
international journal of 

production 
economics 

ELSEVIER Int. J. Production Economics 35 (1994) 391400 

On multi-stage production/inventory systems under 
stochastic demand 

Henk Zijm”, *, Geert-Jan Van Houtumb 

a University, qf’ Twente, Department of Mechanical Engineering, P.O. Box 217. 7500 AE Ettschede, The Netherlands 

’ Eindhoaen University of Technology, Department of Mathematics and Computing Science, P.O. Bo.u 513, 5600 MD Eindhoven. 

The Netherlands 

Abstract 

This paper was presented at the 1992 Conference of the International Society of Inventory Research in Budapest, as 
a tribute to professor Andrew C. Clark for his inspiring work on multi-echelon inventory models both in theory and 
practice. It reviews and extends the work of the authors on periodic review serial and convergent multi-echelon systems 
under stochastic stationary demand. In particular, we highlight the structure of echelon cost functions which play 
a central role in the derivation of the decomposition results and the optimality of base stock policies. The resulting 
optimal base stock policy is then compared with an MRP system in terms of cost effectiveness, given a predefined target 
customer service level. Another extension concerns an at first glance rather different problem; it is shown that the 
problem of setting safety leadtimes in a multi-stage production-to-order system with stochastic lead times leads to similar 
decomposition structures as those derived for multi-stage inventory systems. Finally, a discussion on possible extensions 
to capacitated models, models with uncertainty in both demand and production lead time as well as models with an 
aborescent structure concludes the paper. 

1. Introduction 

This paper reviews and extends the work of the 

authors on the analysis of periodic review multi- 
stage production/inventory system under station- 
ary stochastic demand. It was presented in a special 
session of the ISIR Conference in Budapest, August 
1992, to honor the path-breaking work of Professor 
A.C. Clark on multi-echelon inventory models, 
starting at the Rand Corporation in the late 1950s 
and later applied when, e.g., developing multi- 
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indenture, multi-echelon inventory systems for the 
American Navy. 

The publication of Forrester’s study on the cycli- 
cal variation of stocks in large production-distribu- 
tion chains [l] marked the start of a period of 
increasing interest in multi-stage inventory systems. 
The first rigorous analysis of serial multi-stage in- 
ventory systems under random demand was given 
by Clark and Scarf [2], in a discounted cost 
dynamic programming framework and based on 
Clark’s observations of the fundamental role 
played by echelon stocks [3, 41. Since then, the 
literature has expanded rapidly, considering not 
only serial systems but in particular also systems 
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with an aborescense (divergent or distribution) 
structure and, to a minor extent, systems with 
an inverse aborescense (convergent or assembly) 
structure. Clark and Scarf [S] extended their 
previous work on serial systems with approximate 
models to handle fixed costs at the upstream stages. 
Langenhoff and Zijm [6] present an average cost 
unifying framework which can handle all three 
structures mentioned above. Cohen and Lee [7] 
present a completely different approach, based on 
queueing approximations, to deal with capacitated 
multi-echelon serial systems. Attention to conver- 
gent assembly structures was further given by 
Schmidt and Nahmias [S], Rosling [9] and Van 
Houtum and Zijm [lo]; in particular the latter two 
papers establish equivalence properties with serial 
systems (also discussed in 161. Most attention has 
been paid to systems with an aborescense (diver- 
gent) structure, more specific to the two-stage 
single-depot multi-warehouse system under sta- 
tionary stochastic demand (a few references are 
[l l-221). Finally, many authors consider lot-sizing 
problems in deterministic multi-stage production 
systems. For further details, the reader is referred to 
the books of Schwarz [23] and Axsater et al. [24]. 

This paper discusses periodic review stochastic 
multi-stage systems with both a serial and an as- 
sembly structure. Parts of the unifying framework 
to be discussed are published elsewhere [6, lo]. In 
Section 2, we provide some intuition for the struc- 
ture of echelon cost functions, after which a brief 
summary of results obtained so far is given. New 
results on comparisons with MRP-controlled sys- 
tems are presented in Section 3 and equivalence 
relations with safety lead time multi-stage models 
are discussed in Section 4. Finally, we explore the 
possibilities to extend the framework to capacitated 
systems (Section 5) as well as to a series of related 
but more general interesting models (Section 6). 

2. Multi-stage serial systems and assembly systems: 
A review 

Consider first a two-stage inventory system 
where between the two stages and after the most 
downstream stage material can be stocked in instal- 
lations. Demand originates at the lowest (down- 

stream) installation only. The stages (followed by 
their installations) are numbered such that material 
flows through stage 2 and stage 1 subsequently. 
A fixed lead time I, is required to transfer material 
to installation 2 while the transfer from installation 
2 to installation 1 takes a fixed lead time I,. These 
transfers may represent a material supply and pro- 
duction stage, respectively. F[ denotes the distribu- 
tion function of the l-period cumulative demand Us. 
If I= 1, we suppress the index. At the end of each 
period (of unit size), material may be ordered at 
each installation (from the next higher installation 
or from the outside supplier). We assume that there 
is no material shortage at the outside supplier, 
hence every order of installation 2 will indeed be 
delivered l2 periods later. Orders from installation 
1, however, may be subject to an additional delay 
(apart from the lead time Ii) due to a material 
shortage at installation 2. We assume that any 
excess demand is backlogged. Furthermore, a hold- 
ing cost k, is incurred at installation 2 and in 
transfer to installation 1 whereas in the latter instal- 
lation a holding cost k2 + kl is assumed (higher 
because of value added). Finally, a penalty cost 
p holds in case of shortage at installation 1 (unfilled 
demand). All these costs are linear, both in time and 
quantity. No fixed ordering costs are assumed. 
Furthermore, because we present an average cost 
analysis and all excess demand is backlogged, it is 
easy to verify that linear variable ordering costs do 
not influence any control policy and therefore can 
be omitted. All costs are incurred at the end of a 
period. 

The concept of echelon stock for a given installa- 
tion was introduced by Clark [3] to denote all 
stock at that installation plus in transit to or on 
hand at any installation downstream minus even- 
tual backlogs at the most downstream installation. 
The chain under consideration is called the echelon. 
An echelon stock may be negative, indicating that 
the backlogs are larger than the total inventory in 
that echelon. Echelons are numbered according to 
the highest installation in that echelon. Finally, we 
define the echelon inventory position of an installa- 
tion as its echelon stock plus all material in transfer 
to that installation. 

Clark and Scarf [2] assumed the existence of 
convex cost functions which depend on echelon 
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stocks only. For the linear (inventory and penalty) 
cost structure defined earlier, we first have to 
develop a natural definition for the corresponding 
echelon cost functions. A careful analysis of pos- 
sible situations easily leads to these natural expres- 
sions. Let u, be the stock of echelon n (n = 1,2) at 
the end of a period (u2 > vi). Then we have costs 

h&Z - u1) + (hi + h2)Ui = (hi + h2)Ui - hzu1 

if u, > 0, 02 >o, 

h2(u2 - 01) + P( - ~1) = P( - 01) - ho1 + ho2 

if u, d 0, v2 > 0, 

h2(u2 - 01) + P( - 01) = P( - ~1) - h2u1 + b2 

if ui d 0, v2 d 0. 

It therefore seems natural to attribute costs h2 v2 to 
the echelon stock u2, independent of its sign, where- 
as to u1 we attribute either (h, + h,)u, - h2v, (if 
vi > 0) or p( - vl) - h2v1 (if u1 < 0). Note that the 
second term in the costs of ui is again independent 
of its sign. As a result we find that, if at the begin- 
ning of a period the echelon stock of installation 
n is increased to x, for n = 1,2, then the expected 
costs incurred at the end of a period are equal to 

Li (xi) + L2(x2), where 

XI a0 

L, (xi) = (hi + h,) 
s 

(xi - n)dF(n) + P 
s 

(u - ~1) 

0 x1 

cc 

x dF(u) - h2 
s 

(x1 - u)dF(u) 

0 

a) 

= h, (x1 - u)dF(u) 
s 
0 

30 

+ (P + hl + h2) s (u - x,)dF(u) 

for all xi, 

Lx 

L2(x2) = h2 
s 

(~2 - u)dF(u) for all x2. 

0 

This defines the echelon cost functions. If now, at 
the beginning of period t, the echelon inventory 
position of installation 2 is increased to y2 and, at 
the beginning of period t + 12, the echelon inventory 
position of installation 1 to y, or asfur us possible if 
y, cannot be reached, then it is not hard to verify 
that the expected costs at the end of period 
t + l2 + l1 are equal to 

D,(Y,,Y,) = D,(Y,) + 
s 
L2(~2 - c)dFlz(d 

0 

where 

0 

Langenhoff and Zijm [6] show that the optimal 
average cost policy is characterized by two para- 
meters (S,, S,), where S, minimizes D,(yi) and S2 
subsequently minimizes D2(S1, y2). In other words, 
the optimal base stock policy (S,, S,) prescribes 
that at the beginning of each period the echelon 
inventory position of echelon n is increased to S,, 
for n = 1, 2. Analogous results are derived for 
N-stage serial systems, meaning that the N-dimen- 
sional optimization problem can be solved com- 
pletely by successively solving a series of recursively 
defined one-dimensional problems. An extensive 
numerical analysis of the difficulties stemming from 
these recursive definitions is presented by Van 
Houtum and Zijm [lo]. The equivalence of serial 
and assembly systems has been proved by Rosling 
[9] and Langenhoff and Zijm [6]. Finally, Van 
Houtum and Zijm [lo] show how to extend the 
analysis to systems in which average holding costs 
have to be minimized, subject to a target customer 
service level. 
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Table I 
Basic parameter values for the two-stage assembly model 

h, = 5 h, = 1.5 h, = 1.5 h, = 2 I’= 100 fl = 70 
lo = 2 I, = I I, = 2 I, = 4 * = 95%” 

3. Comparisons with MRP-controlled systems 

The optimality of a base stock control policy for 
serial and assembly systems implies that safety 
stocks, meant to anticipate uncertainty in future 
demand, are spread over the entire chain. An alter- 
native is to keep all safety stocks at one installation, 
close to the market. This is the policy advocated in 
the initial MRP literature (see e.g. [25]) where all 
uncertainty in a make and assemble to stock envi- 
ronment is covered at the end-item level. Often, the 
master production schedule (MPS) specifies quan- 
tities of end items to be assembled each period 
while the preceding phases (component manu- 
facturing and subassembly) are driven determini- 
stically by this MPS. More precisely, under 
conditions similar to those studied in this paper, 
the MPS of an MRP system should specify for each 
period how much end items have to be produced to 
return to an optimal reorder level which covers all 
demand uncertainty during thefill system leud time 
(plus one period). In fact, this is similar to a single- 
stage inventory system; the only difference with the 
classical Newsboy problem is that holding costs are 
calculated relative to the manufacturing or assem- 
bly stage the material is in. Optimal reorder levels 

Table 2 
Comparisons between MRP and base stock policies for varying d 

for such a, basically single-stage, system are easily 
determined but it seems worthwhile to investigate 
the cost differences between such an optimal 
MRP policy and an overall optimal base stock 
policy. Note that the two policies coincide if 
no added value is counted in the system (i.e. h, = 0 
for y1 >, 2). 

We start with investigating these cost differences 
for a simple two-stage assembly system with three 
components and one end item, under a service level 
constraint. Table 1 lists the basic parameter values 
(where ~1 and g denote the mean and standard 
deviation of the periodic demand, while T is the 
target customer service level). 

In the following tables, a number of cost com- 
parisons between an optimal MRP policy and an 
overall optimal policy are made as a function of one 
varying parameter (e.g. c in Table 2, 7 in Table 3). 
The order-up-to levels for the optimal base stock 
policy as well as the (single) order-up-to level for 
the optimal MRP policy (SMRP) are given, together 
with the inventory holding costs for both policies 
(CBS and ChlRP). CD finally denotes the cost differ- 
ence between the two policies, expressed both abso- 
lutely and as a percentage. 

Table 2 illustrates the intuitively obvious result 
that the differences in cost between an optimal 
MRP policy and an overall optimal policy increase 
as a function of demand uncertainty (the standard 
variation). Table 3 shows that the cost difference is 
also (weakly) sensitive to the target service level; 
this sensitivity seems to increase for very high 
service levels. 

10 316.8 419.5 519.2 718.9 1174 714.2 II92 18 
20 346.0 455.3 557.8 763.1 1480 751.2 I562 82 

30 381.3 498.4 604.4 816.4 1869 796.3 2013 I44 

40 421.7 547.4 657.2 876.6 2317 847.7 2527 210 

50 467.6 602.7 716.5 944.0 2827 905. I 3101 274 

60 516.9 66 I .9 779.8 1016 3376 966.6 3716 340 

70 573.0 728.6 850.5 1096 3995 1035 4397 402 

80 628.0 794.1 920.4 1175 4607 1103 5078 471 

90 691.3 868. I 993.3 1263 5304 1179 5838 534 

100 712.4 961.7 1096 1371 6183 1271 6155 572 

S, SZ S.? CHS C MRP CD CD (%) 

1.5 
5.5 
7.7 
9. I 

9.1 
10.1 

10.1 

10.2 
10.1 

9.3 
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Table 3 

Comparisons between MRP and base stock policies for varying r 

T (%) s, 51 sz 53 c BS SURP ChlRP CD CD (%) 

90 522.3 667.3 781.6 1015 3384 959.8 3698 314 9.3 

91 530.1 676.8 792.4 1027 3478 971.5 3805 327 9.4 

92 538.7 687.4 804.3 1041 3583 984.5 3925 342 9.5 

93 548.5 699.2 817.6 1057 3701 999.0 4060 359 9.7 

94 559.8 712.7 832.8 1075 3836 1015 4215 379 9.9 

95 573.0 728.6 850.5 1096 3995 1035 4397 402 10.1 

96 589.1 747.7 871.8 1120 4189 1058 4619 430 10.3 

97 609.6 771.9 898.7 1151 4435 1087 4900 465 10.5 

98 638.2 805.4 935.7 1194 4776 1127 529 1 515 10.8 

99 686.3 861.0 996.7 1263 5345 1193 5941 596 11.2 

Table 4 

Basic parameter values for the two-stage serial model 

IO=2 1,=4 hi=21, fori=O,l ~=lOOa=70 r=95% 

In the next tables we investigate the influence of In summary, we may conclude that the increase 
the amount of value added in the manufacturing in costs as a result of the absence of buffer stocks 
process, as well as the influence of the lead times. in the component and subassembly stores (hence 
A simple two-stage serial system is used as an only stocks of end items) strongly depends on 
example (see Table 4). Since inventory holding the amount of value added during the subsequent 
costs are usually taken as a percentage of the value stages in the manufacturing process. The influence 
of an item at each moment, a large ho value reflects of the height of the target customer service level 
a high added value in the manufacturing process. is less significant but a high demand variability 
Intuitively, one would expect a sharp increase in may have a very serious impact on these cost 
cost difference as h,, grows larger and a relatively differences. 

Table 5 
The influence of the value added in a two-stage serial model 

ho h, SO S, C BS SMRP C MRP CD CD(%) 

minor influence of the ratios of the lead times. 
Tables 5 and 6 confirm these conjectures. 

Finally, we investigate the influence of the num- 
ber of installations in a serial system. Table 7 lists 
the basic parameters; the results are shown in 
Table 8. 

0 10 1035 1035 5397 1035 5397 0 0.0 
1 9 703.7 1036 5186 1035 5197 11 0.2 
2 8 651.7 1040 4949 1035 4997 48 1.0 
3 7 619.4 1045 4689 1035 4797 108 2.3 
4 6 595.3 1052 4409 1035 4597 188 4.3 
5 5 575.4 1062 4107 1035 4397 290 7.1 
6 4 558.4 1075 3784 1035 4197 413 10.9 
7 3 543.1 1093 3435 1035 3997 562 16.4 
8 2 529.0 1121 3054 1035 3797 743 24.3 
9 1 516.0 1171 2627 1035 3597 970 36.9 

10 0 503.8 co 2088 1035 3397 1309 62.7 



Table 6 

The influence of the lead time ratios in a two-stage serial model 

I 0 I, &I s, C”, s MRP C MRP CD CD (%) 

I 5 510.4 1040 4981 I035 5077 96 1.9 

2 4 610.7 1047 5517 1035 5677 160 2.9 

3 3 715.8 1056 5695 1035 5877 I82 3.2 

4 2 821.7 1065 5509 1035 5677 I68 3.0 

5 I 928.0 1076 4965 1035 5097 II2 2.3 

Table 7 

Basic parameters for investigating the influence of N 

I5 5 2 5 

25 4 I 2 45 

35 3 I I 2 34 5 

45 2 I I I 2 2 3 4 5 

5s I I I I 12 I2 3 4 5 

/L= 100 0 = 70 r = 95% 

4. A related model: Setting safety lead times 
in a multi-stage system 

The problem of setting planning lead times in 
a multi-stage production system in which produc- 
tion is order driven and tardiness results in penalty 
costs has been investigated by several authors (see 
e.g. [26,27]). Here the lead times are assumed to be 
random variables with a known distribution func- 
tion. For the single-stage system, the problem of 
setting a planning or safety lead time leads to 
a Newsboy formulation. De Kok [28] recognized 
the striking similarity between the general problem 

Table 8 

The influence of the number of installations N 

of setting safety lead times in an N-stage serial 
system and the results of the analysis presented in 
Section 2 for the N-stage inventory problem. 
Below, we show the equivalence of the two prob- 
lems for the two-stage serial system. 

Consider a two-stage serial, order driven, pro- 
duction system with stochastic lead times t2 (for the 
upstream or manufacturing stage) and tr (for the 
final assembly stage). Let F,, denote the distribution 
functions of fn for n = 1, 2. Suppose, furthermore, 
that a holding cost hz is incurred for a batch of 
products (components or subassemblies) in instal- 
lation 2 or between installations 2 and 1, while 
a batch of final products is stored at a rate k, + k, 
if the batch is finished before its due date. A batch is 
temporarily stored in installation 2 if it arrives there 
before the planned starting time of the final stage. If 
the final stage of the batch is completed after its due 
date, a linear penalty cost p per unit per period is 
incurred. A batch is delivered to the customer at 
its due date or, if not possible, immediately after 
completion. The problem is to determine the best 
starting time for each phase, i.e. how to set planning 
or safety lead times to minimize average holding 
and penalty costs? 

N St, S, s2 S3 S4 .‘s CHS S MRP C MRP CD CD t%) 

I 577.3 II92 4275 II62 4666 391 9. I 

2 576.3 1084 1232 4225 II62 4666 441 10.4 

3 575.5 975.6 III9 1237 4189 II62 4666 477 II.4 

4 574.9 866.0 I004 II23 1239 4167 II62 4666 499 12.0 

5 574.7 754.3 883.9 I006 II24 1239 4156 II62 4666 510 12.3 
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Define T2 as the total planning lead time for the 
two stages together and T, as the planning lead 
time for the final (downstream) stage alone. Also, let 

~2 = T2 -22, gl = min(gz, T,) - tl. 

Hence, g, denotes the time difference between the 
completion of stage n and the final due date. Then 
the following cost structure appears: 

h2@2 - PI) + @I + h2)Vl 

= (h, + h2)g1 - h2g1 + h2g2 if p1 > 0, v2 > 0, 

h2(02 - VI) + P( - !I) 

=P(-!l)--2Ul+h2U2 if g1 d 0, p2 d 0. 

The reader may note that this is completely ident- 
ical to the inventory cost structure in Section 
2 which formed the basis of the echelon cost func- 
tions. For the safety lead time problem discussed 
here we find that the optimal planning lead times 
can be found by minimizing the following function: 

C2(T1> 7-2) = C,(T,) + h2 [V2 - t2)Q’2(t2) 

0 

- C,(T,)ldF,(t,)> 

where 

7.1 

C,(T,) = (A, + h2) 
s 

(TI - tl)dFl(tl) 

0 

m 

+ P (tl - T,)dF,(t,) 
s 
T1 

cc 

- h2 (TI - tl)dFl(tl) s 
0 

cc 

= hi (T, - tl)dF,(t,) .i 
b 

a, 

+ (P + hi + h2) 
J 

@l - T,)dF,(t,), 

7.1 

where C1 ( T1 ) is a convex function, which is mini- 
mized in TI = L1, say, and C2 (L, , T2) is a convex 
function in T,. Exactly the same recursive proced- 
ure as in Section 2 can therefore be applied to 
obtain the optimal (T,, T,)-tuple by successively 
minimizing two one-dimensional functions. Let the 
optimal values be L, and L2; then the optimal 
planned lead times for the upstream and down- 
stream stages equal L, - LI and L1, respectively. 
The generalization of the above arguments to gen- 
eral N-stage serial systems and to systems with an 
assembly structure are completely straightforward 
and are therefore left to the reader. 

5. Extensions to capacitated multi-stage systems 

In this section we seek to extend the theoretical 
framework to systems where transfer at each stage, 
i.e. between each two installations, is limited by 
a capacity constraint. Although, in general, we can- 
not expect that the results derived so far continue 
to hold in capacitated systems, an important ques- 
tion is whether base-stock policies, based on eche- 
lon stocks, are still close to optimal. If the answer 
to this question is affirmative, numerical schemes 
taking into account the capacity limitations have 
to be developed again. 

Speck and Van der Wal [29, 301 have investi- 
gated the first question. We only briefly summarize 
their results here. Define a serial N-stage system as 
before and assume that transfer between stage i + 1 
and stage i is limited by an amount ci (the produc- 
tion or transfer capacity). Some reflection shows 
that, without any loss of generality, one may re- 
strict oneself to systems with ci+ 1 < ci. Speck and 
Van der Wal numerically show that for a two-stage 
serial system a so-called push-ahead effect may 
exist. That is, the replenishment decision of the 
downstream installation may depend on the 
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amount of material in transfer to installation 2 (up- 
stream). On the other hand, Speck and Van der 
Wal provide evidence that in all cases there exist 
base-stock policies, the calculation of which is 
based on capacity limitations as well, which are 
very close to optimal. 

In this section, we therefore concentrate on base- 
stock policies again. For the development of 
numerical procedures we first briefly study the 
single-stage system. Note that from the results of 
Federgruen and Zipkin [31] the optimality of an 
order-up-to level policy easily follows for a single- 
stage capacitated system, as long as no fixed order- 
ing costs are assumed. Now, consider a two-stage 
linear system as described in Section 2 with the 
extra assumption of a limited transfer capacity c2 
per period to installation 2 while transfers between 
installation 2 and installation 1 are unconstrained. 
Let z2 denote an order-up-to level for the echelon 
inventory position of installation 2 (i.e. if, at the 
beginning of a period, this echelon inventory posi- 
tion is equal to x2 then we order min(z, - x2, c2) if 
x2 < z2 and nothing otherwise). Furthermore, let 
y2,n be the echelon inventory position of installa- 
tion 2 just after ordering in period n. Then we can 
write the following traffic equation for y2,n+l and 

y2.n: 

z2 - y2,n+l = max(z, - y2.” + n - c, O), 

where u denotes the one-period (stochastic) de- 
mand. Hence, z2 - y2,n satisfies the law of motion 
of the waiting time (excluding service) of an arriving 
customer in a D/G/l queue with interarrival time 
c and service time u. If the mean demand ~1 < c 
(meaning that on average the system can fulfill all 
demand) then clearly z2 - y2,n -+ z2 - y2 for 
n + w with probability one for some random vari- 
able y2. If we define w:= z2 - y2 then the probabil- 
ity distribution function G(M’) of w satisfies the 
following Wiener-Hopf equation: 

W’ + c 

G(w) = 
j_ 

G(w + c - u)dF(u). 

0 

Note that G(w) has a discontinuity in 0 (since 
G(0) > 0) while G(w) is differentiable for u’ > 0, 
with derivative y(w), say. De Kok [32] developed 

a method to quickly determine an approximation 
of G(w) in terms of a mixture of Erlang distribu- 
tions which has proven to be extremely accurate. 
Since the random variable y, = z2 - w equals the 
inventory position just after ordering we now easily 
find the optimal order-up-to level S2 by minimizing 
the following expression: 

E(S,,z,) = i Dz(S1,zz - w)g(w)dw 
J 
0 

+ Dz(Sl, z2)Wh 

where Si is determined in the first step of the 
recursive procedure presented in Section 2 for un- 
constrained systems while also D2(y,, y2) denotes 
the two-dimensional cost function given in 
Section 2. It can be shown, using the results of 
Federgruen and Zipkin [31], that this procedure 
still yields an overall optimal policy. 

If there exists a capacity constraint ci on the 
periodic transfer of materials between installation 
2 and installation 1 as well, then the term D1 (y, ) in 
the recursive definition of D,(y,, y2) has to be 
replaced by a function Ei (zi) which is determined 
along lines similarly to the analysis given above. 
The term D1 (y2 - u12) is replaced by a more com- 
plicated expression to indicate that there may be 
two causes for not attaining the order-up-to level 
zr , i.e. a material shortage or a lack of capacity 
between installation 2 and installation 1. The anal- 
ysis of these complications is beyond the scope of 
this paper; a detailed treatment will be given in 
a forthcoming publication. 

9. Conclusions and suggestions for further research 

In this paper we have reviewed and extended 
a theoretical framework for the planning of 
stochastic multi-stage serial and assembly systems. 
An equivalence property between these two sys- 
tems is established. Numerical procedures to 
actually calculate order-up-to levels have been de- 
veloped and perform satisfactorily. A translation to 
a more realistic situation where optimal policies 
have to be determined subject to a target customer 
service level constraint follows easily from the cost 



H. Zijm, G.-J. V. Houtumjlnt. J. Production Eomomics 35 (1994) 391-400 399 

expressions underlying the numerical evaluation. 
The numerical calculation scheme also allows us to 
compare the performance of the optimal base-stock 
policies with an MRP control structure, showing 
remarkable differences. Furthermore, the problem 
to determine safety lead times in a stochastic lead 
time multi-stage system with known demand 
appears to have a highly similar structure. Finally, 
we elaborate on possibilities to extend the theory 
to capacitated multi-stage systems. 

Further extensions are possible and are highly 
recommended for investigation. The extension of 
the numerical calculation scheme to systems with 
a divergent (aborescense) structure is currently 
studied and will be treated in a forthcoming publi- 
cation (see also [33]). Referring to Section 7, the 
combination of stochastic demand and stochastic 
lead times may lead to more realistic models cover- 
ing unreliability and scheduling effects. Highly im- 
portant seems to be the extension to systems with 
a non-stationary demand structure as well as to 
systems where demand originates not only at the 
end-item level. In particular, the combination of 
non-stationary demand (e.g. seasonal patterns) 
with capacity management issues may lead to 
a framework which perhaps cannot be treated by 
exact methods any longer but on the other hand 
provides us with a tool to understand and manage 
rather complex practical production/inventory 
systems. 
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