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Abstract 

We prove that the bicriteria single-machine scheduling problem of minimizing total completion time and maximum cost 
simultaneously is solvable in polynomial time. Our result settles a long-standing open problem. 
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1. Introduction 

Little has been done in the area of  multicriteria 
scheduling theory, in spite o f  its practical potential; 
after all, a schedule is evaluated on several perfor- 
mance measures in practice. We refer to Dileepan and 
Sen [ 1 ] for an overview of  the literature on multicri- 
teria scheduling problems and to Hoogeveen [4] for 
a survey of  the few non-trivial polynomial-time algo- 
rithms and complexity results. In this paper, we prove 
that a fundamental and probably the most obvious and 
practical bicriteria problem is solvable in polynomial 
time. 

This problem is described as follows. A set o f  n 
independent jobs has to be scheduled on a single ma- 
chine that is continuously available from time zero 
onwards and that can process at most one job at a 
time. Each job Jj ( j = 1 . . . . .  n) requires an unin- 
terrupted positive processing time pj and has a due 

* Corresponding author. 

date dj. Without loss of  generality, we assume that 
the processing times and due dates are integral. A 
schedule tr specifies for each job when it i:s executed 
while observing the machine availability constraints. 
Hence, a schedule tr defines for each job Jj its com- 
pletion time Cj(a), which we sometimes simply write 
a s  Cj. 

The bicriteria problem that we consider con- 
cerns the simultaneous minimization of  the perfor- 
mance measures total completion time ~-]~-i Cj 
and maximum cost fmax. Maximum cost is de- 
fined as maxl<~j<~,fj(Cj), where each f j  denotes 
an arbitrary regular cost function for dj; regular 
means that f j (Cj)  does not decrease when Cj is in- 
creased. Note that maximum lateness Lmax, defined 
as maxl<~j<~n(Cj - d j ) ,  is an important special case 
of  fmax. A performance measure is called regular if  
it is non-decreasing in each of  the job completion 

n times. Total completion time ~-~j=l Cj and maximum 
cost are both regular performance measures. This 
implies that for either criterion there is an optimal 
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solution in which the jobs are scheduled in the interval 
f0, pA. 

With each schedule a we associate a point 
(~  Cj(a),fmax(a)) in ~2 and a value F ( ~ y =  l Cj(a), 
fma×(a)), where F is non-decreasing in either of 
its arguments; that is, for any two schedules a and 

n n 
rc with ~j=ICj(a)<<,~-~j=ICj(g ) and fmax(O')~< 

frnax(rC), we have that F ( ~ =  l Cj(a),fmax(ff))<, 
F ( ~ y =  1 Cj(n),fmax(n)). In the remainder, we use 
the terms schedule and point interchangeably. Our 
bicriteria problem is then formulated as 

min{F(~.~= Cj(a),fmax(a)) aE~2 I,  

where f2 denotes the set of feasible schedules. Extend- 
ing the three-field notation scheme of Graham et al. 
[3], we denote this problem as 1 [[F(~--]~= l Cj, fmax ). 

F n We can solve the 111 (~/=1 Cj, fmax) problem in 
polynomial time if we can identify all of the so-called 
Pareto optimal schedules in polynomial time. 

Definition 1. A schedule ~z E 12 is Pareto optimal with 
respect to the objective functions ( ~ = 1  C/, fmax) if 

n there exists no feasible schedule a with )--]~/=l Cj(a) 
~-'~-1 Cj(Tr) and fmax(a) < fmax(n), or Y]~-l Cj(a) 

n 
< ~/=1 C/(rc) and fmax(O')~fmax(rC). 

Once the Pareto optimal set, that is, the set of 
all schedules that are Pareto optimal with respect to 

n the functions (Y'~=i=1 Cj, fmax), has been determined, 
problem (P) can be solved for any function F that is 
non-decreasing in each of its arguments by comput- 
ing the cost of each Pareto optimal point and taking 
the minimum. As a consequence, if each Pareto op- 
timal schedule can be found in polynomial time and 
if the cardinality of the Pareto optimal set is polyno- 
mially bounded in the input size, then problem (P) is 
polynomially solvable. 

Van Wassenhove and Gelders [11] give an 
iterative algorithm for l[[F(~'~7=lfj,Lmax) that 
finds each Par.eto optimal point in O(n log n) time; see 
also Nelson et al. [8]. John [5] extends their 
algorithm to determine the set Of Pareto optimal points 
for ()-~=l C/,fmax). The complexity of these algo- 
rithms depends on the number of Pareto optimal 
points. This number has been subject of a lot of 

misunderstanding. Lawler et al. [7] conjectured 
that this number is equal to n(n - 1)/2 + 1 for 
(~-~=1 Cj,Lmax). Van Wassenhove and Gelders, on 
the other hand, supposed that the number of Pareto 
optimal points for ()--~=l C/, Lmax) be bounded only 
pseudo-polynomially; hence, they presented their al- 
gorithm as being pseudo-polynomial. This inspired 
Sen and Gupta [9] to present a branch-and-bound 

n algorithm f o r  I II E j = I  Cj -~- L m a x .  

We prove that the number of Pareto optimal points 
for ()--~=l C/, fmax ) is at most equal to n(n - 1 )/2 + 1. 
As a consequence, l[[F(~7=lCj, fmax) is poly- 
nomially solvable: we present an algorithm for 
ll[F(~_~!=lCj, fmax ) that runs in O(n3min{n, log 

()--]~=l PJ)}) time; it can be implemented to run in 
O(n 3 log n) time if fmax = Lmax. 

2. Total completion time and maximum cost 

Emmons [2] addresses the hierarchical prob- 
n lem of minimizing ~--~j=l Cj subject to the con- 

straint that fmax is minimal; this problem is de- 
noted as llfmax<<,f*l~.=lC j, where f*  denotes 
the optimal solution value of the l llfmax prob- 
lem. The lllfrn~ problem is solved in O(n 2) time 
by Lawler's rule [6]: while there are unassigned 
jobs, assign the job that has minimum cost when 
scheduled at the last unassigned position to that 
position. Once f*  has been determined, Emmons's 
algorithm requires O(n 2) time to minimize total 
completion time subject to minimum maximum 
cost. Observe, however, that an upper bound on 
f j(Cj) induces a deadline dj on the completion 
time of J/. Each deadline can be determined in 
O(log(y~'~= I pj)) time by binary search over the 
Y'~7=l PJ possible completion times. Furthermore, 

dj is computed in constant time if f /  has an in- 
verse. Once the deadlines have been computed, the 
problem in the second phase is to minimize total 
completion time subject to deadlines, denoted as 
1 [t~j] Ej=I Cj. This problem is solvable in O(n logn) 
time by Smith's rule [10]: while there are unsched- 
uled jobs, schedule from among all jobs that can 
be scheduled last a job with the largest processing 
time. This rule is easily validated by an interchange 
argument. Note that if there are no deadlines, this 
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rule comes down to sequencing the jobs in order of 
non-decreasing pj. 

We give a step-wise description of the algo- 
rithm based on deadline determination for 1 I f  max ~< 

n f [  ~ j = l  Cj, where f is some upper bound on the cost 
of the schedule. Steps 2-7 then, actually, describe 
Smith's rule. 

Algorithm I. 
Step 1: Compute for each job Jj the deadline dj 

induced by f j( Cj ) <~ f . 
n Step 2: T ~ ~j=~ pj. 

Step 3: Determine U +--- {Jj C Jldj  >>, T} as the set 
containing the jobs that may be completed at time T. 

Step 4: Determine Jk such that ,ok -- max{pj[Jj C 
U}; in case of ties, Jk is chosen to be the job with 
smallest cost when completed at time T. 

Step 5: Schedule Jk in the time interval [T - Pk, T]. 
Step 6: J +- J - {Jk}; T ~-- T -  pk. 
Step 7: If T > 0, then go to Step 3. 

Theorem 1. Algorithm I determines a Pareto opti- 
n 

mal point for  ~-~j=l CJ and fmax. 

Proof. It suffices to show that the algorithm gen- 
erates a schedule a that solves the problems 
l l f  . . . .  f l  ~ j = l  Cj and 11 ~ j = l  Cj~< ~]j=l Cj(o)l 
fmax simultaneously. Evidently, a solves l lfm~× ~< 

n f ]  ~7=1 Cj. Assume that n is optimal for 11 ~]j=l C/~< 
n ~-~/=1 Ci(6)  fmax, not a. This implies that fmax(n) < 

fm~×(a)<<.f; hence, n is also feasible for 1]fm~x~< 
n n n f l  ~ i=t  Cj. Therefore, we have Y']~j=l Cj(n) = Y'~j=l 

Cj(a). Compare the two schedules, starting at the 
end. Suppose that the first difference occurs at the kth 
position, which is occupied by jobs Ji and Jj in a and 
n, respectively. Since fmax (TZ) < f and because of the 
choice of job Ji in the algorithm, we have pi >~ pj. 
If Pi > Pj, then n cannot be optimal, as the schedule 
that is obtained by interchanging Ji and Jj in n is 
feasible with respect to the constraint fmax ~ f and 
has smaller total completion time. Hence, it must be 
that pi =Pj  and, because of the choice of job Ji in the 
algorithm, fi(Ci(6))<~ f j (Cj(n)) .  This implies, how- 
ever, that the jobs Ji and Jj can be interchanged in n 
without affecting the cost of the schedule. Repetition 
of this argument shows that n can be transformed into 
cr without affecting the cost, thereby contradicting 

the assumption that fmax(/Z) < fmax(O'). Therefore, tr 
n n 

also solves 11 ~ j= l  Cj~< ~j=~ Cj(o)fmax; hence, a 
n 

is Pareto optimal for ~ j = l  Cj and fmax. [] 

The maximum cost of each Pareto optimal sched- 
ule ranges from f*  to fma×(SPT), where S P T  
refers to the schedule obtained by settling ties in 
the Shortest-Processing-Time-order to minimize 
maximum cost. The next algorithm, which is simi- 
lar to Van Wassenhove and Gelders's algorithm for 

F n lit (~ j= l  Cj,Lmax), exploits this property for finding 
the Pareto optimal set. 

Algorithm II. 
Step 1: Compute f*  and fmax(SPT); let k ~-- 1. 

r t  

Step 2: Solve l lfmax<<,fmax(SPT)] ~ j=l  Cj; this 

produces the first Pareto optimal schedule a! ~ ), and the 
first Pareto optimal point ()--~I= I Cj (a I1 ) ), fmax (a ~ l ))). 

Step 3: k ~-- k + 1. Solve llfmax < fmaxatk-l)[ 
n ~-~j=j Cj; this produces the kth Pareto optimal 

schedule alk), and the kth Pareto optimal point 
(~'~j= 1 CJ (tT(k)), fmax(ff(k)))" 

Step 4: If fmax(6 (k)) > f* ,  then go to Step 3. 

A crucial issue is the number of Pareto optimal 
points generated by Algorithm II. In the remainder 
of this section, we prove that there are O(n 2) such 
schedules, thereby establishing the polynomial nature 
of the algorithm. Let Sj(o) be the start time of job Jj in 
schedule 6. We define the indicator function 6ij(a) as 

1 ifSi(a)  < Sj(a) and Pi > Pj, 
6¢j(a) = 0 otherwise, 

and A(tr) = y'~i,jhij(a). Note that 6~/(a) = 1 im- 
plies that the interchange of the jobs Ji and Jj in a 
will decrease total completion time. In that respect, 
fiij(a) = 1 signals a positive interchange. Observe 
that A(SPT) = 0 and A(a) <~ n(n - 1 )/2 for any a E f2. 
In addition, we define a neutral interchange with re- 
spect to a as the interchange of two jobs Ji and Jj 
with Pi = Pj. 

Lemma 1. I f  schedule n can be obtained from sched- 
ule a through a positive interchange, then A(n) < 
A(o). 

Proof. Suppose that Ji and Jj, with Pi > P j, are 
the jobs that have been interchanged. The interchange 
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affects only the jobs scheduled between Ji and Jj. Let 
Jt be an arbitrary job that is scheduled between Ji and 
J j  in a. Then it is easy to verify that 6a(a)  + 6tj(a) >>, 

6jt(rC) + 61i(rc). [] 

Theorem 2. Consider two arbitrary Pareto optimal 
I n n schedules a andrt. ~ = l  Cj(a)  < ~-~j=l Cj(rc), then 

A(~r) < A(~). 

Proof.  We show that schedule a can be obtained from 
schedule rc by using positive and neutral interchanges 
only. Compare the two schedules, starting at the end. 
Suppose that the first difference between the schedules 
occurs at the kth position; Jg occupies the kth position 
in a, whereas job Jj  occupies the kth position in re. 
Because of  the choice of  Ji and Jj  in Algorithm I, 
we have Pi >1 Pj; the interchange of  Ji and J j  in 
is therefore positive or neutral. We proceed in this 
way until we reach schedule a. As ~ = l  Cj (a )  < 

n Y~j=I Cj(n),  at least one of  the interchanges must have 
been positive, and application of  Lemma 1 yields the 
desired result. [] 

Theorem 3. The number o f  Pareto optimal schedules 
is bounded by n(n - 1 )/2 + 1, and this bound is tight. 

Proof.  The first part follows immediately from 
Theorem 2. For the second part, consider the follow- 
ing instance o f  l l l F ( ~ =  I Cg,Lmax): there are n jobs 
with processing times pj  = n - 2 + j and due dates 
dj = ~i'=j Pi + n - j ,  for j = 1 . . . . .  n. Straightfor- 
ward computations show that Algorithm II generates 
n(n - 1 )/2 + 1 Pareto optimal schedules for this 
example. [] 

Corollary 1. The I I I F ( ~ =  l Cj, fmax) problem is 

solvable in O(n 3 min{n, l o g ( ~ =  1 p j )} )  time. 

Proof. We have to solve O(n 2) problems of  the type 
n l l frnax"~f]  )--~j=l Cj. To solve such a problem, we 

can either apply Emmons ' s  algorithm, which requires 
O(n 2) time, or determine the induced deadlines, which 

requires O(log(~--~= l p j ) )  time, and apply Smith 's  al- 
gorithm. [] 

n Corollary2. The IlIF(~-~j=I Cj,Lmax) problem is 

solvable in O(n 3 logn)  time. 

Proof.  We have to solve O(n 2) problems of  the type 
t l  

llLmax ~<L] ~'~j=l Cj. Since the constraint Lmax ~<L 

yields the set of  deadlines dj --- dj + L  ( j  = 1 . . . . .  n), 
which are computed in constant time per job, each of  
these problems is solved in O(n log n) time through 
Smith 's  algorithm. [] 

References 

[1] P. Dileepan and T. Sen, "Bicriterion static scheduling 
research for a single machine", Omeoa 16, 53-59 (1988). 

[2] H. Emmons, "A note on a scheduling problem with 
dual criteria", Naval Res. Logis. Quarterly 22, 615~516 
(1975). 

[3] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy 
Kan, "Optimization and approximation in deterministic 
sequencing and scheduling: a survey", Ann. Discrete Math. 
5, 287-326 (1979). 

[4] J.A. Hoogeveen, Single-machine bicriteria schedulin9, 
Doctoral Thesis, CWI, Amsterdam, 1992. 

[5] T.C. John, "Tradeoff solutions in single machine production 
scheduling for minimizing flow time and maximum penalty", 
Comput. Oper. Res. 16, 471-479 (1989). 

[6] E.L. Lawler, "Optimal sequencing of a single machine 
subject to precedence constraints", Management Science 19, 
544-546 (1973). 

[7] E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan, 
unpublished manuscript, 1979. 

[8] R.T. Nelson, R.K. Satin, and R.L. Daniels, "Scheduling 
with multiple performance measures: the one-machine case", 
Manaoement Science 32, 464-479 (1986). 

[9] T. Sen and S.K. Gupta, "A branch-and-bound procedure to 
solve a bicriterion scheduling problem", liE Transactions 
15, 84-88 (1983). 

[10] W.E. Smith "Various optimizers for single-stage production", 
Naval Res. Looist. Quarterly 1, 59-66 (1956). 

[ 11 ] L.N. Van Wassenhove and F. Gelders, "Solving a bicriterion 
scheduling problem", European J. Oper. Res. 4, 42-48 
(1980). 


