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Abstract 
     The design of concurrent programs has a reputation for 
being difficult, and thus potentially dangerous in safety-
critical real-time and embedded systems. The recent 
appearance of Java, whilst cleaning up many insecure 
aspects of OO programming endemic in C++, suffers 
from a deceptively simple threads model that is an 
insecure variant of ideas that are over 25  years old [1].  
Consequently, we cannot directly exploit a range of  new 
CASE tools -- based upon modern developments in 
parallel computing   theory -- that can verify and check 
the design of concurrent systems for a variety of dangers 
such as deadlock and livelock that otherwise plague us 
during testing and maintenance and, more seriously, cause  
catastrophic failure in service. 
 
     Our approach uses recently developed Java class 
libraries based on Hoare's Communicating Sequential 
Processes (CSP); the use of CSP greatly simplifies the 
design of concurrent systems and, in many cases, a 
parallel approach often significantly simplifies systems 
originally approached sequentially. New CSP CASE tools 
permit designs to be verified against formal specifications 
and checked for deadlock and livelock. Below we 
introduce CSP and its implementation in Java and develop 
a small concurrent application.  The formal CSP 
description of the application is provided, as well as that 
of an equivalent sequential version. FDR is used to verify 
the correctness of both implementations, their 
equivalence, and their freedom from deadlock and 
livelock. 
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I. Introduction 
     Java was originally designed to support the 
development of embedded systems [e.g., 2], but its 
overwhelming success in WWW-based applications has 
overshadowed those intentions. The interest of the 
embedded and real-time communities in Java has grown 

steadily, however, and it is difficult to find a recent 
publication in those areas which does not have one or 
more articles on Java [e.g., 3, 4, 5]. The initial concerns of 
speed, memory management, and scheduling - among 
others - now appear to be surmountable via compilation, 
dedicated hardware, and improved schedulers [2, 3, 4, 5].   
      
     Many real-time and embedded applications are 
naturally - and most conveniently - designed using 
concurrency. Unfortunately, the design of concurrent or 
multithreaded programs has gained the reputation of 
being extremely difficult and, in many cases, dangerous, 
due primarily to the possibility of deadlock, livelock, race 
hazards, or starvation, phenomena that are not 
encountered in single-threaded programs. Lea, in his text 
on concurrent Java [6], emphasizes a concern for the 
apparent difficulty: "Liveness considerations in 
concurrent software development introduce context 
dependencies that can make the construction of reusable 
components harder than in strictly sequential settings." 
Two approaches he suggests for design sound labor 
intensive: "Top-down  (safety first): Initially design 
methods and classes assuming full synchronization (when 
applicable), and then remove unnecessary synchronization 
as needed to obtain liveness and efficiency...Bottom up 
(liveness first): Initially design methods and classes 
without concern for synchronization policies, then add 
them via composites, subclassing, and related layering 
techniques..." Lea gives extensive design patterns to assist 
this work, but it is not easy for one to master them and 
feel confident in that mastery. 
 
     Even those intimately connected with the development 
of Java seem reluctant to employ more than a single 
thread. In the web-available documentation for the Swing 
API we find the admonition "If you can get away with it, 
avoid using threads. Threads can be difficult to use, and 
they make programs harder to debug. In general, they just 
aren't necessary for strictly GUI work, such as updating 
component properties" [7]. Oaks and Wong [8], also 
associated with Sun, are more enthusiastic about the
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use of multithreading, but do note that "Deadlock between 
threads competing for the same set of locks is the hardest 
problem to solve in any threaded program. It's a hard 
enough problem, in fact, that we will not solve it – or 
even attempt to solve it." A bit later they state 
"Nonetheless, a close examination of the source code is 
the only option presently available to determine if 
deadlock is a possibility..." and add that no tools exist for 
detecting deadlock in Java programs. Developing 
concurrent Java programs is further complicated by the 
fact that the synchronization primitives provided with 
Java are themselves not secure. See, e.g., Brinch Hansen 
[1]. 
 
     We feel, based on fifteen years of experience, that the 
concurrent approach is the best way to design most 
programs. Done properly (e.g., using CSP), from the start, 
this method typically results in better understanding of the 
problem and the solution, and leads to much cleaner 
implementations. (If poor system support for concurrency 
requires a sequential implementation, a sequential version 
can be derived rigorously from the concurrent version.) A 
tremendous amount of work has been done on and with 
CSP in recent years, and the present states of the language 
and the tools offer the Java programmer excellent 
facilities for the design and analysis of multithreaded 
programs. Furthermore, Java designs based on the CSP 
class libraries, and following the CSP paradigm, now can 
be verified against formal specifications and checked for 
deadlock and livelock with CASE tools – prior to 
implementation.  Other afflictions, such as race hazards 
and starvation, can also be handled. 
  
    In the following sections we shall first briefly introduce 
CSP and FDR. This will be followed by the complete 
development in CSP of a larger example dealing with a 
virtual channel system: the first concurrent version will 
deadlock (and shown to by FDR), and the second will be 
shown to be deadlock- and livelock-free and to precisely 
implement a CSP specification of the behavior of the 
system.  A summary follows. (A very concise summary of 
this work was presented at a recent OOPSLA workshop  
[9].) 
 
II. CSP Notation  
     Hoare developed CSP [10] after his experience with 
monitors [11]. CSP is a calculus or algebra for describing 
and reasoning about systems of concurrent processes that 
interact through some type of communication. (Excellent 
introductions are found in Hoare's delightful book [12] 
and new texts by Roscoe [13] and Schneider [14].) Much 
of the detail below follows Roscoe [13].  
  
     CSP is designed to handle systems that communicate 
only via explicit messages.  Each process has access to 
only its own, private, variables and communicates only 
via explicit messages. The messages themselves are 
controlled by handshaking - that it, the communication 
takes place only when both processes are ready; if one 

become ready before the other, it must wait (or block) 
until the other is ready. The set of all possible 
communications that a system may engage in is 
designated as an alphabet Σ. The term "communication" 
may include true messages as well as other events - such 
as interrupts, clock ticks, etc. Events may be composite - 
that is, they may be able to be broken down into simpler 
events - as we could break the sale of an object into an 
offer, and acceptance, the transfer of the money to the 
seller, and finally the transfer of the object to the buyer. In 
general, events may occur between two or more 
processes. An event may occur only when all processes 
engaging in that event are ready. When all processes are 
ready, that event (or perhaps some other event which also 
happens to be ready) must occur. The basic operator in 
CSP is prefixing; this operator (→) connects an event to a 
process; the process cannot do anything until the event 
occurs. Consider, for example, a data acquisition system 
that is controlled by a process ACQUIRE1. This process 
does not do anything until it is notified by an event 
data_ready; this fact is indicated in CSP by data_ready 
→ ACQUIRE1. Concurrent and distributed systems, e.g., 
real-time systems and communication systems, frequently 
have processes that run continuously. This aspect is easily 
represented in CSP by recursion. Continuing the example, 
we can define a simple recursive process which 
repeatedly waits for notification that data is ready and 
then acquires a sample: ACQUIRE2 = data_ready → 
get_data → ACQUIRE2. The process ACQUIRE2 
engages in event data_ready, then event get_data, and 
then repeats. Mutual recursions may be established using 
two or more processes which call each other.   
  
     Current versions of CSP support several different 
concurrency operators, but we shall require only three 
below. In the first, external choice, the environment can 
select one of possibly several actions by offering a 
particular event. In the composite process (a0 → P0) [] (a1 
→ P1), e.g., the environment can force the execution of P0  
by providing a0 as input, or P1  by providing a1. (We use 
the machine-readable CSP syntax; see, e.g., [13].) Note 
that this operator offers the choices in parallel, but once 
one process is selected, it alone will run. The second 
operator is sharing parallelism. Given two processes P0 
and P1, and a channel c perhaps referenced in both 
processes, the composite P0 {c}||{c} P1 (or in machine-
readable format P0 [| {| c |} |] P1 for use with FDR) 
represents a system where P0 and P1 run simultaneously 
and must synchronize on all events involving the channel 
c. The last operator is interleaving; if we have the same 
two processes, and assume they have alphabets A0 and A1, 
respectively, in the interleaved combination P0 ||| P1 the 
two processes run simultaneously and independently; if 
an event occurs which appears in both alphabets, one of 
the processes is chosen nondeterministically to participate 
and the other does not. 
 
III. Characterization of Processes 
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     Processes may be characterized partly by their traces, 
the sets of the finite sequences of events that a process 
may legitimately engage in. The traces which ACQUIRE2 
may exhibit are {<>, <data_ready>, <data_ready, 
get_data>n, <data_ready, get_data>n^<data_ready> | n 
≥ 1}, where <> is the empty sequence and ^ is the 
concatenation operator. 
  
     Given these definitions, characterizations of deadlock 
and livelock (divergence) are straight-forward. Deadlock 
occurs when there exists a cycle of committed but 
unanswered attempts to communicate from process to 
process: each process is blocked, waiting for the next 
process in the cycle. Livelock exists when a set of 
processes gets into an infinite sequence of 
communications entirely with each other that cannot be 
interrupted; once in such a state, the process can refuse all 
further communication from the outside world. Note that, 
externally, both problems appear the same: both refuse 
any further external communication. Internally, however, 
the causes differ significantly and must be thoroughly 
understood. 
  
     Processes may also be characterized by their failures 
and divergences. The failures of a process are tuples 
formed from a trace and the set of events a process may 
refuse to engage in after that trace. Divergences are those 
sets of traces after which a process may diverge.  
  
     The set of a process's traces specify which sequences 
of events the process may engage in - if it chooses to do 
anything at all; the traces thus specify what a process may 
do - but do not require it to do anything. We impose a 
requirement that something must be done by specifying 
what failures the process cannot possess. We would also 
typically specify that a process may not exhibit any 
divergences. 
  
     We can compare processes by comparing their traces, 
failures, and divergences. Given some trace specification 
of a process P - which may contain several acceptable 
traces - we say that process Q trace-refines P if the traces 
of Q are included in the traces of P. Since trace 
specifications are weak in the sense that they do not force 
a process to do anything, we will usually work with 
failures specification. Given the traces and failures of P, 
process Q failures-refines P if the traces of Q are included 

in the traces of P and the failures of Q are included in P. 
The net result is that Q must accept (or reject) every event 
that P does. This concept is extended to 
failures/divergences-refinement, where the same applies 
to the failures and divergences of the two processes, with 
the added qualification that the failures are extended to 
include the set of all tuples formed from the divergences  
and the corresponding events which are refused due to the 
divergence. In the example below we test refinement of 
specifications by failures/divergences. 
 
     With these definitions, deadlock can be made precise 
as the absence of any failures containing the entire 
alphabet of a process. A process is deterministic if its 
divergences is empty and, for all trace sequences t^<x>, 
(t, {x}) is not in its failures; the last condition guarantees 
that the process does not diverge and cannot choose to 
either accept or reject an event. 
  
     Over the past decade a great deal of theoretical and 
practical work on CSP has been completed. For our 
purposes, the most interesting work has dealt with the 
prevention of deadlock. These deal with the problem at 
roughly two levels: within processes and between 
processes which themselves have already been shown to 
be deadlock-free (note that the same basic problem exists 
at both levels). At the more fundamental level are the 
works by Roscoe and Dathi [15], Martin and Jassim [16], 
and Martin et al. [17]. Rules for reliably connecting 
systems of processes known to be deadlock-free are given 
in Welch et al. [18] and Martin and Welch [19].  Welch's 
papers argue forcefully that design of complex systems is 
far better approached from the concurrent viewpoint; it 
more closely reflects the operation of the world, leads to 
easier designs, and to easier verification of those designs. 
With the CSP approach, the internal states of processes 
are hidden from each other and interactions among 
processes are explicitly specified. If the processes 
themselves are appropriately written, this results in 
components whose behavior depends only on their 
interactions with other components. The net result is that 
the working of a system of interconnected components 
can be clearly determined. Furthermore, once verified, a 
complex composition of processes can often be 
represented by a much simpler process with the same 
response to external interactions, thus simplifying the 
verification of systems in which that composite is 

Node 0 Node 1 

 VC0 

 VC1 

 VC0 

 VC1 

message 

acknowledge 

bidirectional link 

Figure 1.  A Virtual Channel System 
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embedded. 
 These results - which are easily understandable and 
implemented - form the basis for designing reliable 
concurrent systems. We may begin with small modules, 
which may be simple enough that they are clearly free of 
problems, or may require the application of tools to 
confirm the absence of deadlock and livelock. Once these 
modules have been verified, we can then form larger 
reliable systems if we follow the appropriate rules when 
connecting them together (e.g., [19]). This process is not 
all that different from constructing large digital logic 
circuits from small, proven standardized components.  
  
     The programming language occam is based on CSP 
and is now available on a number of platforms (e.g.,  [20, 
21]). Several versions of C have been available that 
provide CSP-like constructs (e.g., [22]). One of the most 
interesting developments has been the appearance of class 
libraries for Java which provide many CSP features. 
These developments have taken place at Twente 
University in the Netherlands [23, 24, 25] and at the 
University of Kent at Canterbury [26, 27, 28]. With these 
packages we can now easily develop multithreaded Java 
programs that adhere to CSP standards. Multithreaded 
GUI programming can, after all, be made simple. 
 
     The other significant recent development is the 
appearance of commercial tools which can check CSP 
programs for deadlock, livelock, nondeterminacy, and 
correct implementations of specifications - also expressed 
in CSP.  The FDR package from Formal Systems 
(Europe) Ltd. [29] provides an interactive (or batch) 
system for testing CSP programs for deadlock, livelock, 
determinism, and refinement. Refinement can be based on 
traces, failures, and failures/divergences. FDR also 
provide a tool called ProBE (Process Behavior Explorer) 
which allows the user to step through the events of a 
process; this is particularly useful for debugging. Once 
the CSP scripts are written a simple point & click returns 
the results of the analysis. And, as we see next, 
development of the scripts is often very straightforward. 
 
IV. Example 

     We shall model a simple communications system 
based on virtual channels. We assume that we have two 
nodes which must communicate over a single link  
providing communication in both directions. To manage 
multiple conversations, we provide virtual channels over 
the link. Deadlock of the entire system is prevented by 
providing a separate buffer for each virtual channel on 
each node and appropriate routing. A handler on the input 
of each virtual channel insures that a packet is not 
received unless the buffer for that channel is empty. The 
system is diagrammed in Figure 1. 
 
     Data flows through the system in packets from left to 
right. A packet cannot be sent along a virtual channel 
until the previous packet has been acknowledged. The 
routing system must thus handle flow in both directions: 
data packets from left to right, and acknowledgements 
from right to left. At any time the system must be ready to 
accept a packet from upstream (Node 0) on a channel 
which has no outstanding acknowledgements, and also 
ready to accept an acknowledgement from downstream 
for an as yet unacknowledged packet. The fact that items 
may be ready to move in both directions at the same time 
offers ample opportunity for deadlock if the system is not 
designed correctly.  
  
     We begin with a design that deadlocks (the complete 
script is at [28]). The design is most easily handled by 
breaking it into small components and then combining 
them in parallel. We start on Node 0 with an input handler 
for each virtual channel; these accept inputs from their 
respective sources, pass them on to a multiplexer which 
passes them over the link, and wait for 
acknowledgements; they then repeat. The Node 0 process 
diagram is shown in Figure 2. 
 
     The diagram makes the relationship of the processes 
and the channels clear, and developing the CSP script for 
each process is simple; each consists of only a few lines. 
The entire process is formed from the parallel 
combinations of the components. The machine-readable 
CSP script for one of the handlers is 
 
UpHandler0 =  

UpHandler0 

UpHandler1 

NInOut0 

NUpControl 

NInOut1 

upin0 

upin1 

upout0 

upout1 

upack0 

upack1 

uptodown 

NaiveMux 

downtoup 

Figure 2. The Node 0 process diagram for the system which deadlocks. 
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upin0?x:RawData -> upout0!x ->  
upack0?y:InternalAcks -> UpHandler0 

 This is a process which accepts over channel upin0 
an item x which is of type RawData, sends it out over 
channel upout0 to the mux, waits to accept an 
acknowledgement of type InternalAcks over channel 
upack0, and then repeats. The code for the other input 
handler is similar. The mux code is composed of three 
components, two of which accept data from an input 
handler, format it, and then pass it over the link, and a 
third which is an acknowledgement controller. These 
components are combined using the external choice 
operator; when an input acceptable by any of the three 
processes appears, the corresponding process runs and 
then restarts the mux. (This is not a particularly good 
implementation - but it does test the deadlock checker.) 
The first of the components is 
 
 NInOut0 = upout0?x:RawData -> 

 uptodown!0.x -> NaiveMux 
 

This component accepts the raw data, appends a "0"  to it 
to indicate virtual channel 1, sends it over the output link 
channel uptodown to the other node. The 
acknowledgement controller is 
 
NUpControl = downtoup?x:LinkAcks -> 
          if x == 0 
       then upack0!0 -> NaiveMux 
         else upack1!0 -> NaiveMux 
 
This process accepts an input from the downstream node 
of type LinkAcks (which identifies the virtual channel 
to be acknowledged), sends the acknowledgement signal 
(the value 0) to the appropriate input handler, and restarts 
the mux.  The mux is specified by 
 
NaiveMux =  
     NInOut0 [] NInOut1 [] NUpControl 
 
and the entire Node 1 process by 
 
NaiveUp = ((((UpHandler0  
          [| {| upout0, upack0 |} |] 
          NaiveMux)   
      \ {| upout0, upack0 |})  
          [| {| upout1, upack1 |} |] 
    UpHandler1)  
          \ {| upout1, upack1 |}) 
 
UpHandler0 and NaiveMux share all communications 
over channel upout0 and upack0, and this 
combination shares with UpHandler1 over upout1 
and upack1. The \ {| channel |} notation indicates that 
communications over the named channels are treated as 
internal and are not visible to the outside world. In this 
process the only actions available to the environment are 
thus those via the two input channels upin0 and upin1 

and the output channel uptodown.  
  
     The downstream (Node 1) processes are similar.  A 
demux on the channel from Node 0 is formed from the 
external choice between one process that accepts inputs 
over the channel and a second that accepts 
acknowledgements from the destination buffers and 
passes them upstream over the channel downtoup. 
Again, this is not a good design, since this process will 
not be able to accept data moving in both directions at the 
same time - and will deadlock. The demux passes the 
incoming data on to DownHandler0 or 
DownHandler1, which accept the data and respond 
with acknowledgements that work their way back 
upstream.  The entire downstream process is formed by 
the sharing combination of these processes, and the 
internal channels are again hidden. The complete system 
is formed from the sharing combination of the upstream 
and downstream processes, with the channels between the 
two nodes hidden. 
  
     A little analysis of this system will show that it will 
deadlock when both nodes are trying to send data to the 
other. This will occur when one input has been passed to 
Node 1, and a second input arrives before the 
acknowledgement of the first makes it back to Node 0. At 
this point Node 0 is trying to send its data downstream, 
and Node 1 is trying to send its acknowledgement 
upstream. Since neither is listening, we have a cycle of 
ungranted requests and the system deadlocks. When the 
complete CSP script is run through the deadlock checker, 
FDR reports the occurrence of deadlock and provides the 
sequence of events that lead to it. 
 
     The deadlock arises not from the parallelism in the 
design but from there not being enough parallelism in the 
design!  NaiveMux is essentially a serial process 
operating its channels one at a time.  We need to 
multiplex data on uptodown and demultiplex 
acknowledgements from the downtoup in parallel. 
Figure 3 shows the process structure for the revised Node 
1 system. 
  
     A similar modification appears on Node 1. The entire 
CSP (and Java) listings are available at [30]. We again 
emphasize that each of the individual CSP processes is 
typically only a few lines, and that the composite 
processes are also only a few lines. Once the diagrams 
have been created and the processes and channels labeled, 
a student with little training can develop the CSP scripts 
and Java fairly quickly. 
  
     When this version is run through FDR the tool reports 
that it is indeed deadlock free - and is free of divergence. 
The next step is to verify that the system does precisely 
what we want. When viewed from outside, the system 
should simply pass data unchanged from the inputs 
upin0 and upin1 to the outputs downout0 and 
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downout1, respectively. The connections should thus be 
equivalent to simple independent copy operations, 
operating in parallel over dual links: 
 
Copy0 = upin0?x:RawData ->  
        downout0!x -> Copy0 
 
Copy1 = upin1?x:RawData ->  
        downout1!x -> Copy1 
 
These processes are then interleaved (implying that they 
run independently) to form the specification for the 
system: 
 
 DCopy = Copy0 ||| Copy1 
 
FDR is then used to verify that the system refines DCopy; 
the verification is a success, and we know that the system 
will faithfully pass the data. 
  
     This last feature is extremely important. We have 
verified that the data are simply replicated from the input 
to the output, in spite of the modifications undergone as it 
is moved by the routing system. This same approach can 
be used to verify the operations of far more complicated 
protocols that might provide error correction over a noisy 
channel, compression and decompression, or encryption 
and decryption. CSP has, in fact, been of considerable use 
in modeling a variety of communications systems (see, 
e.g., [13]). 
  
     Once we have the system designed, checked, and 
verified, it can easily be implemented in Java using the 
CSP constructs. The CSP scripts for both concurrent 
versions, plus the complete Java implementation, can be 
found at [30]. (A number of additional runnable Java/CSP 
examples are available presently at the sites listed in the 
References [25, 26].) 
  
     Since current Java run-time environments may not 
provide context switching fast enough to support some 
applications, we may wish to have sequential rather than 
concurrent implementations. Fortunately concurrent CSP 
processes can be easily transformed - retaining their 
correctness - to sequential versions; this can be done 

automatically with a tool such as Mathematica. We have 
implemented a sequential version of the deadlock-free 
system presented above, and have used FDR to verify that 
it also satisfies the same specifications. The CSP script for 
this version is also at [30]. 
  
     Currently available occam run-time environments 
provide an existence proof that CSP primitives can be 
implemented with overheads well under one microsecond. 
The nearly-released `HotSpot' ™ Java run-time 
environment from Sun might, hopefully, approach these 
levels of  performance for its multithreading and these 
will automatically apply to Java CSP class libraries. 
 
IV. Summary 
     We described a method for creating reliable, safe, and 
provably correct multithreaded implementations in Java. 
This approach is based upon CSP and uses CSP class 
libraries developed for Java. CSP designs can be checked 
with commercially available CASE tools to verify 
freedom from deadlock and livelock and compliance with 
formal specifications. The tools can also check the 
equivalence of various implementations, and can verify 
that sequential versions provide the same performance. 
The CSP approach itself, which emphasizes the analysis 
of problems in terms of concurrent processes interacting 
only through explicit messages, often leads to better 
understanding of the problems and cleaner designs. We 
have found that students respond very quickly to this 
approach and can develop fairly complex applications 
after little training. By restricting our concurrent Java 
programs to message passing we avoid the problems 
inherent in the use of lower-level synchronization 
primitives, and gain the formal support, safety, and 
twenty years of experience offered by CSP - a reasonable 
trade by any standards. 
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Figure 3.  The Node 0 process diagram for the deadlock-free system. 
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