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Abstract 

This paper describes a fast numerical solver for the elastohydrodynamically lubricated 
circular contact problem. As a result of the application of multigrid techniques the algorithm 
is of very low complexity, ie. O(n In n), where n is the number of nodes on the grid. 
Consequently, it enables the solution of the problem using large numbers of nodes (O(10’)) 
on a small-capacity computer, as is demonstrated by the results presented for an example 
load situation. 

1. Introduction 

In the past few decades ‘a large number of papers has been published dealing 
with the numerical calculation of the pressure profile and film shape in elastohydro- 
dynamically lubricated (EHL) contacts. In spite of the fact that it is a less realistic 
configuration, the majority of the papers has dealt with the (one-dimensional) line 
contact problem. The main reason that the (ho-dimensional) point contact problem 
is relatively scarcely addressed is most probably its computational complexity. 

Firstly, there is a computing time problem. The governing equations are discretized 
on a grid covering the fluid flow domain. Compared with the line contact problem 
there is an additional dimension in the equations. As a result, the number of gridpoints 
needed to describe the pressure profile and film shape in a point contact with the 
same accuracy that is nowadays quite common for a line contact is some two or three 
orders of magnitude larger. For example, if n denotes the number of nodes on the 
grid, typically n2 104 is desirable and even larger n is needed if a local feature, e.g. 
surface roughness, is to be described too. For various reasons such a large number 
of nodes causes excessive computing times, even when supercomputers are used. 

For example, assume that a local relaxation scheme, e.g. a simple Gauss-Seidel 
relaxation, is used to solve the discrete system of equations (see e.g. refs l-4). Advantages 
of such a relaxation process are the small computer storage requirements and the 
easy implementation of the cavitation condition. However, to obtain a converged 
solution requires roughly O(n) relaxation sweeps. For each sweep the elastic deformation 
of the surfaces must be cafculated or updated. 

To compute the elastic deformation in each gridpoint requires an integration over 
the entire domain. Hence, to calculate the elastic deformation in all points requires 
0 (n’) operations. Consequently, the complexity of such a solver for the EHL problem 
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is roughly 0(n3). Wrth the aforementioned number of notles it is obvious th;n ~~~~i-:~,~!:ir~~’ 
time problems can be expected. 

The situation for a “global” type of iterative solver such as the so-called YOU 
ton-Raphson system approach for cxamplc applied by Oh [S] and Oh .mti ii~hd~ i’?i 
is even worse. In that case the necessary number of iterations may bo smal!~: igt11 
the computational cost of one iteration is much larger. Due to the elastic def’or~~tion 
integrals, each iteration requires the inversion of a full IZ XIZ Jacobian matrrx, i I d JIU 
operations. Hence, again excessive computing times for large 11. Resides, ;1 itugc Z!llh7!1!8i 

of computer storage is needed for all O(n’) elements of the Jacobian matrix 
The second reason for the computational complexity of the point contact l~~-obl~rn 

arises from stability considerations. The most str~ightforw~Ird numcri~;~i ~ctluth>r; :ii 
gorithms are nut stable for the highly loaded c~~nditi~)tls that arc quitt ~~II~III~~~I ill 
concentrated contacts between steel surfaces, i.~. with a maximum prcssarr~ r:~rtgin,z 
up to some 3.0 GPa. 

Since the early 1980s considerable progress wtth respect to both the cc*rnputational 
cost and the stability problems has been reported. For example, Lubrccht 17, 81 
introduced multigrid (multilevel) techniques, to deal efhciently with the sl~nvne~~ of 
convergence of a local relaxation scheme. In principle these techniques cnabl~ the 
solution of the problem up to the level of the discretization error in an amount 01 
work equivalent to roughly lo-20 relaxation sweeps. Compared with the aforemcntioncd 
0(n) iterations this gives a significant reduction of the computational cost. The application 
of these techniques enabled Lubrecht to solve the circular contact problem r:Gng a 
relatively large number of nodes on a small-capacity computer and to carr) ~IU; :in 
extensive parametric study. Nevertheless. the complexity of Lubrccht’x :ilgoriihm wah 
still relatively high. i.f:. O(n”), due to the evaluation of the elastic defor~latior~ integrals 
Furthermore, the simpte Gauss-Seidel rctaxation on which the algorithm ~1s !~tsed 
gradually becomes unstable with increasing load and Lubrecht could only ;4,tain 
soiutions for relatively moderately loaded situations. 

With respect to the stability problems significant progress was reported by Kweh 
et al. [9]. They devclopcd an algorithm for the numcxical solution of point contact 
problems based on the so-called inverse solution techniques. With this algorithm they 
were able to solve the problem even for the highly loaded situations mentioned ;.~bove. 
A similar algorithm was prtscntcd by Seabra and Rerthc [lo]. However. this algorithm 
is not really suited for large II since its complexity is also at least C)(rz’) due ts> thz 
eIastic deformation integrals. 

This paper describes the deveIopme~~t of an advanced solver for EHL point contact 
problems along the lines set out by Lubrecht, i.c. based on multigrid techniques. ‘Two 
important steps have been taken. The first step is that an alternative relaxation scheme 
has been developed providing stability also for highly loaded conditions. The scc~nd 

step is the implementation of a newly dcvcloped multilevel technique catled Multifeud 
Multi-integration. This technique was developed by Brandt and Lubrecht 1111 and 
reduces the computing time needed for the calculation of the type of integrals such 
as those describing the elastic deformation from O(n’) to O(n In n). 

The final result of these two steps is an algorithm solving the steady-state circular 
contact problem in O(n in n) operations also for highly loaded conditions. This low 
complexity allows solution of the problem using a large number of nodes (rt = 250 000) 
on a small-capacity computer. For the usual smooth surface situation this number of 
nodes may seem unnecessarily large, but it demonstrates the prospect of the algorithm 
for future studies of more compfex (transient, surface features, roughness) point contact 
problems. 
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2. Equations 

Substitution of the following dimensionless variables: 

P’PIPO 

ii = 771170 

X=.&r 

Y=j$a 

P==Piph 

II = hRla2 

where a is the radius of the Hertzian contact circle: 

and ph is the maximum Hertzian pressure: 

results in the following dimensionless Reynotds equation for the steady-state two- 
dimensional circular contact problem: 

In addition the cavitation condition P>O should be satisfied in the domain and P-O 
at the boundaries. In this equation E denotes 

f’ E!rE 
17h 

‘IFhe dimensionfess parameter h is defined according to 

A = kW&2 

a’ph 

The dimensionless lubricant density ; is assumed to depend on the pressure according 
to the Dowson and Higginson relation [12]. Besides, the Roelands viscosity pressure 
relation [13] is used. 

Substitution of the same dimensiontess parameters in the film thickness equation 
gives 

m w 

ff 
PJX’, Y’)dX’dY” 

--m-m [(X-X’)” + (Y - Y’)ZJl,Q (2) 

where Ho0 is a constant. 
Finally the dimensionless force balance equation, demanding that the integral 

over the pressure equals the externally applied contact load, reads 
m m 

Sf P(X? Y)dXdY- f =Q 
-a?-.C0 
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3. Numerical solution 

This section briefly outlines the step-by-step approach leading to a fast solvc~ for 
the point contact problem. For a more detailed explanation see rcf I 4 

3.1. Discretization 
The equations are discretized on a rectangular uniform grid extended over the 

domain {(X, I’) EIW’~, <XIX,, - Y, rY< Y,} with mesh size /I. Using a second-order 
accurate central discretization for the first two terms of Eqn. (1) and a first-order 
upstream discretization of the wedge term leads to the following equation to be satisfied 

at each non-boundary site (i, j), (X0 + ih, - Y, +jh): 

h-2(Ei-1R,~(P~~~1,~-t)r.j)+E~+liZ,~(P~+l,,~-~'~,j)+t~,j-1/2(Pi.~ lep,,j) 

+ 4, I+ Ii2 (f't,j+ ~-f't,,))-h '(P,H,--Pr IH, -I)=() (4) 

with the cavitation condition: P,, , r 0. 

<i-1/2,,, l i+1/2.j, c,, -UT and l t,] 6 L/Z denote the value of c at the intermediate locations: 

I 

(X0 + (i - I)h, -Y, +jh) 

(X,+(i+$)h, -Y,+jh) 

(x7 r)= (X,+ih, -Y,+Q-Qh) 

(X,+ih, -Y<,+(j+f)h) 

respectively. 
They are computed in an analogous way as described in ref. 15 for the line 

contact problem, e.g. 

&I/2, 1 EZ tEi, 1 + Et --I. j)i2 

ci,, is defined as 

P(fi. j>@ j 
Eijj= ~(P,,~)A 

(3 

Discretizing the elastic deformation integral for example described by L,ubrecht 17, 81 

gives 

(6) 

where the coefficients K$. are determined analytically assuming the pressure to be 
a piecewise constant function, see eg. refs. 7, 14. Furthermore, (nx+ 1) and (n, ,t 1) 
denote the number of nodes on the grid in the X and Y directions respectively. 

Finally the force balance equation determining the value of the integration constant 
Ho0 is discretized according to 

(7) 

3.2. Multilevel techniques 
Equations (4)-(7) will be solved simultaneously using the “standard” multigrid 

techniques. For an introduction to these techniques the reader is referred to Briggs 
[16]. The reader is also referred to Brandt [17]. The concept of multilevel (multigrid) 
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fast solvers is based upon an understanding of the convergence behaviour of a local 
relaxation process. In many situations such a process is very efficient in reducing error 
components with a wavelength of the order of the mesh size, i.e. high-frequency error 
components. Error components, with wavelengths that are large compared with the 
mesh size, are hardly effected however. Consequently, after the first few relaxations 
the error on the grid is smooth compared with the mesh size and, because of the 
slow reduction of these remaining smooth error components, many relaxation sweeps 
are needed (Q(n)) to finally reach a converged solution. 

The important step leading to a multilevel solver is that such a smooth error can 
be accurately represented and solved on a coarser grid. Therefore, instead of continuing 
the relaxation process when, after a few relaxations, convergence slows down, one 
switches over to a coarser grid. On that grid an approximation to the smooth error 
is solved and subsequently this appro~mation is used to correct the solution on the 
finer grid. The equations from which the error on the coarse grid must be solved are 
basically the same as the original problem. Hence, the same iterative procedure can 
be used. However, compared with the computational cost of iterations on the fine 
grid, the amount of work needed for the solution of the error on the coarse grid is 
much smaller. The first reason for this reduction is that the number of nodes on the 
coarse grid is much smaller and consequently one iteration on this grid requires fewer 
operations. The second reason is that, because of the larger ratio between the wavelength 
of the error component and the mesh size, the iterative process on the coarse grid 
converges faster and a given error reduction requires fewer iterations. 

The same reasoning applies to the iterative solution of the error on the coarse 
grid. If the number of nodes on this grid is relatively large the convergence will slow 
down again after a few iterations. The remaining error on this grid will be smooth 
and can be accurately approximated and solved on an even coarser grid. This process 
can be repeated until a grid is reached on which the problem can be solved in only 
a few iterations. The result is used to correct the soiution of the problem on the next 
finer grid and so on until the finest grid is reached again. Hence, to solve the problem 
on some grids, a set of coarser grids is used. On each grid only a few iterations are 
carried out and only on the coarsest grid is the problem really solved. Usually the 
number of nodes on the coarsest grid is small so this requires only a few iterations. 
This sequence of going from the finest grid to the coarsest and back again is generally 
denoted as a coarse grid correction cycle, see e.g. refs. 16 and 17. The error reduction 
that can be obtained in such a cycle is independent of the number of nodes on the 
finest grid and, since all smooth error components are solved on the coarser grids, it 
is determined by the efficiency of the relaxation process in reducing the high-frequent 
error components. 

With these techniques the problem can be solved up to the level of the discretization 
error in a total amount of work that is the equivalent of roughly 10-20 relaxation 
sweeps on the finest grid whereas otherwise O(n) relaxation sweeps would be needed. 

For further details the reader is referred to the aforementioned publications. 
Furthermore, details with respect to the application to EHL problems can be found 
in refs. 8 and 15. In this paper only the relaxation process, the actual basis of the 
algorithm, is discussed in detail. 

In the course of iteratively solving eqns. (4)-(7), the elastic deformation must be 
calculated, recalculated or updated, for example after each relaxation. This requires 
carrying out the multi-summation in eqn. (6) which, as explained before, is a very 
time-consuming task. For that purpose the newly developed algorithm Multilevel Multi- 
integration will be used. This technique enables evaluation in O(n In n) operations. 
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It can be easily combined with the above-described multilevel solution technqtica. +(II- 
details see refs. 11, IX and also ref. 15. 

3.3. Relaxation 

In the preceding section the roIe of relaxation in a multilevel solver has itzen 
explained. From this description it is clear that a multilevel solver for the point contact 
problem requires a relaxation scheme that efficiently reduces high-frequency errs 
components. In fact, the efficiency of the scheme to reduce error components with 
a wavelength of the order of magnitude of the mesh size determines the efikicncy 
of the solver. With respect to low-frequency components the only requirement that 
the relaxation should meet is that they are not amplified, otherwise the process I‘; 
unstable. As long as these components are not amplified by the relaxation the spcciAt 
amplitude reduction factor is not very important since they are solved on the coarser 
grids. The relaxation should meet both requirements, i.e. good error srn~)othi~~g and 
stability for all conditions, including high loads. 

The problems encountered in developing such a scheme for the point c;ontact 
problem are very similar to the problems one had to overcome in the case of the line 
contact problem, see eg. ref. 1.5. The coefficient t in eqn. (1) varies by several #orders 
of magnitude over the calculational domain. Globally in the Hertzian dry contact 
region ((X2+ Y’) _< 1) the viscosity q is large and H is small. As a result E K 1, particularly 
for high loads. Consequently, in this region eqn. (1) reduces to 

with H given by eqn. (2). Consequently, the integral aspect of the problem dommates. 
In the outer part of the domain ((X2+ Y*) 2 1) H is large and 3 =r 1. Hence, in this 
region Ed 1. As a result the first two terms in eqn. (1) dominate and the problem 
basically behaves as a differential problem. Furthermore, with increasing load the 
intermediate region, the bumdaly layer, narrows with increasing load. 

The relaxation process used in a multilevel solver of the problem shouId hc a 
good error smoother for both large and small values of E. The approach to obtain 
such a scheme is basically the same as described in ref. 15 for the line contact problem. 
First a linear model problem is studied. This model probiem is chosen in such a way 
that it is characteristic for the local behaviour of the full problem. Subsequently, using 
the results of the analysis of this linear problem, step by step, a relaxation process 
for the full problem has been developed. 

3.3.1. Lkearized problem 
The following linear appro~mation of the EHL circular contact problem, i.e. eyn. 

(l), is studied: 

on the domain {(X, Y) E R?j.& <X<X,, -Y,lY<Y,) and the condition that P=O on 
the boundaries. H is given by eqn. (6) and E is assumed to be a constant. In addition, 
cavitation is disregarded and the force balance equation plays no role. Discretization 
of eqn. (9) on a uniform grid with mesh size h gives 

E(P,.-1, jfPi+l. j+Pi, j-lipi, j+l - 4Pi, j)/h’ - (Hi, j - Hi _ 1, j)/h = 0 (10) 

with Hij from eqn. (6). 
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The efficiency of a relaxation scheme in reducing high-frequency components can 
be expressed in terms of its smoothing rate. This is the maximum amplitude amplification 
factor for those components that can not be represented on the coarser grid. The 
smoothing rate of a specific relaxation process applied to the solution of eqn. (10) 
with Hi, j given by (6) depends on the ratio c/h ‘. For large values of this ratio eqn. 
(10) approximates the well known two-dimensional Poisson equation and a simple 
one-point lexicographic Gauss-Seidel relaxation provides good error smoothing and 
stability. Unfortunately, with decreasing c/h* this relaxation gradually becomes unstable. 
The cause of this instability is that the accumulated changes of the elastic deformation 
integrals during a relaxation sweep are too large. As a result low-frequency error 
components are amplified and the scheme becomes unstable. 

To find a stable relaxation scheme with good smoothing properties for small E 
it is important to ensure that the process remains effectively local, i.e. that relaxing 
at a point (xi, yj) introduces only smalf changes to the discrete integral Hw and in 
particular to the discrete derivative (&-tjw_l)/h at points (xk, yt) far away from (xi, 
y,); otherwise each such integral would accumulate too many significant changes in a 
relaxation sweep. This can be achieved using a suitable kind of distributed relaxation. 

In general, a distributed relaxation of the order r is a relaxation where each set 
of simultaneous changes is an rth-order difference of a local function (e.g. a multiple 
of a discrete delta-function). Instead of changing the approximation in only one point, 
changes are also applied at one or more adjacent sites. For example, in the case of 
a second-order distributive relaxation for a two-dimensional problem five un~owns 
are changed at a time, i.e. Pij+P,j-t6,j and Pi+,, j*l+Pi*tl, ji,_6ii/4, where 6, is 
calculated in such a way that, after applying these changes, the equation to be solved, 
e.g. eqn. (lo), is satisfied at (xi, yj). This relaxation can ensure that the changes in 
the integrals remain local since the changes in the integral at (xk, yI) caused by these 
second-order distributed changes at (xl, yj) behave like CK2(x,, yj, xk, yl)/&x2+aKZ 
(xi, yjz &:k, yl)/ay2, which, in the present case, decays like i(Xi, yj) - (&, Y~YI)I-~. Moreover, 
the changes in the derivative cw/dX occurring in the equation will decay even faster. 

It can easily be shown that this particular relaxation applied to the present problem 
is stable, also for the extreme case that E=O. However, there is one complication 
related to the fact that the problem is two-dimensional. With decreasing E eqn. (10) 
reduces to 

aw -= 
ax 

0 (11) 

which is a relation in the X direction only. Consequently, when discretized, there is 
no direct coupling via the pressure between adjacent gridpoints in the Y direction. 
These points are only indirectly, and very weakly, coupled via the elastic deformation 
integrals. As a result any relaxation process where the gridpoints are scanned one- 
by-one, e.g. in lexicographic order, is ineffective in reducing a specific subset of the 
high-frequency components, i.e. those that are smooth with respect to the X direction 
and high-frequency in the Y direction. For the simple one-point Gauss-Seidel relaxation 
applied to the full circular contact problem this observation was already made by 
Lubrecht 181. 

Assuming the usual choice of a coarse grid having twice the mesh size of the 
fine grid with respect to both directions this grid cannot describe those error components 
and it is essential that they are reduced on the fine grid. This can be achieved rather 
easily as outlined by Brandt [17], ix. by using a line relaxation. 
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Characteristic for line relaxation is that, instead of scanning all gridpoint~ I)~IL 
by-one solving changes to satisfy the equation at that point, grid lines arc visitrti WN 
by-one solving all discrete equations of each line simultaneously. These lines \houlti 
be lines in the direction of the strong coupling, i.e. in the present case, lines ot c~~~,t;~nt 
Y {lines in the X direction). 

Summarizing, a good error smoothing process for small E/@ must he a d~s~r~~-~~it~~~~ 
line relaxation. For example the following process serves very well in a muttittvcl 
solver of the linearized problem: given an approximation i” and the associatt,d ;~p- 
proximation to the film thickness fi all lines of constant Y(j) are visited and iii each 
line simultaneously a new approximation Hi, 1 to ff,, , and all changes is,, , ( 1 c_ i .- (2 1 I 
to be applied using the aforementioned distribution arc solved from 

&“[(Pi-1, j-Scir-_L j/4+6-*,,- ~j,;i4)+(jj,*l.,--~~,,14+S~-,,,,-Si+2,ji4) 

-4(P;, j-S;..,, ji4+Si, j-6’ I* 1, jj4) + (pi. f -+ I - &t, j/4) + (I’,, l- 1 - 6, j/4)J 

-(fl~,ji,ii_~,,)/h=O 

where 

i 13) 

Aep = gp - (G”$j +K;y& + K;zh, -5 ~~~~,)/4 

In eqn. (12) @ii denotes the elastic deformation summation 

f t4t 

whereas fij stands for 

hji,=woo+ $ + y 

After all interior lines j have been visited the changes are applied according to 

Pi,j=~ii,,+6i,,-(6i-1,ji6;.~1,j+6i,~~1+6,, iA*)/ (IS) 

and the new values of the pressurePi,, are used to update or recalculate the approximation 
to the elastic deformation (4). This Jacobi distributive line relaxation scheme is very 
effective in reducing high-frequency error components. The only complication is how 
to solve all changes together with the new values of El,,, on one line simultaneously. 
In fact, this requires the solution of a (full) system of O(n’“) discrete equations, where 
n is the total number of nodes on the grid. However, to obtain the full line relaxation 
efhciency, the equations need not be solved exactty. In general it is sufficient if the 
error on that line is reduced by say one or two orders of magnitude. Therefore, since 
Apti?? decreases very fast with increasing distance Ii--ic], it is sufficient to take into 
account only the three largest terms of the summation and to solve a reduced system 
of equations. 

There are various alternatives enabling a fast solution of all &, j and S,, , from 
the reduced system. An effective way is for example by means of decimation. This 
process and its implementation for the linear model problem considered here are 
explained in detail in ref. 14 (appendix R). 

The line relaxation process described above was implemented in a multilevel solver 
for the model problem and for small e/h2, particularly for the extreme case c=O, an 



error reduction of an order of magnitude per coarse grid correction cycle (V(2, 1) or 
JV(2, I) see ref. 16) was easily obtained. 

Also for larger values of e/h2 the relaxation scheme still rather effectively reduces 
high-frequency error components and even in the limiting case of very large e/h*, i.e. 
the two-dimensional Poisson problem, the asymptotic smoothing rate b is still 0.6. 
However, for these large values of e/h2 the present relaxation process is outranked 
by the simple one-point Gauss-Seidel relaxation with lexicographic ordering which has 
an asymptotic smoothing rate of 0.5. An even better alternative for large values of 
t/h2 is a Gauss-Seidel line relaxation with an as~ptotic sm~thing rate of 0.4. This 
latter relaxation can be described as follows: For each line of constant Y (j) changes 
Sij and a new approximation I;l, j to Hi, j are solved simultaneously from 

E/h’[(& 1, j + Sj_ 1, j) + (Pi+ 1, j + 8’ t-tl, j)-4(pi, j+$. j>+pi, j+lSpi, j-l] 

-(Ui,j-fii_l,j)/h=O (17) 

When all S,, j for a line j are solved they are applied immediately 

.lj{, j = Pi, j + S,, j 
(18) 

These new values of P on line j are subsequently used when treating the next line 
as is characteristic for a successive displacement scheme. In order to obtain the full 
efficiency it is not necessary to take into account all terms of the summation. Since 
$“f” decreases with distance as Ii--kl-’ it is, as in the procedure described above, 
sufficient to take into account only three terms. 

As was found for the simple (one-point) Gauss-Seidel relaxation the Gauss-Seidel 
line relaxation, although it does not suffer from the loss of coupling, is not stable for 
small values of e/h’. Below ~Jh’=0.3 low-frequency error components are amplified 
and the process diverges. Therefore, a multilevel solver for the model problem giving 
good results for all E was obtained by combining two relaxations, i.e.: 

on grids where c/@rO.3 the Gauss-Seidel line relaxation is used. 
on grids where l /h2<O.3 the Jacobi distributive line relaxation is used. 

In this way an error reduction of one order of magnitude per coarse grid correction 
cycle (V(2, 1) or W(2, 1)) was obtained regardless of the value of E. 

3.3.2. Valying coefficients 
The next step leading to a solver for the circular contact problem is to consider 

eqn. (1) and allow the coefficient E to vary over the grid, i.e. to solve the probiem 

a aP 

1 

a aP 
ax ax + .( 1 3Y ‘au - =o (19) 

on the domain {(X, Y)E[W~/X,IX<X~, -YO<Y<YO} with the condition that P=O on 
the boundaries and H is given by eqn. (6) for different functions E(X, Y). Cavitation 
is disregarded and the force balance equation plays no role. To approximate the full 
circular contact problem E(X, I’) is chosen as 

if Xz+Y2> 1 

otherwise (20) 

Equation (19) is discretized according to 
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+~i,j+~,2(P,,j+~-Pi.,))-h~‘(p~H,-~, rff-1)=-(1 , .! i 

6 - l/2, Jo l + IR. j, E,, ,- IR and l t. j+ 112 denote the value of E(X, Y) at the Intcrrrwtfiu;r 
locations as described before. 

In the multilevel algorithm described in section 3.3.1 the relaxation type uied on 
a specific grid depends on the value of c/h2. As mentioned before, relaxation in. by 
its nature, a local process. Hence different relaxations can be combined on one grid. 

For the specific problem considered here the two-line relaxation processes ian be 
combined in the following way: for a given line of constant Y the changes h, , ilnd 
the new approximations to fii,, are solved from a system of equations, i.e. hvo equations 
per gridpoint i. If at least one of e1 * 1S2,, i l,2/hz exceeds the value of the crossover 
point the two equations for this grid point arc 

h-2[(~~-In,j(Pi-l,,+~i-~.j)+E;+~/2,,(P~~~,,+~r~ I,,) 

-(~j,,-*/2+~ii.,+l/2+~r+112.,+Er -1/2,j)(P~,,+~~,;)+E~.~+lRt)r.j+-I+E~,, u 192 ,, i! 

-(Hi,j-Hi_,,j)/h=O (23) 

Otherwise, i.e. if all eiktln,,*&h2 are smaller than the value of the crossover point, 
the two equations for this grid point are 

(24) 

+ 6, j+l/2(pt, j+ 1 - 4, ji4) + 4. I- V,?(pt, 1.~ I- 6i, ,14) 

-(~i,j--1R+E,,,+1/2+fE,+lR. j+Ei--1/2,j)+(~r,~-~i-I,~~4+~~,/-~i+l,~~4)1 

-(Hi,j-Hi_,,j)/h=O !25) 

In both situations it is sufficient to solve a reduced version of the system of equations, 
i.e. see ref. 14, appendix D. Once all Si,, and HI, j for the specific line are solved 
&, j is added to pi, j or, when the sweep is completed, to p;, j and partly to its four 
neighbours depending on the equations solved for the gridpoint (i, j). 

Using this hybrid relaxation scheme in a multilevel solver for eqn. (21) with e(X, 
r) given by (20), a reduction of the error by almost one order of magnitude (a factor 
of 8) per coarse grid correction cycle was obtained. 

3.3.3. Circular contact 
In the previous section the coefficient E was given as a function of the spatial 

coordinates X and Y. The next step towards a relaxation scheme for the full nonlinear 
circular contact problem is to give E as a function of H and P instead. This can be 
done straightforwardly since the description of the relaxation scheme in the previous 
section was entirely given in terms of E, i.e. instead of using eqn. (20), Ed,, is calculated 
according to: 
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In addition, aHlaX is replaced by a($Q/aX and when applying the pressure changes 
the cavitation condition is imposed, i.e. negative values of P are not allowed. The last 
step is to add the force balance equation to the system. Once every s relaxations the 
integration constant No0 is adjusted according to: 

wherep,, j is the current approximation to the pressure profile. The number of relaxations 
after which the force balance equation is relaxed, S, must be large enough and the 
muItiplication factor c must be sufficiently small to avoid unstable oscillations. On the 
other hand, c and s should also be chosen in such a way that the overall convergence 
is not slowed down too much. The reader is reminded that in the ease where multiple 
grids are used the force balance equation is only relaxed on the coarsest grid, i.e. see 
ref. 8 and also ref. 15. 

This concludes the description of a relaxation scheme that provides a stable solver 
for the circular contact problem. Because of the nonlinearity, underrelaxation is needed. 
The necessary underrelaxation depends on the load conditions and, as experience has 
shown, varies from 0.3 to 1.0 for the distributed changes and from 0.6 to 1.0 for the 
single changes. In addition, in particular for high loads, the mesh size on the grid 
should be sufficientty small. 

4. Example 

To check convergence of the solution of the continuous integro-differential problem 
and to check the complexity of the algorithm the results obtained for a specific load 
situation are studied in detail. The values of the Moes dimensionless point contact 
parameters (see nomenclature) for this load situation are: M--SO and L= 10. This 
coincides with &= 13.4 and h= 0.06. Upon assuming (Y= 1.7 X IO-* the maximum Hertzian 
pressure for this load situation is 0.8 GPa. Hence, it is a relatively lightly loaded 
situation, but in the present paper it serves well for demonstration purposes. Values 
of the Hamrock and Dowson dimensionless point contact parameters describing the 
same load situation are: W&=4.73x 10e7, U= 1.0~ lo-“, and G=4728. 

The solution has been calculated on a uniform grid covering the domain ((X, 
Y) E R”/ -4.5 5x1 1.5, - 3 I Y<3}. A Full Muttigrid (FMG) algorithm 18, 151 was used 
with two coarse grid correction cycles (W(2, 1)) p er refinement, each cycle giving an 
error reduction of almost one order of magnitude. The coarsest grid used in the FMG 
algorithm, denoted by level 1, consisted of (8-t- 1) X (8+ 1) nodes and the finest grid 
consisted of (512 + 1) X (512 + 1) nodes. Hence, the solution has been calculated using 
as much as 263,169 nodal points. 

Figures 1 and 2 show the calculated pressure profile and the associated film shape. 
It may be obvious that, with the number of nodes used in the present calculations, 
the usual presentation of the results in a “wire” figure, is impossible (it becomes 
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Fig. 1. Dimensionless pressure profile (P) circutal- contact, M=SO, I. -=- 10 

Fig. 2. Dimensionless film shape (IT) circular contact, M-50, L- 10. 

totally black); therefore, the results are presented using colorgraphics. The ditl’erent 
shades represent different angles between the ouhvard normal on the profile and the 
viewer. 

These figures show all characteristic elements of medium to highly loaded EIIL 
circular contact solutions. Firstly, the pressure profile resembles the I-Iertzian dry 
contact semi-ellipsoid pressure profile. In the inlet region the pressure gradually builds 
up to the semi-ellipsoid. The cavitated region is preceded by the three-dimensional 
version of the pressure spike. Note that, compared with the one-dimensional situation, 
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this “spike” is a shield of high-pressure values “wrapped around” the Hertzian contact 

region. Secondly, the film thickness graph clearly displays the formation of the so- 

called side-lobes or of a horseshoe-shaped region. The overall minimum film thickness 
occurs at these side lobes and its value deviates significantly from the minimum film 
thickness found on the centerline of the contact. 

An alternative way of presenting the calculational results is by means of contour 
line plots, i.e. drawing lines along which the film thickness or the pressure is constant. 
Such graphs for the pressure and the film thickness are presented in Figs. 3 and 4. 

In Fig. 3 the pressure spike region can be recognized easily. It is the dark region of 
large gradients. Also the fact that the spike is in fact a shield wrapped around a more 
or less semi-ellipsoid is clearly visualised. The film thickness contour graph (Fig. 4) 
clearly displays the horseshoe-shaped region, i.e. the side lobes. Note that the region 
of large gradients in the film thickness in Fig. 4 coincides with the region of large 
gradients in the pressure in Fig. 3. 

4.3. Convergence 
As has been explained by Lubrecht [8] the use of a FMG algorithm allows an 

easy check whether the calculated solution has converged below the level of the 

discretization error. In addition, the order of convergence of the solution of the discrete 
problem to the solution of the continuous integro-differential problem with decreasing 
mesh size can be checked. This latter check can be done by monitoring the value of 
a characteristic result such as the minimum or central film thickness as a function of 
the mesh size on the grid. 

For example, Table 1 gives the value of the minimum and central film thickness 
as a function of the mesh size for the load situation considered here. Table 1 also 
displays the ratio between the minimum and central film thickness. From a sufficiently 

small mesh size onwards, with decreasing mesh size a first-order convergence to a 
limiting value can be observed. This is exactly what could be expected because of the 

Fig. 3. Contour line plot of the pressure profile displayed in Fig. 1, (M=50, L =10) AP=O.O4. 

Fig. 4. Contour line plot of the film shape displayed in Fig. 1, (M=SO, L = 10) AH=0.0025. 
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TABLE 1 

Minimum and central film thickness as a function of the number of nodes (mesh siirci 

_____-_ _-.. ^_._. _. ._.~__ _._ _~ 

Level II, + I II) + I H,,, ff< iI !!,, 
--- ._.__ ------~._~._-_~____..-.__.. ..” _I _ -._ll-.. ._. . ..~ __ _ __.______“.. 

2 17 17 X.868X 10 .‘ h.875 x 10’ ’ ‘,( 
3 31 33 I.525 x 10 ’ 1.967 x 10 ’ .“W 
4 65 65 1.668X10 ’ 2.667X 10 ?“‘) 
s 12’1 12Y I.bSOX 10 ’ ?.“h8h x 10 i ,G! ! 
6 257 257 i 624 x IO i 2.649 x 10 ’ i?.ili 
7 51.1 513 I .6OY x If) - ’ 2.620X 10 I f?7’) 

-..- __--. ̂ .... “..I._. 

TAI3L.E 2 

Computing time on a HP 9001840s computer 3s a function of the number of nodes it*:- ihc 

FMG algorithm with two V(2, 1) cycles and two W(2, 1) cycles 

~. 

k 

first-order upstream discretization of the wedge term in Reynolds’ equation and similar 
results were obtained for the line contact problem, see ref. 15. Only in very lightly 
loaded situations where the wedge term is small compared with the Poiseulle terms 
second-order convergence can be observed, see also ref. 7, 

4.4. Computing times 
To conclude this example the computing time required to obtain a solution is 

studied. Table 2 presents computing times used by the FMG algorithm with two V(2, 
1) and two W(2, 1) cycles per grid refinement as a function of the number of nodes. 
The first column is representative for lightly loaded situations whereas the second 
column is representative for moderate to highly loaded situations. The data disptayed 
in Table 2 are also shown in Fig. 5. For reasons of comparison, in this figure a line 
representing the computing time of O(n) and a line representing the computing time 
of O(n”) are also drawn. Obviously the complexity of the algorithm is very close to 
O(n). Halving the mesh sizes, i.e. increasing the number of nodes by a factor of 4, 
the computing time increases by a factor of 4. The fact that it is actually O(n In II) 

cannot even be recognized. 

5. Conclusions 

An alternative relaxation process for the EHL circular contact problem was 
developed. Using common multigrid techniques to accelerate convergence of this 
relaxation process together with the recently developed multilevel technique ~~tit~u~~ 
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1 2 3 4 5 6 7 8 

Level 
Fig. 5. Computing time on a HP 90001845s computer 
cycIes and two W(2, 1) cycles. 

for the FMG algorithm with two Y(2, 1) 

Multi-integration for the fast evaluation of the elastic deformation resulted in an 
algorithm solving the EHL circular contact problem in O(n In n) operations. This low 
complexity was demonstrated by means of an example. It was shown that, as a result, 
the algorithm allows solution of the problem with a large number of nodes, e.g. 250 000 
on a mini~mputer. This first part focused on a description of the numerical algorithm. 
The second part presents the results obtained with this solver for the “standard” 
circular contact problem, i.e. assuming the surfaces to be ideally smooth. The results 
presented in that part show that the algorithm is not only fast but also very stable. 

Although the present paper is restricted to a circular contact situation, the very 
same algorithm outlined here can be used in the study of elliptical contact situations. 
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Nomenclature 

IA 
M 

P 
Ph 

half-width Hertzian contact region, u = ~~~~~R~)/~~‘~~‘.~ 
elasticity modulus (Young’s modulus) 
reduced modulus of elasticity, 2/R’ =(I -- v;‘jiE, t (1 - r<f/Ez 

material parameter. G .= &’ 
film thickness 
dimensionless film thickness, II== (hR)/u- 
integration constant in dimensionless film thickness equation 
discretized kernel in film thickness equation 
dimensionless material parameter (Moes). L, = G(2U)“* 
dimensionless load parameter (Moes), IV=FV(~C~‘-“~ 
pressure 
maximum Hertzian pressure, p,,== (3F)/(2nn”J 
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P 
R 

4 
u 
F 
w 
x 
x 
Y 
Y 
CY 

ry 
E 

A 
V 

rl 

To 

i 

P 

Pa 

15 

dimensionless pressure, P=piph 
reduced radius of curvature, R-r = RF’ + R,’ 
sum velocity, 24, = u1 + u2 
dimensionless speed parameter, 2U= (noz*J/(E’R) 
load per unit width 
dimensionless load, W= F/(E’R) 
coordinate 
dimensionless coordinate, X=x/a 
coordinate 
dimensionless coordinate, Y=y/a 
pressure viscosity index 
dimensionless parameter, & = 047~ 
coefficient in Reynolds’ equation, E =$L13/ijA 
dimensionless velocity parameter, A = 6(770~SR2)/(b3pr,) 
Poisson’s ratio 
viscosity 
viscosity at atmospheric pressure 
dimensionless viscosity, 15 = T$Q 
density 
density at atmospheric pressure 
dimensionless density, /s = pip0 

Sub-, superscripts 

1, 2 body 1, 2 

x3 Y x, y direction 
m minimum 
C central 
. I 

grid index 
grid index 


