
, International Journal of Computers and Applications, 23, (3), pp. 159-165, ISSN: 1206-212X

 -1-

Safe and Verifiable Design of Concurrent Java Programs

P. H. Welch
Computing Laboratory, University of Kent at Canterbury, CT2 7NF, England

+44 1227 823629; FAX: +44 1227 762811; P.H.Welch@ukc.ac..uk

G. H. Hilderink and A. W. P. Bakkers
 Faculty of Electrical Engineering, Control Laboratory, University of Twente, 7500 AE Enschede, The Netherlands

 +31-53-4892606, FAX: +31-53-4892223; G.H.Hilderink@el.utwente.nl; A.W.P.Bakkers@el.utwente.nl

G. S. Stiles
 Department of Electrical and Computer Engineering, 4120 Old Main Hill, Utah State University, Logan UT 84322-4120;

+1-435-797-2840; FAX: +1-435-797-3054; dyke.stiles@ece.usu.edu

Abstract
 The design of concurrent programs has a reputation for
being difficult, and thus potentially dangerous in safety-
critical real-time and embedded systems. The recent
appearance of Java, whilst cleaning up many insecure
aspects of OO programming endemic in C++, suffers
from a deceptively simple threads model that is an
insecure variant of ideas that are over 25 years old [1].
Consequently, we cannot directly exploit a range of new
CASE tools -- based upon modern developments in
parallel computing theory -- that can verify and check
the design of concurrent systems for a variety of dangers
such as deadlock and livelock that otherwise plague us
during testing and maintenance and, more seriously, cause
catastrophic failure in service.

 Our approach uses recently developed Java class
libraries based on Hoare's Communicating Sequential
Processes (CSP); the use of CSP greatly simplifies the
design of concurrent systems and, in many cases, a
parallel approach often significantly simplifies systems
originally approached sequentially. New CSP CASE tools
permit designs to be verified against formal specifications
and checked for deadlock and livelock. Below we
introduce CSP and its implementation in Java and develop
a small concurrent application. The formal CSP
description of the application is provided, as well as that
of an equivalent sequential version. FDR is used to verify
the correctness of both implementations, their
equivalence, and their freedom from deadlock and
livelock.

Keywords: concurrency, multithreading, Java, CSP,
formal methods

I. Introduction
 Java was originally designed to support the
development of embedded systems [e.g., 2], but its
overwhelming success in WWW-based applications has
overshadowed those intentions. The interest of the
embedded and real-time communities in Java has grown

steadily, however, and it is difficult to find a recent
publication in those areas which does not have one or
more articles on Java [e.g., 3, 4, 5]. The initial concerns of
speed, memory management, and scheduling - among
others - now appear to be surmountable via compilation,
dedicated hardware, and improved schedulers [2, 3, 4, 5].

 Many real-time and embedded applications are
naturally - and most conveniently - designed using
concurrency. Unfortunately, the design of concurrent or
multithreaded programs has gained the reputation of
being extremely difficult and, in many cases, dangerous,
due primarily to the possibility of deadlock, livelock, race
hazards, or starvation, phenomena that are not
encountered in single-threaded programs. Lea, in his text
on concurrent Java [6], emphasizes a concern for the
apparent difficulty: "Liveness considerations in
concurrent software development introduce context
dependencies that can make the construction of reusable
components harder than in strictly sequential settings."
Two approaches he suggests for design sound labor
intensive: "Top-down (safety first): Initially design
methods and classes assuming full synchronization (when
applicable), and then remove unnecessary synchronization
as needed to obtain liveness and efficiency...Bottom up
(liveness first): Initially design methods and classes
without concern for synchronization policies, then add
them via composites, subclassing, and related layering
techniques..." Lea gives extensive design patterns to assist
this work, but it is not easy for one to master them and
feel confident in that mastery.

 Even those intimately connected with the development
of Java seem reluctant to employ more than a single
thread. In the web-available documentation for the Swing
API we find the admonition "If you can get away with it,
avoid using threads. Threads can be difficult to use, and
they make programs harder to debug. In general, they just
aren't necessary for strictly GUI work, such as updating
component properties" [7]. Oaks and Wong [8], also
associated with Sun, are more enthusiastic about the

International Journal of Computers and Applications, 23, (3), pp. 159-165, ISSN: 1206-212X

 -2-

use of multithreading, but do note that "Deadlock between
threads competing for the same set of locks is the hardest
problem to solve in any threaded program. It's a hard
enough problem, in fact, that we will not solve it – or
even attempt to solve it." A bit later they state
"Nonetheless, a close examination of the source code is
the only option presently available to determine if
deadlock is a possibility..." and add that no tools exist for
detecting deadlock in Java programs. Developing
concurrent Java programs is further complicated by the
fact that the synchronization primitives provided with
Java are themselves not secure. See, e.g., Brinch Hansen
[1].

 We feel, based on fifteen years of experience, that the
concurrent approach is the best way to design most
programs. Done properly (e.g., using CSP), from the start,
this method typically results in better understanding of the
problem and the solution, and leads to much cleaner
implementations. (If poor system support for concurrency
requires a sequential implementation, a sequential version
can be derived rigorously from the concurrent version.) A
tremendous amount of work has been done on and with
CSP in recent years, and the present states of the language
and the tools offer the Java programmer excellent
facilities for the design and analysis of multithreaded
programs. Furthermore, Java designs based on the CSP
class libraries, and following the CSP paradigm, now can
be verified against formal specifications and checked for
deadlock and livelock with CASE tools – prior to
implementation. Other afflictions, such as race hazards
and starvation, can also be handled.

 In the following sections we shall first briefly introduce
CSP and FDR. This will be followed by the complete
development in CSP of a larger example dealing with a
virtual channel system: the first concurrent version will
deadlock (and shown to by FDR), and the second will be
shown to be deadlock- and livelock-free and to precisely
implement a CSP specification of the behavior of the
system. A summary follows. (A very concise summary of
this work was presented at a recent OOPSLA workshop
[9].)

II. CSP Notation
 Hoare developed CSP [10] after his experience with
monitors [11]. CSP is a calculus or algebra for describing
and reasoning about systems of concurrent processes that
interact through some type of communication. (Excellent
introductions are found in Hoare's delightful book [12]
and new texts by Roscoe [13] and Schneider [14].) Much
of the detail below follows Roscoe [13].

 CSP is designed to handle systems that communicate
only via explicit messages. Each process has access to
only its own, private, variables and communicates only
via explicit messages. The messages themselves are
controlled by handshaking - that it, the communication
takes place only when both processes are ready; if one

become ready before the other, it must wait (or block)
until the other is ready. The set of all possible
communications that a system may engage in is
designated as an alphabet Σ. The term "communication"
may include true messages as well as other events - such
as interrupts, clock ticks, etc. Events may be composite -
that is, they may be able to be broken down into simpler
events - as we could break the sale of an object into an
offer, and acceptance, the transfer of the money to the
seller, and finally the transfer of the object to the buyer. In
general, events may occur between two or more
processes. An event may occur only when all processes
engaging in that event are ready. When all processes are
ready, that event (or perhaps some other event which also
happens to be ready) must occur. The basic operator in
CSP is prefixing; this operator (→) connects an event to a
process; the process cannot do anything until the event
occurs. Consider, for example, a data acquisition system
that is controlled by a process ACQUIRE1. This process
does not do anything until it is notified by an event
data_ready; this fact is indicated in CSP by data_ready
→ ACQUIRE1. Concurrent and distributed systems, e.g.,
real-time systems and communication systems, frequently
have processes that run continuously. This aspect is easily
represented in CSP by recursion. Continuing the example,
we can define a simple recursive process which
repeatedly waits for notification that data is ready and
then acquires a sample: ACQUIRE2 = data_ready →
get_data → ACQUIRE2. The process ACQUIRE2
engages in event data_ready, then event get_data, and
then repeats. Mutual recursions may be established using
two or more processes which call each other.

 Current versions of CSP support several different
concurrency operators, but we shall require only three
below. In the first, external choice, the environment can
select one of possibly several actions by offering a
particular event. In the composite process (a0 → P0) [] (a1
→ P1), e.g., the environment can force the execution of P0
by providing a0 as input, or P1 by providing a1. (We use
the machine-readable CSP syntax; see, e.g., [13].) Note
that this operator offers the choices in parallel, but once
one process is selected, it alone will run. The second
operator is sharing parallelism. Given two processes P0
and P1, and a channel c perhaps referenced in both
processes, the composite P0 {c}||{c} P1 (or in machine-
readable format P0 [| {| c |} |] P1 for use with FDR)
represents a system where P0 and P1 run simultaneously
and must synchronize on all events involving the channel
c. The last operator is interleaving; if we have the same
two processes, and assume they have alphabets A0 and A1,
respectively, in the interleaved combination P0 ||| P1 the
two processes run simultaneously and independently; if
an event occurs which appears in both alphabets, one of
the processes is chosen nondeterministically to participate
and the other does not.

III. Characterization of Processes

International Journal of Computers and Applications, 23, (3), pp. 159-165, ISSN: 1206-212X

 -3-

 Processes may be characterized partly by their traces,
the sets of the finite sequences of events that a process
may legitimately engage in. The traces which ACQUIRE2
may exhibit are {<>, <data_ready>, <data_ready,
get_data>n, <data_ready, get_data>n^<data_ready> | n
≥ 1}, where <> is the empty sequence and ^ is the
concatenation operator.

 Given these definitions, characterizations of deadlock
and livelock (divergence) are straight-forward. Deadlock
occurs when there exists a cycle of committed but
unanswered attempts to communicate from process to
process: each process is blocked, waiting for the next
process in the cycle. Livelock exists when a set of
processes gets into an infinite sequence of
communications entirely with each other that cannot be
interrupted; once in such a state, the process can refuse all
further communication from the outside world. Note that,
externally, both problems appear the same: both refuse
any further external communication. Internally, however,
the causes differ significantly and must be thoroughly
understood.

 Processes may also be characterized by their failures
and divergences. The failures of a process are tuples
formed from a trace and the set of events a process may
refuse to engage in after that trace. Divergences are those
sets of traces after which a process may diverge.

 The set of a process's traces specify which sequences
of events the process may engage in - if it chooses to do
anything at all; the traces thus specify what a process may
do - but do not require it to do anything. We impose a
requirement that something must be done by specifying
what failures the process cannot possess. We would also
typically specify that a process may not exhibit any
divergences.

 We can compare processes by comparing their traces,
failures, and divergences. Given some trace specification
of a process P - which may contain several acceptable
traces - we say that process Q trace-refines P if the traces
of Q are included in the traces of P. Since trace
specifications are weak in the sense that they do not force
a process to do anything, we will usually work with
failures specification. Given the traces and failures of P,
process Q failures-refines P if the traces of Q are included

in the traces of P and the failures of Q are included in P.
The net result is that Q must accept (or reject) every event
that P does. This concept is extended to
failures/divergences-refinement, where the same applies
to the failures and divergences of the two processes, with
the added qualification that the failures are extended to
include the set of all tuples formed from the divergences
and the corresponding events which are refused due to the
divergence. In the example below we test refinement of
specifications by failures/divergences.

 With these definitions, deadlock can be made precise
as the absence of any failures containing the entire
alphabet of a process. A process is deterministic if its
divergences is empty and, for all trace sequences t^<x>,
(t, {x}) is not in its failures; the last condition guarantees
that the process does not diverge and cannot choose to
either accept or reject an event.

 Over the past decade a great deal of theoretical and
practical work on CSP has been completed. For our
purposes, the most interesting work has dealt with the
prevention of deadlock. These deal with the problem at
roughly two levels: within processes and between
processes which themselves have already been shown to
be deadlock-free (note that the same basic problem exists
at both levels). At the more fundamental level are the
works by Roscoe and Dathi [15], Martin and Jassim [16],
and Martin et al. [17]. Rules for reliably connecting
systems of processes known to be deadlock-free are given
in Welch et al. [18] and Martin and Welch [19]. Welch's
papers argue forcefully that design of complex systems is
far better approached from the concurrent viewpoint; it
more closely reflects the operation of the world, leads to
easier designs, and to easier verification of those designs.
With the CSP approach, the internal states of processes
are hidden from each other and interactions among
processes are explicitly specified. If the processes
themselves are appropriately written, this results in
components whose behavior depends only on their
interactions with other components. The net result is that
the working of a system of interconnected components
can be clearly determined. Furthermore, once verified, a
complex composition of processes can often be
represented by a much simpler process with the same
response to external interactions, thus simplifying the
verification of systems in which that composite is

Node 0 Node 1

 VC0

 VC1

 VC0

 VC1

message

acknowledge

bidirectional link

Figure 1. A Virtual Channel System

International Journal of Computers and Applications, 23, (3), pp. 159-165, ISSN: 1206-212X

 -4-

embedded.
 These results - which are easily understandable and
implemented - form the basis for designing reliable
concurrent systems. We may begin with small modules,
which may be simple enough that they are clearly free of
problems, or may require the application of tools to
confirm the absence of deadlock and livelock. Once these
modules have been verified, we can then form larger
reliable systems if we follow the appropriate rules when
connecting them together (e.g., [19]). This process is not
all that different from constructing large digital logic
circuits from small, proven standardized components.

 The programming language occam is based on CSP
and is now available on a number of platforms (e.g., [20,
21]). Several versions of C have been available that
provide CSP-like constructs (e.g., [22]). One of the most
interesting developments has been the appearance of class
libraries for Java which provide many CSP features.
These developments have taken place at Twente
University in the Netherlands [23, 24, 25] and at the
University of Kent at Canterbury [26, 27, 28]. With these
packages we can now easily develop multithreaded Java
programs that adhere to CSP standards. Multithreaded
GUI programming can, after all, be made simple.

 The other significant recent development is the
appearance of commercial tools which can check CSP
programs for deadlock, livelock, nondeterminacy, and
correct implementations of specifications - also expressed
in CSP. The FDR package from Formal Systems
(Europe) Ltd. [29] provides an interactive (or batch)
system for testing CSP programs for deadlock, livelock,
determinism, and refinement. Refinement can be based on
traces, failures, and failures/divergences. FDR also
provide a tool called ProBE (Process Behavior Explorer)
which allows the user to step through the events of a
process; this is particularly useful for debugging. Once
the CSP scripts are written a simple point & click returns
the results of the analysis. And, as we see next,
development of the scripts is often very straightforward.

IV. Example

 We shall model a simple communications system
based on virtual channels. We assume that we have two
nodes which must communicate over a single link
providing communication in both directions. To manage
multiple conversations, we provide virtual channels over
the link. Deadlock of the entire system is prevented by
providing a separate buffer for each virtual channel on
each node and appropriate routing. A handler on the input
of each virtual channel insures that a packet is not
received unless the buffer for that channel is empty. The
system is diagrammed in Figure 1.

 Data flows through the system in packets from left to
right. A packet cannot be sent along a virtual channel
until the previous packet has been acknowledged. The
routing system must thus handle flow in both directions:
data packets from left to right, and acknowledgements
from right to left. At any time the system must be ready to
accept a packet from upstream (Node 0) on a channel
which has no outstanding acknowledgements, and also
ready to accept an acknowledgement from downstream
for an as yet unacknowledged packet. The fact that items
may be ready to move in both directions at the same time
offers ample opportunity for deadlock if the system is not
designed correctly.

 We begin with a design that deadlocks (the complete
script is at [28]). The design is most easily handled by
breaking it into small components and then combining
them in parallel. We start on Node 0 with an input handler
for each virtual channel; these accept inputs from their
respective sources, pass them on to a multiplexer which
passes them over the link, and wait for
acknowledgements; they then repeat. The Node 0 process
diagram is shown in Figure 2.

 The diagram makes the relationship of the processes
and the channels clear, and developing the CSP script for
each process is simple; each consists of only a few lines.
The entire process is formed from the parallel
combinations of the components. The machine-readable
CSP script for one of the handlers is

UpHandler0 =

UpHandler0

UpHandler1

NInOut0

NUpControl

NInOut1

upin0

upin1

upout0

upout1

upack0

upack1

uptodown

NaiveMux

downtoup

Figure 2. The Node 0 process diagram for the system which deadlocks.

International Journal of Computers and Applications, 23, (3), pp. 159-165, ISSN: 1206-212X

 -5-

upin0?x:RawData -> upout0!x ->
upack0?y:InternalAcks -> UpHandler0

 This is a process which accepts over channel upin0
an item x which is of type RawData, sends it out over
channel upout0 to the mux, waits to accept an
acknowledgement of type InternalAcks over channel
upack0, and then repeats. The code for the other input
handler is similar. The mux code is composed of three
components, two of which accept data from an input
handler, format it, and then pass it over the link, and a
third which is an acknowledgement controller. These
components are combined using the external choice
operator; when an input acceptable by any of the three
processes appears, the corresponding process runs and
then restarts the mux. (This is not a particularly good
implementation - but it does test the deadlock checker.)
The first of the components is

 NInOut0 = upout0?x:RawData ->

 uptodown!0.x -> NaiveMux

This component accepts the raw data, appends a "0" to it
to indicate virtual channel 1, sends it over the output link
channel uptodown to the other node. The
acknowledgement controller is

NUpControl = downtoup?x:LinkAcks ->
 if x == 0
 then upack0!0 -> NaiveMux
 else upack1!0 -> NaiveMux

This process accepts an input from the downstream node
of type LinkAcks (which identifies the virtual channel
to be acknowledged), sends the acknowledgement signal
(the value 0) to the appropriate input handler, and restarts
the mux. The mux is specified by

NaiveMux =
 NInOut0 [] NInOut1 [] NUpControl

and the entire Node 1 process by

NaiveUp = ((((UpHandler0
 [| {| upout0, upack0 |} |]
 NaiveMux)
 \ {| upout0, upack0 |})
 [| {| upout1, upack1 |} |]
 UpHandler1)
 \ {| upout1, upack1 |})

UpHandler0 and NaiveMux share all communications
over channel upout0 and upack0, and this
combination shares with UpHandler1 over upout1
and upack1. The \ {| channel |} notation indicates that
communications over the named channels are treated as
internal and are not visible to the outside world. In this
process the only actions available to the environment are
thus those via the two input channels upin0 and upin1

and the output channel uptodown.

 The downstream (Node 1) processes are similar. A
demux on the channel from Node 0 is formed from the
external choice between one process that accepts inputs
over the channel and a second that accepts
acknowledgements from the destination buffers and
passes them upstream over the channel downtoup.
Again, this is not a good design, since this process will
not be able to accept data moving in both directions at the
same time - and will deadlock. The demux passes the
incoming data on to DownHandler0 or
DownHandler1, which accept the data and respond
with acknowledgements that work their way back
upstream. The entire downstream process is formed by
the sharing combination of these processes, and the
internal channels are again hidden. The complete system
is formed from the sharing combination of the upstream
and downstream processes, with the channels between the
two nodes hidden.

 A little analysis of this system will show that it will
deadlock when both nodes are trying to send data to the
other. This will occur when one input has been passed to
Node 1, and a second input arrives before the
acknowledgement of the first makes it back to Node 0. At
this point Node 0 is trying to send its data downstream,
and Node 1 is trying to send its acknowledgement
upstream. Since neither is listening, we have a cycle of
ungranted requests and the system deadlocks. When the
complete CSP script is run through the deadlock checker,
FDR reports the occurrence of deadlock and provides the
sequence of events that lead to it.

 The deadlock arises not from the parallelism in the
design but from there not being enough parallelism in the
design! NaiveMux is essentially a serial process
operating its channels one at a time. We need to
multiplex data on uptodown and demultiplex
acknowledgements from the downtoup in parallel.
Figure 3 shows the process structure for the revised Node
1 system.

 A similar modification appears on Node 1. The entire
CSP (and Java) listings are available at [30]. We again
emphasize that each of the individual CSP processes is
typically only a few lines, and that the composite
processes are also only a few lines. Once the diagrams
have been created and the processes and channels labeled,
a student with little training can develop the CSP scripts
and Java fairly quickly.

 When this version is run through FDR the tool reports
that it is indeed deadlock free - and is free of divergence.
The next step is to verify that the system does precisely
what we want. When viewed from outside, the system
should simply pass data unchanged from the inputs
upin0 and upin1 to the outputs downout0 and

International Journal of Computers and Applications, 23, (3), pp. 159-165, ISSN: 1206-212X

 -6-

downout1, respectively. The connections should thus be
equivalent to simple independent copy operations,
operating in parallel over dual links:

Copy0 = upin0?x:RawData ->
 downout0!x -> Copy0

Copy1 = upin1?x:RawData ->
 downout1!x -> Copy1

These processes are then interleaved (implying that they
run independently) to form the specification for the
system:

 DCopy = Copy0 ||| Copy1

FDR is then used to verify that the system refines DCopy;
the verification is a success, and we know that the system
will faithfully pass the data.

 This last feature is extremely important. We have
verified that the data are simply replicated from the input
to the output, in spite of the modifications undergone as it
is moved by the routing system. This same approach can
be used to verify the operations of far more complicated
protocols that might provide error correction over a noisy
channel, compression and decompression, or encryption
and decryption. CSP has, in fact, been of considerable use
in modeling a variety of communications systems (see,
e.g., [13]).

 Once we have the system designed, checked, and
verified, it can easily be implemented in Java using the
CSP constructs. The CSP scripts for both concurrent
versions, plus the complete Java implementation, can be
found at [30]. (A number of additional runnable Java/CSP
examples are available presently at the sites listed in the
References [25, 26].)

 Since current Java run-time environments may not
provide context switching fast enough to support some
applications, we may wish to have sequential rather than
concurrent implementations. Fortunately concurrent CSP
processes can be easily transformed - retaining their
correctness - to sequential versions; this can be done

automatically with a tool such as Mathematica. We have
implemented a sequential version of the deadlock-free
system presented above, and have used FDR to verify that
it also satisfies the same specifications. The CSP script for
this version is also at [30].

 Currently available occam run-time environments
provide an existence proof that CSP primitives can be
implemented with overheads well under one microsecond.
The nearly-released `HotSpot' ™ Java run-time
environment from Sun might, hopefully, approach these
levels of performance for its multithreading and these
will automatically apply to Java CSP class libraries.

IV. Summary
 We described a method for creating reliable, safe, and
provably correct multithreaded implementations in Java.
This approach is based upon CSP and uses CSP class
libraries developed for Java. CSP designs can be checked
with commercially available CASE tools to verify
freedom from deadlock and livelock and compliance with
formal specifications. The tools can also check the
equivalence of various implementations, and can verify
that sequential versions provide the same performance.
The CSP approach itself, which emphasizes the analysis
of problems in terms of concurrent processes interacting
only through explicit messages, often leads to better
understanding of the problems and cleaner designs. We
have found that students respond very quickly to this
approach and can develop fairly complex applications
after little training. By restricting our concurrent Java
programs to message passing we avoid the problems
inherent in the use of lower-level synchronization
primitives, and gain the formal support, safety, and
twenty years of experience offered by CSP - a reasonable
trade by any standards.

V. References
[1] Brinch Hansen, Per, Java's insecure parallelism, ACM

SIGPLAN Notices 34(4), pp. 38-45, April 1999.
[2] Nilsen, Kevin, Adding real-time capabilities to Java,

Comm. ACM 41(6), pp. 49-56, June, 1998.
[3] Dibble, Peter, The reality of real-time Java,

Computer Design, pp. 70-76, Aug. 1998.

UpHandler0

UpHandler1

InOut0

UpControl

inOut1

upin0

upin1

upout0

upout1

upack0

upack1

uptodown

downtoup

Figure 3. The Node 0 process diagram for the deadlock-free system.

International Journal of Computers and Applications, 23, (3), pp. 159-165, ISSN: 1206-212X

 -7-

[4] Hedenstedt, Joakim, Java in embedded systems: two
approaches, Computer Design, p. 74, Aug. 1998.

[5] Ivanovic, Vladimir, From desktop Java to embedded
Java, Real Time Computing, pp. 147-147.

[6] Lea, Doug, Concurrent Programming in Java:
Design Principles and Patterns, Addison-Wesley,
Reading, MA, 1997.

[7] Muller, Hans, and Kathy Walrath, Threads and
Swing,
http://java.sun.com:80/products/jfc/swingdoc-
archive/threads.html, April 3, 1998.

[8] Oaks, Scott, and Henry Wong, Java Threads,
O'Reilly, Sebastopol, CA, 1997.

[9] Stiles, G. S., Safe and verifiable design of
multithreaded Java programs via CSP and FDR,
Proc. Workshop on Formal Underpinnings of Java,
OOPSLA '98, Oct. 1998, to appear in Princeton
University Technical Report

[10] Hoare, C. A., Communicating sequential processes,
CACM, 21(8), pp. 666-677, August 1978.

[11] Hoare, C. A., Monitors: an operating system
structuring concept, CACM, 17(10), pp. 549-557,
October 1974.

[12] Hoare, C. A., Communicating Sequential Processes,
Prentice-Hall, London, 1985.

[13] Roscoe, A. W., The Theory and Practice of
Concurrency, Prentice-Hall, London, 1998.

[14] Schneider, Steve, Concurrency and Time, Wiley, in
press.

[15]Roscoe, A. W., and N. Dathi, The Pursuit of
Deadlock Freedom, Technical Monograph PRG-57,
Oxford University Computing Laboratory, 1986.

[16] Martin, J., I. East, and S. Jassim, Design rules for
deadlock freedom, Transputer Comm. 2(3), pp. 121-
133, September 1994.

[17] Martin, J. M. R., and S. A. Jassim, A tool for proving
deadlock freedom, in Proc. WoTUG20: Parallel
Programming and Java, ed. A. Bakkers, IOS Press,
Amsterdam, pp.1-16, April 1997.

[18] Welch, P. H., G. R. R. Justo, and C. Willcock, High-
level paradigms for deadlock-free high-performance
systems, in Transputer Applications and Systems '93,
ed. Grebe et al., IOS Press, Amsterdam, pp. 981-
1004, September 1993.

[19] Martin, J. M. R., and P. H. Welch, A design strategy
for deadlock-free concurrent systems, Transputer
Communications 3(4), pp. 215-232, October, 1996.

[20] Galletly, John, occam 2 – including occam 2.1, UCL
Press, London, 1996.

[21] occam-for-all Team,
http://www.hensa.ac.uk/parallel/occam/projects/occa
m-for-all/index.html

[22] ______, http://www.alphadata.co.uk/softhome.htm
[23] Hilderink, G., J. Broenink, W. Vervoort, and A.

Bakkers, Communicating Java threads, in Proc.
WoTUG 20: Parallel Programming and Java , ed. A.
Bakkers, pp. 48-76, IOS Press, Amsterdam, April
1997.

[24] Hilderink, Gerald, Communicating Java threads

reference manual, in Proc. WoTUG 20: Parallel
Programming and Java, pp. 283-325, IOS Press,
Amsterdam, April 1997.

[25] JavaPP, http://www.rt.el.utwente.nl/javapp/, July 21,
1998.

[26] Java Communicating Sequential Processes (JCSP),
http://www.hensa.ac.uk/parallel/languages/java/jcsp/

[27] Welch, P. H., Java threads in the light of occam/CSP,
in Proc. WoTUG 20: Parallel Programming and
Java, ed. A. Bakkers, pp. XX-YY, IOS Press,
Amsterdam, April 1997.

[28] Welch, P. H., Parallel and distributed computing in
education, in VECPAR'98 (Third International
Conference on Vector and Parallel Processing) -
Selected Papers, Jose M. L. M. Palma, Jack Dongarra
and Vicente Hernandez (editors), Lecture Notes in
Computer Science, Springer-Verlag (to appear),
Porto, Portugal, June 1998.

[29] Formal Systems (Europe) Ltd.:
http://www.formal.demon.co.uk/

[30] _____,
http://multi.ece.usu.edu/projects/parsys/examples.htm
l#Java/CSP

