
ELSEVIER Operations Research Letters 17 (1995) 205-208

Minimizing total completion time and maximum cost
simultaneously is solvable in polynomial time

J .A . H o o g e v e e n a,,, S .L . v a n de V e l d e b

a Department o f Mathematics and Computin 9 Science, Eindhoven University o f Technoloyy, P.O. Box 513, 5600 MB Eindhoven,
Netherlands

b Department o f Mechanical Enyineerin 9, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands

Received 1 July 1994; revised 1 April 1995

Abstract

We prove that the bicriteria single-machine scheduling problem of minimizing total completion time and maximum cost
simultaneously is solvable in polynomial time. Our result settles a long-standing open problem.

Keywords: Single-machine scheduling; Bicriteria scheduling; Total completion time; Maximum cost; Maximum, lateness

1. Introduction

Little has been done in the area of multicriteria
scheduling theory, in spite o f its practical potential;
after all, a schedule is evaluated on several perfor-
mance measures in practice. We refer to Dileepan and
Sen [1] for an overview of the literature on multicri-
teria scheduling problems and to Hoogeveen [4] for
a survey of the few non-trivial polynomial-time algo-
rithms and complexity results. In this paper, we prove
that a fundamental and probably the most obvious and
practical bicriteria problem is solvable in polynomial
time.

This problem is described as follows. A set o f n
independent jobs has to be scheduled on a single ma-
chine that is continuously available from time zero
onwards and that can process at most one job at a
time. Each job Jj (j = 1 n) requires an unin-
terrupted positive processing time pj and has a due

* Corresponding author.

date dj. Without loss of generality, we assume that
the processing times and due dates are integral. A
schedule tr specifies for each job when it i:s executed
while observing the machine availability constraints.
Hence, a schedule tr defines for each job Jj its com-
pletion time Cj(a), which we sometimes simply write
a s Cj.

The bicriteria problem that we consider con-
cerns the simultaneous minimization of the perfor-
mance measures total completion time ~-]~-i Cj
and maximum cost fmax. Maximum cost is de-
fined as maxl<~j<~,fj(Cj), where each f j denotes
an arbitrary regular cost function for dj; regular
means that f j (Cj) does not decrease when Cj is in-
creased. Note that maximum lateness Lmax, defined
as maxl<~j<~n(Cj - d j) , is an important special case
of fmax. A performance measure is called regular if
it is non-decreasing in each of the job completion

n times. Total completion time ~-~j=l Cj and maximum
cost are both regular performance measures. This
implies that for either criterion there is an optimal

0167-6377/95/$09.50 (~ 1995 Elsevier Science B.V. All rights reserved
SSDI 0 1 6 7 - 6 3 7 7 (9 5) 0 0 0 2 3 - 2

206 J.A. Hoogeveen, S.L. van de Velde/ Operations Research Letters 17 (1995) 205 208

solution in which the jobs are scheduled in the interval
f0, pA.

With each schedule a we associate a point
(~ Cj(a),fmax(a)) in ~2 and a value F (~ y = l Cj(a),
fma×(a)), where F is non-decreasing in either of
its arguments; that is, for any two schedules a and

n n
rc with ~j=ICj(a)<<,~-~j=ICj(g) and fmax(O')~<

frnax(rC), we have that F (~ = l Cj(a),fmax(ff))<,
F (~ y = 1 Cj(n),fmax(n)). In the remainder, we use
the terms schedule and point interchangeably. Our
bicriteria problem is then formulated as

min{F(~.~= Cj(a),fmax(a)) aE~2 I,

where f2 denotes the set of feasible schedules. Extend-
ing the three-field notation scheme of Graham et al.
[3], we denote this problem as 1 [[F(~--]~= l Cj, fmax).

F n We can solve the 111 (~/=1 Cj, fmax) problem in
polynomial time if we can identify all of the so-called
Pareto optimal schedules in polynomial time.

Definition 1. A schedule ~z E 12 is Pareto optimal with
respect to the objective functions (~ = 1 C/, fmax) if

n there exists no feasible schedule a with)--]~/=l Cj(a)
~-'~-1 Cj(Tr) and fmax(a) < fmax(n), or Y]~-l Cj(a)

n
< ~/=1 C/(rc) and fmax(O')~fmax(rC).

Once the Pareto optimal set, that is, the set of
all schedules that are Pareto optimal with respect to

n the functions (Y'~=i=1 Cj, fmax), has been determined,
problem (P) can be solved for any function F that is
non-decreasing in each of its arguments by comput-
ing the cost of each Pareto optimal point and taking
the minimum. As a consequence, if each Pareto op-
timal schedule can be found in polynomial time and
if the cardinality of the Pareto optimal set is polyno-
mially bounded in the input size, then problem (P) is
polynomially solvable.

Van Wassenhove and Gelders [11] give an
iterative algorithm for l[[F(~'~7=lfj,Lmax) that
finds each Par.eto optimal point in O(n log n) time; see
also Nelson et al. [8]. John [5] extends their
algorithm to determine the set Of Pareto optimal points
for ()-~=l C/,fmax). The complexity of these algo-
rithms depends on the number of Pareto optimal
points. This number has been subject of a lot of

misunderstanding. Lawler et al. [7] conjectured
that this number is equal to n(n - 1)/2 + 1 for
(~-~=1 Cj,Lmax). Van Wassenhove and Gelders, on
the other hand, supposed that the number of Pareto
optimal points for ()--~=l C/, Lmax) be bounded only
pseudo-polynomially; hence, they presented their al-
gorithm as being pseudo-polynomial. This inspired
Sen and Gupta [9] to present a branch-and-bound

n algorithm f o r I II E j = I Cj -~- L m a x .

We prove that the number of Pareto optimal points
for ()--~=l C/, fmax) is at most equal to n(n - 1)/2 + 1.
As a consequence, l[[F(~7=lCj, fmax) is poly-
nomially solvable: we present an algorithm for
ll[F(~_~!=lCj, fmax) that runs in O(n3min{n, log

()--]~=l PJ)}) time; it can be implemented to run in
O(n 3 log n) time if fmax = Lmax.

2. Total completion time and maximum cost

Emmons [2] addresses the hierarchical prob-
n lem of minimizing ~--~j=l Cj subject to the con-

straint that fmax is minimal; this problem is de-
noted as llfmax<<,f*l~.=lC j, where f* denotes
the optimal solution value of the l llfmax prob-
lem. The lllfrn~ problem is solved in O(n 2) time
by Lawler's rule [6]: while there are unassigned
jobs, assign the job that has minimum cost when
scheduled at the last unassigned position to that
position. Once f* has been determined, Emmons's
algorithm requires O(n 2) time to minimize total
completion time subject to minimum maximum
cost. Observe, however, that an upper bound on
f j(Cj) induces a deadline dj on the completion
time of J/. Each deadline can be determined in
O(log(y~'~= I pj)) time by binary search over the
Y'~7=l PJ possible completion times. Furthermore,

dj is computed in constant time if f / has an in-
verse. Once the deadlines have been computed, the
problem in the second phase is to minimize total
completion time subject to deadlines, denoted as
1 [t~j] Ej=I Cj. This problem is solvable in O(n logn)
time by Smith's rule [10]: while there are unsched-
uled jobs, schedule from among all jobs that can
be scheduled last a job with the largest processing
time. This rule is easily validated by an interchange
argument. Note that if there are no deadlines, this

J.A. Hoogeveen, S.L. van de Velde/Operations Research Letters 17 (1995) 205-208 207

rule comes down to sequencing the jobs in order of
non-decreasing pj.

We give a step-wise description of the algo-
rithm based on deadline determination for 1 I f max ~<

n f [~ j = l Cj, where f is some upper bound on the cost
of the schedule. Steps 2-7 then, actually, describe
Smith's rule.

Algorithm I.
Step 1: Compute for each job Jj the deadline dj

induced by f j(Cj) <~ f .
n Step 2: T ~ ~j=~ pj.

Step 3: Determine U +--- {Jj C Jldj >>, T} as the set
containing the jobs that may be completed at time T.

Step 4: Determine Jk such that ,ok -- max{pj[Jj C
U}; in case of ties, Jk is chosen to be the job with
smallest cost when completed at time T.

Step 5: Schedule Jk in the time interval [T - Pk, T].
Step 6: J +- J - {Jk}; T ~-- T - pk.
Step 7: If T > 0, then go to Step 3.

Theorem 1. Algorithm I determines a Pareto opti-
n

mal point for ~-~j=l CJ and fmax.

Proof. It suffices to show that the algorithm gen-
erates a schedule a that solves the problems
l l f f l ~ j = l Cj and 11 ~ j = l Cj~< ~]j=l Cj(o)l
fmax simultaneously. Evidently, a solves l lfm~× ~<

n f] ~7=1 Cj. Assume that n is optimal for 11 ~]j=l C/~<
n ~-~/=1 Ci(6) fmax, not a. This implies that fmax(n) <

fm~×(a)<<.f; hence, n is also feasible for 1]fm~x~<
n n n f l ~ i=t Cj. Therefore, we have Y']~j=l Cj(n) = Y'~j=l

Cj(a). Compare the two schedules, starting at the
end. Suppose that the first difference occurs at the kth
position, which is occupied by jobs Ji and Jj in a and
n, respectively. Since fmax (TZ) < f and because of the
choice of job Ji in the algorithm, we have pi >~ pj.
If Pi > Pj, then n cannot be optimal, as the schedule
that is obtained by interchanging Ji and Jj in n is
feasible with respect to the constraint fmax ~ f and
has smaller total completion time. Hence, it must be
that pi =Pj and, because of the choice of job Ji in the
algorithm, fi(Ci(6))<~ f j (Cj(n)) . This implies, how-
ever, that the jobs Ji and Jj can be interchanged in n
without affecting the cost of the schedule. Repetition
of this argument shows that n can be transformed into
cr without affecting the cost, thereby contradicting

the assumption that fmax(/Z) < fmax(O'). Therefore, tr
n n

also solves 11 ~ j= l Cj~< ~j=~ Cj(o)fmax; hence, a
n

is Pareto optimal for ~ j = l Cj and fmax. []

The maximum cost of each Pareto optimal sched-
ule ranges from f* to fma×(SPT), where S P T
refers to the schedule obtained by settling ties in
the Shortest-Processing-Time-order to minimize
maximum cost. The next algorithm, which is simi-
lar to Van Wassenhove and Gelders's algorithm for

F n lit (~ j= l Cj,Lmax), exploits this property for finding
the Pareto optimal set.

Algorithm II.
Step 1: Compute f* and fmax(SPT); let k ~-- 1.

r t

Step 2: Solve l lfmax<<,fmax(SPT)] ~ j=l Cj; this

produces the first Pareto optimal schedule a! ~), and the
first Pareto optimal point ()--~I= I Cj (a I1)), fmax (a ~ l))).

Step 3: k ~-- k + 1. Solve llfmax < fmaxatk-l)[
n ~-~j=j Cj; this produces the kth Pareto optimal

schedule alk), and the kth Pareto optimal point
(~'~j= 1 CJ (tT(k)), fmax(ff(k)))"

Step 4: If fmax(6 (k)) > f* , then go to Step 3.

A crucial issue is the number of Pareto optimal
points generated by Algorithm II. In the remainder
of this section, we prove that there are O(n 2) such
schedules, thereby establishing the polynomial nature
of the algorithm. Let Sj(o) be the start time of job Jj in
schedule 6. We define the indicator function 6ij(a) as

1 ifSi(a) < Sj(a) and Pi > Pj,
6¢j(a) = 0 otherwise,

and A(tr) = y'~i,jhij(a). Note that 6~/(a) = 1 im-
plies that the interchange of the jobs Ji and Jj in a
will decrease total completion time. In that respect,
fiij(a) = 1 signals a positive interchange. Observe
that A(SPT) = 0 and A(a) <~ n(n - 1)/2 for any a E f2.
In addition, we define a neutral interchange with re-
spect to a as the interchange of two jobs Ji and Jj
with Pi = Pj.

Lemma 1. I f schedule n can be obtained from sched-
ule a through a positive interchange, then A(n) <
A(o).

Proof. Suppose that Ji and Jj, with Pi > P j, are
the jobs that have been interchanged. The interchange

208 J.A. Hooyeveen, S.L. van de Velde l Operations Research Letters 17 (1995) 205-208

affects only the jobs scheduled between Ji and Jj. Let
Jt be an arbitrary job that is scheduled between Ji and
J j in a. Then it is easy to verify that 6a(a) + 6tj(a) >>,

6jt(rC) + 61i(rc). []

Theorem 2. Consider two arbitrary Pareto optimal
I n n schedules a andrt. ~ = l Cj(a) < ~-~j=l Cj(rc), then

A(~r) < A(~).

Proof. We show that schedule a can be obtained from
schedule rc by using positive and neutral interchanges
only. Compare the two schedules, starting at the end.
Suppose that the first difference between the schedules
occurs at the kth position; Jg occupies the kth position
in a, whereas job Jj occupies the kth position in re.
Because of the choice of Ji and Jj in Algorithm I,
we have Pi >1 Pj; the interchange of Ji and J j in
is therefore positive or neutral. We proceed in this
way until we reach schedule a. As ~ = l Cj (a) <

n Y~j=I Cj(n), at least one of the interchanges must have
been positive, and application of Lemma 1 yields the
desired result. []

Theorem 3. The number o f Pareto optimal schedules
is bounded by n(n - 1)/2 + 1, and this bound is tight.

Proof. The first part follows immediately from
Theorem 2. For the second part, consider the follow-
ing instance o f l l l F (~ = I Cg,Lmax): there are n jobs
with processing times pj = n - 2 + j and due dates
dj = ~i'=j Pi + n - j , for j = 1 n. Straightfor-
ward computations show that Algorithm II generates
n(n - 1)/2 + 1 Pareto optimal schedules for this
example. []

Corollary 1. The I I I F (~ = l Cj, fmax) problem is

solvable in O(n 3 min{n, l o g (~ = 1 p j)}) time.

Proof. We have to solve O(n 2) problems of the type
n l l frnax"~f])--~j=l Cj. To solve such a problem, we

can either apply Emmons ' s algorithm, which requires
O(n 2) time, or determine the induced deadlines, which

requires O(log(~--~= l p j)) time, and apply Smith 's al-
gorithm. []

n Corollary2. The IlIF(~-~j=I Cj,Lmax) problem is

solvable in O(n 3 logn) time.

Proof. We have to solve O(n 2) problems of the type
t l

llLmax ~<L] ~'~j=l Cj. Since the constraint Lmax ~<L

yields the set of deadlines dj --- dj + L (j = 1 n),
which are computed in constant time per job, each of
these problems is solved in O(n log n) time through
Smith 's algorithm. []

References

[1] P. Dileepan and T. Sen, "Bicriterion static scheduling
research for a single machine", Omeoa 16, 53-59 (1988).

[2] H. Emmons, "A note on a scheduling problem with
dual criteria", Naval Res. Logis. Quarterly 22, 615~516
(1975).

[3] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy
Kan, "Optimization and approximation in deterministic
sequencing and scheduling: a survey", Ann. Discrete Math.
5, 287-326 (1979).

[4] J.A. Hoogeveen, Single-machine bicriteria schedulin9,
Doctoral Thesis, CWI, Amsterdam, 1992.

[5] T.C. John, "Tradeoff solutions in single machine production
scheduling for minimizing flow time and maximum penalty",
Comput. Oper. Res. 16, 471-479 (1989).

[6] E.L. Lawler, "Optimal sequencing of a single machine
subject to precedence constraints", Management Science 19,
544-546 (1973).

[7] E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan,
unpublished manuscript, 1979.

[8] R.T. Nelson, R.K. Satin, and R.L. Daniels, "Scheduling
with multiple performance measures: the one-machine case",
Manaoement Science 32, 464-479 (1986).

[9] T. Sen and S.K. Gupta, "A branch-and-bound procedure to
solve a bicriterion scheduling problem", liE Transactions
15, 84-88 (1983).

[10] W.E. Smith "Various optimizers for single-stage production",
Naval Res. Looist. Quarterly 1, 59-66 (1956).

[11] L.N. Van Wassenhove and F. Gelders, "Solving a bicriterion
scheduling problem", European J. Oper. Res. 4, 42-48
(1980).

