serial/assembly systems, we can now make a 
comparison between Base Stock Control (BSC) and 
Exclusively End-item Buffering (EEB), as was advo- 
cated by Orlicky [40]. The optimal order-up-to level 
of the latter system can be determined by analyzing a 
single-stage system with a leadtime equal to the 
system leadtime of the corresponding multistage sys- 
tem. In Table 2, BSC and EEB are compared for a 
two-stage assembly system with  varying values for 
the target service level /30 for the modified fill rate. 
For both BSC and EEB, we have listed the optimal 
order-up-to level(s) and the corresponding average 
inventory holding costs; in the last two columns we 
have depicted the absolute and relative difference in 
costs (the relative difference is measured with re- 
spect to the average costs for BSC). The results show 
that the costs for BSC may be considerably smaller 
than for EEB, and thus that for companies it may be 
wise to use BSC instead of EEB. For more numerical 
results on this comparison, see [57]. 

5. Uncapacitated distribution systems 

Distribution systems may be described as inven- 
tory systems for which one installation has no prede- 
cessor installation (the most upstream installation) 
and all other installations have exactly one predeces- 
sor installation. So, just like assembly systems, also 
distribution systems constitute a generalization of 
serial systems. But, in contrast to assembly systems, 
distribution systems are not equivalent to serial sys- 
tems, which is mainly due to an additional alloca-  
tion prob lem.  This problem occurs when an installa- 
tion with two or more successor installations has 
insufficient stock available to satisfy the require- 
ments of all its successor installations. In that case a 
decision has to be made on how to allocate the 
scarce materials to the successor installations. 

In the first part of this section, we analyze the 
allocation problem on the basis of a two-stage distri- 
bution system (the well-known single-depot, multi- 

warehouse problem). Next, we focus on the determi- 
nation and computation of (close-to-)optimal order- 
ing policies for this two-stage system. In the third 
and last part, we discuss the extension of the pro- 
posed approach for the two-stage distribution system 
to more general systems. 

5.1. The al locat ion p rob l em  

We analyze the problem of optimal control for a 
distribution system referring to the two-stage situa- 
tion displayed in Fig. 4, where an upstream installa- 
tion (with number N + 1) supplies N downstream 
installations (numbered 1 . . . . .  N). The leadtimes are 
denoted by l~ . . . . .  I s ,  l s+ 1, the (additional) inven- 
tory holding costs are given by h I . . . . .  h s ,  hu+ 1, 
and for each downstream installation n = 1 . . . . .  N 
penalty costs p ,  and a distribution function F (') for 
the demand per period are given. Demands in differ- 
ent periods and /o r  at different downstream installa- 
tions are assumed to be independent. The cumulative 
demand  p e r  per iod  i s  denoted by F = 
F (1), . . .  ,F(N).  

Now, let YN+ ~ denote a desired upstream echelon 
inventory position after replenishment while 
Yl . . . . .  YN are the respective downstream inventory 
positions at the final stage installations. The stochas- 
tic variable Ut~+, describes the cumulative demand 
during the leadtime lN+ 1" The upstream echelon 
stock immediately before an allocation takes place 
(ON+ 1) then is given by ON+ 1 = YN+ I -- UrN+ ," While 
w,  denotes the downstream inventory position at 
installation n just before allocation, we use the 
variable z ,  to describe the inventory position after 
allocation. Due to the definition of echelon stock we 
have: E ,  N l Wn ~- UN+ 1" 

l~+~ 

h.,v+~ 

+t+ , Pl 

v hn+x+h2, P2 

IN ~ - ~  , F ( N )  

' V h N + l + h N ,  PN 

Fig. 4. A two-stage distribution system. 
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If  we want to order up to the desired echelon 
inventory positions y,, n =  1, . . . ,  N,N + 1, at the 
beginning of each period, then an allocation decision 
has to be made only if 

N 

UN+1< ~ Y.. 
n = l  

In this situation we have to choose a reasonable 
allocation rule. Such a rule is given by applying a 
myopic allocation principle which means that scarce 
upstream stocks are allocated in such a way that the 
total expected holding and penalty Costs in the first 
periods that the distributed items reach their respec- 
tive downstream stockpoints are minimized. This 
allocation policy can be shown to be optimal i f  all 
downstream cost parameters are identical, and it is 
assessed to be close to optimal otherwise (see Feder- 
gruen and Zipkin [16], and Federgruen [14]). To 
formulate the allocation problem we introduce the 
final stage average cost functions D . (y . )  for n = 
1 . . . . .  N, which are defined in the same way as for 
the final stage of the serial system in formulae Eqs. 
(3) and (1): 

D.( y.) = fo L.( y. u) dF~)(  u) 

with 

L°( x.) = hO fo ( x. - u) dV">( u) 

+ ( P n  + h n  + hN+  1) 

× f ~ (  u -- x . )  dF(" ) (u) .  
X n 

Applying myopic allocation we get the following 
problem MYAL (MYopic ALlocation) of minimiz- 
ing the expected cos t s  RN+ 1: 

N 

min RN+ l = ~ D.( Zn) 
ZI" " ' ' ' Z N  n = l  

N 

s . t .  ~ Zn ~ UN + 1, 
n = l  

z.>_w, for n =  1 . . . .  ,N.  

A simple solution procedure is presented in the 
appendix of [35]. The solution evidently leads to 

optimal allocation decisions z~ which depend on the 
upstream stock level as well as on all downstream 
inventory positions: 

Z;  = Z ; ( U N + I , W  1 . . . . .  WN) f o r n =  1 . . . . .  N .  

.The same holds for the minimal costs: RN+I = 
R *  N+ I(VN÷ 1, Wl . . . .  WN). This result reveals that the 
decomposition property stated in Theorem 1 for se- 
rial systems will not hold for systems with an ar- 
borescent structure. We see that different from the 
serial case the minimal downstream costs resulting 
from an upstream reorder level do not only depend 
on the cumulated downstream inventory position 
~Nn=l Wn, but also on the specific distribution of this 
stock among the different installations. Thus, as has 
been noticed already by Clark and Scarf [5], base 
stock policies are not optimal in case of distribution 
systems (but, as we shall see, they are optimal under 
an assumption to be introduced in the next para- 
graph). 

In order to get tractable results for solving the 
materials coordination problem in addition to the 
myopic allocation rule usually a so-called balance 
assumption is introduced. This assumption implies 
that in each period the downstream stock levels are 
balanced in such a way that a cost minimizing 
allocation without restrictions on the allocation vari- 
ables will never result in negative allocation quanti- 
ties. Under this assumption, which rules out the N 
inequality constraints in MYAL, the allocation prob- 
lem reduces to a relaxed problem REMYAL (RE- 
laxed MYopic ALlocation): 

N 

min /~N+, = E D.(Zn) 
Z I ' ' ' ' ~ Z N  n ~ l  

N 

s . t .  ~, Zn = U N +  1 • 

n ~ l  

Solving this problem obviously leads to minimal 
costs /~* ^* N+ 1 = RN+ I(VN+ l) and optimal allocation 
decisions Z~, = z~, (VN+ l) for n = 1 . . . . .  N, which 
guarantee that a decomposition result holds like in 
Theorem 1. Furthermore a base stock policy is valid 
under these conditions. The numerical solution to 
REMYAL is found by a simple Lagrangian multi- 
plier technique, based on the convexity of the func- 
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tions D. (y . ) ,  and is characterized by the following 
equation set (with A as multiplier): 

0 0 
- - D I ( z , )  . . . . .  DN(ZN) = A ,  (7) 
OZ n OZn 

N 

E Zn ~--- UN+I" ( S )  
n = l  

The derivatives of D . (y . )  are given by 

0 
- - D . (  z . )  
Oz n 

= h . - ( p .  + h .  + hN+, ) (1 - -F~+) l (Zn) )  = A. 

(9) 
Together with Eq. (8), we have N + 1 equations for 
the N + 1 variables z~, . . ! ,  ZN, h. Unfortunately, in 
general these equations can not be solved in closed 
form for the multiplier A. However, if all down- 
stream costs are identical (p~ . . . . .  PN =P and 
h 1 . . . . .  h N = h), then Eq. (9) leads to 

F~,'+ ) 1(Z,) . . . . .  F~f+),(Zu) 

P+hN+ l + A  

p + h + h N +  1 ' 

an equation which is known as the equal-fractile 
rule (cf. Eppen and Schrage [13], who in addition 
assumed equal leadtimes). Moreover, if the distribu- 
tion functions F ¢") satisfy a normalization property, 
i.e. if there exists a distribution function q~ such that 

F(f)+ l( Zn) = ~ Zn ~l.+l  ~("~- for n = 1 . . . . .  N, 
In+ 1 

(lO) 
then in combination with Eq. (8) we find the follow- 
ing solution z,* : 

UN+ 1 --  ~'~ 

,,(n) with /2 = E,N__ ~ ~t.+ I 
A* satisfies 

A* = - - ( p + h N + l )  

(11) 

o" (n) while and ~=E,N__I t.+l, 

+(  p + h + hN+ i ) q  9 

The normalization property holds for several distri- 
bution functions (e.g. normal distributions). 

Of course, the balance assumption which has 
shown to be fundamental for allowing a stage-by- 
stage decomposition of the materials coordination 
problem in a distribution system needs some justifi- 
cation. Fortunately, it comes out f rom simulation 
studies (see Van Donselaar and Wijngaard [50]) as 
well as from analytic considerations (see Eppen and 
Schrage [13], Federgruen and Zipkin [16]) that this 
assumption does not represent a serious restriction. 
Although the occurrence of imbalance in multi- 
echelon systems is far from negligible, its influence 
on total costs appears to be relatively low. Unfortu- 
nately, the impact o f  imbalance becomes more seri- 
ous if all downstream stockpoints have to satisfy a 
prespecified target service level, Thus, more or less 
complicated approaches that were developed to in- 
clude imbalance aspects in the determination of re- 
plenishment rules ( c f .  Van Donselaar [49], Zipkin 
[58]) may be less favorable from a practical point of 
view. 

5.2. Base stock control for the two-stage distribution 
system 

Using myopic allocation under the balance as- 
sumption opens a way to determine optimal base 
stock control parameters. When echelon inventory 
positions (y~ . . . . .  YN, YN+I) are intended to be 
reached at the beginning of each period (not neces- 

N sarily restricted to En= ~ Yn < YN+ 1), the total average 
costs in the system can be described as 

DN+ 1( Yl . . . . .  YN, YN+l) 

N 

= fo L N + ' ( Y u + I - u ) d F l u + ' ( u )  + ~ D . ( y . )  
ta=l 

N 

E {D.(z;(yN+I u)) 
N+I--Y~N=lYnn= 1 

where 

-D. (y . ) }dF~u+, (u ) ,  (12) 

LN+I(X ) = h s + l f  ° ( x - - u )  d F ( u ) .  
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The third and last term in Eq. (12) denotes the 
induced penalty costs which occur if the upstream 
stockpoint cannot satisfy all N downstream demands 
(i.e. if F. N ,= 1 Y. > YN + 1 - Ul~+ l ) and therefore has to 
allocate stocks according to the allocation rule with 

Z£* = Zn~(UN+I) = Zn*(YN+ 1 -- UIN+I). 
Similar to the final stage in the serial system, for 

each installation n = 1 . . . . .  N it is optimal to let the 
echelon inventory position at the beginning of each 
period be increased to the level S, that minimizes 
D, (y , ) .  For this choice of the order-up-to levels, it 
holds that z£ ~ (ZN= 1 Si)  = S .  for all n = 1 . . . . .  N 
(Eqs. (7) and (8) are satisfied for A = 0), and we 
obtain a convex function DN+ ~(S 1 . . . . .  SN, YN+O" 
We now find the following theorem (cf. [35]). 

T h e o r e m  6. Let S, be the order-up-to level that 
minimizes D,( y,) ,  n = 1 . . . . .  N, and let SN+ 1 be the 
o r d e r - u p - t o  l e v e l  t h a t  m i n i m i z e s  
DN+ 1(S1 . . . . .  S~v, YN+ 1)" Then, under the balance 
assumption, the base stock policy (S 1 . . . . .  SN, SN+ l) 
is average cost optimal over all ordering policies for 
the two-stage distribution system as described in this 
section. 

Thus, under myopic allocation and balanced in- 
ventories, a simple base stock policy with order-up-to 
levels S l . . . . .  SN, SN+ l, known from serial and as- 
sembly systems, also is optimal for the distribution 
system. If  ~N,=1 S, -> SN+ l, this policy degenerates 
to an order-up-to SN+ 1 policy only at the upstream 
echelon combined with a complete distribution of 
upstream materials to the downstream installations 
according to the myopic allocation role. Theorem 6 
also implies a decomposition result stating that 
(S  1 . . . . .  SN, SN+ l) can be computed by (succes- 
sively) minimizing N + 1 convex functions of  one 
variable. 

Powerful numerical solution procedures as pre- 
sented in Section 4 for serial systems are not avail- 
able for general distribution systems, since the up- 
stream reorder level computation requires the calcu- 
lation of  the allocation functions z,* (y) .  But, numer- 
ical solutions are quite well possible, if additional 
assumptions are made such that linear allocation 
functions z2 (VN+I) are obtained, l ikcthe ones stated 
in Eq. (11). As we have seen, such functions are 
obtained if both the downstream installations have 

identical cost parameters and the normalization prop- 
erty Eq. (10) holds. Both conditions are satisfied in 
the case with identical downstream installations. Un- 
der linear allocation functions, the average cost func- 
tion DN+ 1 (Yl . . . . .  YN, YN+ l) appears to be a News- 
boy-type function: 

w h e r e  f o r  each  n = 
m i n { z ~ ( y u +  1), y , }  
Flu + ,(x/(o-,(")+ 1/ /{~) ) ,  X ~ ~ .  

Theo rem 7. Suppose that the allocation functions 
z,~ (VN+ I) are linear and that they are given by (11). 
Let  y,  ~ R for  n = l . . . . .  N, N + I and suppose 
that z~ (~U= I Yi) = Y, for  n = 1 . . . . .  N. Then 

DN+ 1( Yl . . . . .  YN' YN+ 1) 

~o 

=hN+l fo  ( Y N + l - u )  dF, u+,+l(u) 

+ ~., h ,  27,-  u) d 1~ (') ~n(yN+l)--fin 
IN+ 1 ] 

n = l  

) (u) F (.) In+ 1 

+ ( P n  + h n  + h N + l )  

d( t  F( ' )  ]Z:(yN+I)-L x ( u - L )  

*v(°) )(u)} 
l,, + 1 

1 . . . . .  N ,  ~ .  = 

a n d  F ~ ( u ' ) ( x )  = 

In this theorem, the levels 27, denote the highest 
reachable order-up-to levels for the inventory posi- 
tions of  the downstream installations. Further, 
(I~(n) ]Zn(YN+ l)--Y, represents the distribution function 

~ l N +  1 ] 
of  the shortfall (with respect to 27,) for the inventory 
position of  downstream installation n at the begin- 
ning of  a period and (~7(,) ~z*(y~+,)-;., F(,) repre- \ - - I N +  11 In+ 1 
sents the distribution function of  the difference be- 
tween 27, and the actual installation stock at the end 
of  a period. The theorem can be proved along the 
same lines as Theorem 3 for serial systems. It is 
noted that also several other results can be derived in 
the case of  linear allocation functions (such as a 
Newsboy- type  formula for the derivative of  
ON+I(Yl  . . . . .  YN,YN+I) to YN+I and expressions 
for service levels). 
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To exploit Theorem 7, one also needs expressions 
for the two-fold convolutions that occur in the for- 
mula for DN+ l( Yl . . . . .  YN, YN+ 1)" Instead of deriv- 
ing exact expressions, one can also use the approxi- 
mation procedure based on two-moment fits, as de- 
scribed in Section 4. However, the major question 
remains what to do if the allocation functions are not 
linear. An appropriate option seems to be that the 
allocation functions are approximated by linear func- 
tions in that case. A smaller problem, occuring when 
implementing the optimal base stock policy, con- 
cerns the imbalance, i.e. what to do if the allocation 
roles derived under the balance assumption in prob- 
lem REMYAL lead to negative shipment quantities. 
In that case the original problem MYAL must be 
solved; it is repeated that an efficient procedure for 
MYAL is described in the appendix of [35]. 

Finally we will discuss some structural properties 
of optimal (or close-to-optimal) materials coordina- 
tion policies in stochastic arborescent systems. I f  
holding costs are equal at all stockpoints of the 
system (i.e. h,  = 0 for n = 1 . . . . .  N)  as is common 
in systems of pure physical distribution, then mini- 
mizing Dn(y ~) results in S, = oc for n = 1 . . . . .  N. 
Theorem 6 shows that in this case. irrespective of the 
amount of penalty costs and leadtimes, the optimal 
upstream order-up-to level is SN+ I and that all in- 
coming goods completely have to be distributed 
immediately to the downstream stockpoints. Thus, 
under these circumstances the upstream installation 
acts like a pure transshipment point without holding 
stocks (often denoted as a stockless depot). In this 
case the traditional pull concept of base stock control 
converts to a push strategy for moving the materials 
flow. Besides, this policy is just the one analyzed by 
Eppen and Schrage [13] who show that in the case of 
identical final-stage costs and leadtimes and for nor- 
mally distributed demands a closed-form expression 
can be derived for SN+ 1: 

SN+I 

N 

=( l . ,+ ,+ l+ l )  E .~,"' 
n = l  

+ k .  IN+ l O'( '0 2+(l~- 1 O'l(") 
1r=1 

(13) 

with a safety factor k = q)- 1 q( p / (  p + hN + 1 ))" The 

second term in formula Eq. (13) represents the sys- 
tems safety stock. It can be seen that this safety stock 
is lower than the respective stock in a system where 
each downstream stockpoint is separately supplied 
from outside with total leadtime lN+l+ l, which 
amounts to a buffer of k - [ ( lN+  1 + i +  1) .  
E N ( n=lO'(n~)2] ~/2. It should be noted that the first 

square-root term in Eq. (13) incorporates safety stock 
reductions which stem from risk pooling with respect 
to N (here independent) downstream demands over 
the upstream replenishment leadtime of lzv+l peri- 
ods. This so-called por(folio effect of risk pooling 
varies with the size of demand correlation, but it 
only vanishes if all demands are perfectly (positive) 
correlated, In distribution systems a second risk pool- 
ing phenomenon a t  upstream stockpoints occurs 
which is denoted as the depot effect, This effect 
means that downstream stock imbalances can be 
reduced by holding upstream safety stocks. This is 
due to the fact that upstream safety stocks decrease 
the  overall replenishment leadt imes for actions to 
compensate imbalance at downstream installations. 
In distribution systems without holding cost differ- 
ences, this effect is the only reason to hold stocks at 
upstream stages. In accordance to  the minor impact 
of imbalances on the optimal control policy reported 
above; several studies reveal that in such distribution 
systems only a very limited amount of safety stocks 
should be  held at upstream levels (see e.g. De Kok, 
Lagodimos and  Seidel [10]). Only the growth of 
holding costs with additional levels in the logistics 
system a s  is typical for production systems justifies 
to keep substantial safety stocks in the upstream part 
of  a distribution system. 

5.3. Extensions to more general systems 

The analysis presented in this section for a basic 
two-stage distribution system can easily be extended 
to more than two levels, Under the imbalance as- 
sumption the decomposition property Still holds, 
which enables us to solve multilevel problems recur- 
s ive ly  and apply a base stock policy. Due to the 
needs of solving allocation problems embedded in 
the base stock replenishment problem, the numerical 
effort for computing optimal values of all order-up-to 
levels will be quite high. A significant simplification 
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arises if we restrict our considerations to a policy 
which allows stock holding only at the final stage of 
the systems, i.e. if we use a push strategy which has 
been mentioned to be quite appropriate for physical 
distribution systems. Under such a policy an order- 
up-to level has only to be determined for the highest 
echelon which is procured from outside while at 
lower system levels only distribution decisions have 
to be made. 

The analysis presented in this section and the 
previous two sections enables us to determine opti- 
mal  policies in rather general systems in which a 
convergent (arborescent) structure ending in a central 
stockpoint is followed by a divergent (inverse ar- 
borescent) structure starting in this central stockpoint 
(see e.g. Fig. 1). Such a system represents the situa- 
tion in which a procurement and assembly phase is 
followed by a distribution phase as is rather common 
in industry. Unfortunately, the more general situa- 
tion, which arises for instance if common subassem- 
blies are used in a variety of final products, leads to 
additional complexities not investigated up to now. 

6. Capacitated systems 

A major assumption of the multi-echelon models 
discussed in the previous sections is that an infinite 
capacity is assumed for each (production) stage. 
This assumption can be justified if the workloads of 
the different stages are not too high and rather stable 
in time (note that the latter property mainly depends 
on the variability of the demand for all products 
together). However, it must be adjusted for stages 
with high and rather variable workloads. The most 
direct way to model restricted capacity consists of 
assuming that some stages have a fixed capacity 
denoting the maximal amount of products that can be 
ordered in each period. An alternative way consists 
of replacing some stages by queueing systems, see 
e.g. Lee and Zipkin [36,37] and Veatch and Wein 
[53], but that leads to harder models and less results 
(up to now) and therefore is not further discussed 
here. Below, we describe a few results which are 
available for systems with the fixed capacity restric- 
tions. 

Let us first consider the single-stage system with 
a fixed capacity C, and further with holding costs h, 

penalty costs p, leadtime l and demand distribution 
F. Federgrnen and Zipkin [18,19] have shown that 
also for this system a base stock policy is optimal. 
For the computation of the optimal base stock policy, 
one can exploit that for each base stock policy the 
shortfall with respect to the desired order-up-to level 
is distributed according to the solution G of 

c 

The distribution G is obtained from the observa- 
tion that the shortfall process is identical to the 
waiting time process in a D[G[1 queue with deter- 
ministic interarrival times C and general service 
times which are distributed according to F (cf. Tayur 
[47] and Zijm and Van Houtum [57]). Define G 1 = F c 
and G i + I = ( G i * F )  c for each i > l ,  then G =  
limi_~= G i and it is easily seen that the distribution 
G can be computed by using the exact procedure 
which has been developed for the incomplete convo- 
lutions occurring in the analysis of uncapacitated 
multistage serial system (cf. Section 4). Alterna- 
tively, a quick and accurate approximation can be 
obtained by using the approximation procedure as 
described in Section 4 or the approach developed by 
De Kok [8]. These procedures can also be used to 
compute the distribution G * Ft+ 1 and hence the 
optimal base stock policy S characterized by 

P 
( G * F I + I ) ( S )  = - -  

p + h  

and the corresponding average costs 

D( S) = ho fo~( S - u) d(G * Ft+ l)(U ) 

+( p + h) f f  (u - S) d(G * Ft+ , ) ( u ) .  

The results for the single-stage capacitated system 
can be extended to a general multi-echelon system 
with a central stockpoint as described at the end of 
the previous section, if only a finite capacity is 
imposed for the most upstream stage/installation 
(cf. [57]). Unfortunately, they cannot be extended if 
also capacity restrictions are imposed for one or 
more other stages. The optimality of base stock 
policies no longer holds in that case, even not for the 
two-stage serial system with capacity restrictions for 
both stages; see Speck and Van der Wal [45]. Never- 
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theless, the best base stock policy still will be close 
to optimal. Numerical tools for finding the best base 
stock policy for a capacitated serial systems have 
been developed by Glasserman and Tayur: a simula- 
tion based method has been described in [21], and, 
based on the asymptotic approximations for the 
shortfalls in [22], a simple and fast approximation 
procedure has been developed in [23]. 

It is noted that the results stated above hold for 
the single-product case. We believe that they also are 
useful for the multiproduct case, where one might 
proceed as follows: (i) determine the optimal base 
stock policy for each product in the corresponding 
uncapacitated system; (ii) subsequently, use the ca- 
pacitated model with all products replaced by one 
aggregated product to determine the required extra 
safety stock due to the capacity restrictions. 

7. Materials coordination without internal delays 

Up to now a situation has been considered where 
each stock insufficiency at any installation immedi- 
ately leads to delays in the downstream materials 
flow and deteriorates customer service causing addi- 
tional penalty costs. This stochastic interrelationship 
mainly is responsible for the complexity of multi- 
stage materials coordination problems as described 
in the previous sections. Fortunately, the assumption 
of immediate delays can be relaxed in many multi- 
stage inventory systems yielding the chance to apply 
simpler base stock or, equivalently, safety stock 
optimization procedures. 

In many real-life systems, especially in the manu- 
facturing context, protection against uncertainties of 
demand is not only guaranteed by stocks but also by 
slack capability of the operating system to respond to 
unexpected demand situations. In these cases safety 
stocks have to cover demand variability only up to a 
maximal reasonable amount. In case of excessive 
demand fluctuations, emergency actions within the 
context of  operating flexibility (e.g., accelerating 
internal processing or initiating express deliveries 
from outside) will be taken in order to avoid delays 
in order processing. In many situations the use of the 
flexibility does (at least in the short run) not cause 
additional costs but is restricted by a capacity limit 
which may not be exceeded. This limit can be de- 

scribed by internal service levels that restrict the 
occurrence of emergency actions and that are fixed 
by the management. Now, if internal safety stock 
protection is sufficiently high so that extraordinary 
requirements can be totally covered by slack re- 
sources of the operating system, there will be no 
delay on a downstream stage even when its upstream 
stockpoint is not sufficiently buffered. Under these 
conditions safety stock determination can be decom- 
posed due to relaxing interstage shortage dependen- 
cies. This means that the total replenishment lead- 
times for all end items can be covered separately by 
safety stocks all over the system. This fact allows a 
simple approach of safety stock optimization which 
was first introduced by Simpson [44] for serial sys- 
tems (along with customer service level considera- 
tions) and later extended to distribution and assem- 
bly systems by Inderfurth [25,26]. 

This approach is restricted to stochastic demands 
with the normalization property mentioned in Sec- 
tion 5: Fl(U) = ~ ( ( u  -- p,t)/trl).  Because safety 
stocks will be determined on a loca l  stock' basis, 
installation stock holding costs h + for each stock- 
point i have to be considered. These costs are calcu- 
lated by summing up the echelon holding costs hj of 
all preceding stockpoints j and stockpoint i itself. 
Due to the decomposition property of safety stocks a 
single-level scheme can be applied to determine 
safety buffers at each stockpoint. If  we define T,. to 
be the (integer) local replenishment leadtime which 
has to be covered by a safety stock at installation i, 
and if o-~ i) denotes the standard deviation of a 
single-period demand at this stockpoint (being gener- 
ated by  the demands of all end items supplied by this 
stockpoinO, then the respective safety stock at instal- 
lation i must be qio-(O(Ti)l/2. Here we assume that 
demands are independent from period to period. For 
an intermediatestage stockpoint the safety factor qi 
is predetermined by fixing a certain internal level. 
For a finalstage stockpoint qi may be the result of a 
single-level holding and penalty cost minimization 
which according to Corollary 1 yields: qi = 
~ -  l( Pi / (  Pi + h~ )). 

For the problem of determining appropriate safety 
stocks, the parameters T i can be treated as decision 
variables. These variables are restricted by the fact 
that at each intermediate stage stockpoint at least the 
cumulated replenishment leadtime has to be covered 
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locally. At end-item stockpoints the coverage of the 
total replenishment leadtime has to be guaranteed. 
Overprotection should be avoided. Thus, for mini- 
mizing the expected (safety stock) holding costs for 
the whole system a simple optimization problem, 
with specific forms for the different types of multi- 
stage inventory systems, can be formulated. 

For the serial system depicted in Fig. 2 we get the 
optimization problem SEOP: 

N 

min E h+ qio'~i)fTi 
TI . . . . .  TN i= 1 

N N 

s.t. ET , .  = ~. , l i+ l ,  
i = l  1=1  

N N 

~_~Ti<_ ~. , l i+l  ( n = 2  . . . . .  N,) 
i=n i=n 

T,_>0 ( n = l  . . . . .  N ) .  

For the assembly system displayed in Fig. 3 (with 
l 1 < " ' "  < l N )  t h e  following optimization problem 
ASOP has to be formulated: 

N 

min ~7. h + qio'(i)~i , 
TI . . . . .  TN i= 1 

S.t. To + TN= Io + IN + 1, 
To + T,> lo + l, + l, 

( n = l  . . . . .  N - l ) ,  

T,<_I, 

( n = l  . . . . .  U), 
L e o  

( n = l  . . . . .  U). 

Finally, for the distribution system of Fig. 4 the 
safety stock optimization problem, denoted by DIOP, 
is written as 

N + I  

min Y'. h 7 qio-(i)~i , 
TI . . . . .  TN+I i =  1 

s . t .  Tu+ , + T n = I N +  I + 1 

( n = l  . . . . .  N ) ,  

TN+ 1 <- IN+ 1, 

T , > 0  ( n = l  . . . . .  N , N +  1). 

While in SEOP and ASOP all values or(i) are 
identical to the single end-item standard deviation 

(O'} i) = O'} 1) in SEOP and o-} i) = ~r} °) in ASOP), in 
DIOP the upstream demand variability o-} N+ 1) de- 
pends on the stochastic demands at all succeeding 
end-item stockpoints and is thus also influenced by 
the correlation coefficients pC=,.) of these random 
variables: 

m = l  n = l  

The optimal T~-values can straightforwardly be 
used to calculate local safety stocks and local order- 
up-to levels (by adding expected leadtime demand). 
From these values echelon order-up-to levels S i can 
simply be determined by summation according to the 
echelon principle. 

Since SEOP, ASOP and DIOP are easily identi- 
fied to be concave minimization problems, an opti- 
mal solution must be located in an extreme point of 
the restriction set. This observation implies a signifi- 
cant reduction of calculations. Along with the spe- 
cific structure of the multistage systems powerful 
computational procedures, based on a dynamic pro- 
gramming approach, can be applied to solve even 
very large problems of this type (see Minner [38]). 
By Inderfurth and Minner [30] it is shown how the 
two-stage models presented in this section can be 
extended to systems with an arbitrary number of 
stages and with different kinds of internal (and also 
external) service levels. In a further extension, Inder- 
furth [29] has shown that demand processes with 
correlation through time also can be integrated in 
this approach. Thus, if the assumption of avoidability 

• of internal delays is reasonable a very easy way to 
determine optimal base stock control parameters even 
for complex multistage problems of materials coordi- 
nation is given. 

8. Conclusions and suggestions for future re- 
search 

In this paper, we have outlined a theoretical 
framework to prove the optimality of base stock 
policies with respect to the average cost criterion for 
multi-echelon systems, under rather general condi- 
tions. Moreover, numerical procedures have been 
developed that allow for a quick and exact determi- 
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nation of these policies under rather general assump- 
tions on the external demand. Also, approximations 
and extensions to service level systems are dis- 
cussed. Further extensions to capacitated systems are 
briefly treated as well as methods that incorporate 
some internal company flexibility. 

As far as the models in this paper are concerned, 
the theory is rather complete with respect to unca- 
pacitated serial and pure assembly systems. The 
analysis of distribution systems is less general up to 
now, due to the need to determine allocation func- 
tions which prevent a decomposition result unless a 
balance assumption ts included. 

A large number of interesting questions may be 
the subject of future research. Clearly, the problem 
of how to get rid of the balance assumption in 
distribution systems and still keep the analysis 
tractable will generate some further research. The 
analysis and calculation of base stock policies in 
general acyclic networks without a central stockpoint 
represents a further open problem. Such a network 
represents the situation in which complex subassem- 
blies (e.g. mounted printed circuit boards or cathode 
ray tubes) are used in a variety of end items. Optimal 
policies in such networks do not have to be base 
stock policies but the question remains how close to 
optimal base stock policies are. Also the analysis of 
cyclic networks in which items may return to certain 
stockpoints becomes of increasing interest, given the 
growing importance of reverse logistics and, more 
general, environmental considerations. Here, some 
basic models must be found in repairable items 
inventory theory in which parts may return to a 
repair depot and subsequently are used again (see 
Nahmias [39], Diks et al. [12]). 

Capacitated multistage systems represent a chal- 
lenge to the research community since they model 
the combined problems of capacity planning and 
material coordination. Some work on single-product 
models has been done (cf. Section 6) but the more 
challenging multiproduct models have been hardly 
investigated up to now. Cohen and Lee [7] treat 
capacitated, multiproduct, multistage systems in a 
queueing framework but their approach is com- 
pletely based on simple decompositions in single- 
stage queueing systems, which subsequently are 
treated as systems not correlated in time. Such an 
approach ignores the complex material relationships 

that occur if upstream installations fail to serve 
downstream installations. A queueing type of ap- 
proach will definitely be needed but then the use of 
base stock policies (which seem to be natural) in- 
duces finite buffers which are known to lead to a 
severe increase of complexity, in particular for 
multi-item systems. However, a sound theory and 
tractable numerical procedures for capacitated multi- 
stage, multi-item systems would mean a real break- 
through in one of the most important areas of supply 
chain management. 
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