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Two probabilistic hit-and-run algorithms are presented to detect nonredundant constraints in 
a full dimensional system of linear inequalities. The algorithms proceed by generating a random 
sequence of interior points whose limiting distribution is uniform, and by searching for a 
nonredundant constraint in the direction of a random vector from each point in the sequence. In 
the hypersphere directions algorithm tile direction vector is drawn from a uniform distribution 
on a hypersphere. In tile computalionalb superior coordinate directions algorithm a search is 
carried out along one of the coordinate vectors. The algorithms are terminated through the use 
of a Bayesian stopping rule. Computational experience with the algorithms and the stopping rule 
will be reported. 
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1. Introduction 

The problem of  recognizing redundant linear inequalities (i.e., inequalities that 
can be deleted from a system without changing its set of  feasible solutions) is of  
obvious computational importance. Methods to eliminate such constraints have 
been proposed by many researchers. Most of  them are based on the simplex method 
(e.g. Thompson et al., 1966; Lisy, 1971; Gal, 1975; Telgen, 1979); sometimes, the 
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simplex method is in fact invoked to enumerateal l  the extreme points of the feasible 

solution set (Balinski, 1961; Mattheis, 1973). A detailed computational comparison 
(Karwan et al., 1983) reveals that all these approaches suffer under the administrative 

burden of maintaining a complete updated simplex tableau. As a result, they require 
a computational effort that is hardly compensated for by the subsequent speed-up 
of calculations carried out on the reduced set of inequalities. 

An alternative for these time consuming procedures is provided by heuristic 
methods. Acting as preprocessors on the original problem data (Brearly et al., 1975; 

Bradley et al., 1980), many of these heuristics have found their way into commercial 
mathematical programming packages, for example under the name of the REDUCE 
option, Of course, the big drawback of these fast procedures is that there is no 
guarantee that all redundancy present in the system will be identified. 

An attractive compromise between the two above approaches is provided by the 
probabilistic preprocessors (cf. Rabin, 1976) that are studied in this paper. The aim 
of these preprocessors is to identify nonredundant  constraints rather than redundant 
ones. Starting from some interior point (assumed given) of the polyhedron defined 
by the system (assumed to be bounded and full dimensional), the preprocessor 
generates a random sequence of interior points: in each successive point, a search 
is carried out in a random direction and the constraints first encountered in that 

direction and its negation are identified as being nonredundant (cf. Theorem 1). In 
the hypersphere directions method, the random direction is generated from a uniform 
distribution on a hypersphere (Boneh and Golan, 1979; Smith, 1980; Boneh, 1983); 
in the coordinate directions method, it is chosen with equal probability from the 
coordinate direction vectors and their negations (Telgen, 1980). In both cases, the 
r/ext interior point is generated randomly from a uniform distribution over the line 

segment connecting the two points where the direction vector and its negation 
intersect with the polytope. Methods of this type, for obvious reasons, are also 
referred to as hit-and-run algorithms. (In Smith (1984) the term symmetric mixing 
algorithms is used.) 

For the hypersphere directions method, it is shown in Smith (1984) that the 
sequence of interior points has a limiting distribution which is uniform over the 
interior of the polytope. We give a new proof for this result and extend it to the 
(much more difficult) case of the coordinate directions method in Section 3. These 
results imply that both methods are asymptotically correct in the sense that each 
nonredundant  constraint will be identified with probability one as the number of 
iterations increases. Indeed, the computational experiments in Karwan et al. (1983) 
indicate that the great speed at which interior points can be generated turns such 
a method into a very attractive preprocessing device of great practical value, 

This good practical performance provides part of our motivation to consider the 
important question of when to terminate a hit-and-run procedure; under the assump- 

tion that the true number of nonredundant constraints is unknown, the answer is 
not obvious. To cope with this problem we will prove in Section 4 that the theorems 
of Section 3 imply that asymptotically each facet of the boundary of the feasible 
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region (or, equivalently, each nonredundan t  constraint) has a fixed probabili ty o f  

being hit. In Boneh and Golan  (1979) this result is applied to determine the expected 

number  of  iterations that the hypersphere directions algorithm will need to identify 

all nonredundan t  constraints, under  the addit ional assumptions that (i) the success- 

ive interior points are statistically independent ,  (ii) the asymptot ic  hitting prob- 

abilities are all equal, and (iii) each constraint  is nonredundant .  In practice, however, 

the hitting probabilities are very different: in systems with less than 100 constraints 
in 20-dimensional space, for example, we frequently observed empirical probabilities 
smaller than 10 4. Boneh and Golan regard their result as a Iowerbound for the 

number  of  iterations, and provide an upperbound  under  the assumpt ion that the 

(ordered) probabilities decrease arithmetically. However ,  under the assumption (i) 

we will show in Section 4 that the generalized multinomial  model studied in Boender 

(1984, Chapter  3) applies, so that we can obtain a more accurate Bayesian stopping 

criterion for both hit-and-run algorithms, in which the user may incorporate  a priori 
information on the equality of  the hitting probabilities and on the true number  of  

nonredundan t  constraints,  instead of  assuming (ii) and (iii). In particular, the 

hit-and-run algorithms can be terminated if the optimal Bayesian estimate of  the 

number  of  yet undiscovered nonredundant  constraints is 0. 

Our experimental results are presented in Section 5; concluding remarks and 

possible extensions to optimizat ion problems (e.g. linear programming)  are the 
subject o f  Section 6. 

2. The hit-and-run algorithms 

Consider  a feasible region S defined by a system of  linear inequalities 

a[x<~bi  ( i = 1  . . . .  , m )  (1) 

with x ~ ~a and ]] a, ]] = 1 (i -- 1 , . . . ,  m ). We will assume that S is bounded ,  nonempty  
and of  full dimension, so that S is a polytope that contains interior points for which 
the inequalities (1) are all satisfied as strict inequalities. A redundant constraint is 

defined as an inequality which may be dropped from the system (1) without  changing 
the feasible region S. A Jacet is defined as the interaction o f  a nonredundan t  

constraint with the boundary  o f  S of  dimension n -  1. 

Our  probabilistic hit and run preprocessors to investigate redundancies  within 

system (1) are based on a search from an interior point X in the direction of  a 

vector v with tlvt[= 1. Let us denote  the straight line passing through X in the 

direction v by X + A v  (AcIR). Then it is immediate that the value of  A at the 
intersection point with the i-th hyperplane aV;x = b, is equal to Ai = (bi - aV;X)/arv .  

According to the following theorem, the constraints hit first in the positive (A > 0) 
and negative (3, < O) direction can be declared to be nonredundant .  

Theorem 1. I f  

r a a rgm}n{,L ]3,, > O} (2) 
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and 

s ~ argmax{A~ I A, < 0} (3) 

are unique, then the constraints a T x <~ br and a l,-x <~ b, are nonredundant. 

Proof.  We only  offer a p r o o f  for the case co r r e spond ing  to (2). It suffices to show 

(Telgen,  1979) that  under  the condi t ions  of  the theorem,  there exists a poin t  X" 
such that  

aV,.X"> b,., (4) 

a T X " ~ b i  ( i = 1  . . . . .  m , i # r ) .  (5) 

Obvious ly  A , = ( h i - - a T X ) / a T v > O  for an in ter ior  po in t  X if[ aTv>O. Hence,  for 

X '  = X + A,.v we have, for  i # t; 

T , b , . -  T a r X  T bi - a T X  T 
a, X = aTX  ~ r a, v < a / 'X  -~ - ai  v = b,. (6) 

art2 U/ L~ 

Since aTX  '= b~, there  exists an e > 0 such that  X .... X ' +  ev satisfies (4) and (5). 

If  (2) and  (3) are not  unique,  then ei ther  ident ical  const ra ints  have been hit, or 

an in tersec t ion  of  const ra in ts  has been hit. The former  poss ib i l i ty  is assumed not 

to occur  from now on. The lat ter  poss ib i l i ty  can only occur  with p robab i l i ty  0, and 

therefore  d i s regarded .  

The a lgor i thms to be p resen ted  exploi t  the above  theorem by searching in the 

di rect ion o f  a r andom vector  v" from each point  X" of  a r andom sequence of  in ter ior  

points.  For  the hypersphere directions algorithm (Boneh and Golan ,  1979; Smith,  

1980; Boneh,  1983], a d i rec t ion  vector  is d rawn in each point  X" of  the sequence  

from a uni form dis t r ibut ion  on a unit hype r sphe re  with centre X". The coordinate 

directions method (Telgen,  1980) genera tes  one of  the unit coord ina te  vectors or 

their  negat ion  as d i rec t ion  vector. Both a lgor i thms choose  the ( n + l ) - t h  in ter ior  

poin t  un(/brmly on the l inesegment  connec t ing  the previous  two hitpoints, i.e. the 

points  where  the l ine X" + Av" intersects the b o u n d a r y  of  S. The choice of  a s topp ing  

cr i ter ion is d iscussed in Section 4. 

The a lgor i thms consis t  o f  the fol lowing steps. 

Step 0: F ind  an in ter ior  point  X ~ Set n := 0. 

Step I: Hypersphere directions algorithm: Genera t e  a di rect ion vector  v" from a 

uni form dis t r ibut ion  on a unit  hypersphere  with centre X".  Coordinate directions 

algorithm: Genera te  a d i rec t ion  vector  v" with equal  p robabi l i ty  from one of  the d 

coord ina te  vectors and  their  negat ions.  

Step 2: Dete rmine  

bi - -  a ~X"  
A,: T , ( i =  1 . . . . .  m), (7) 

a i u  
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A +:= rain {A~IA~>0}, (8) 

A := max {A, IA,<0 }. (9) 

Declare the constraints corresponding to the indices for which the minimum (8) 

and the maximum (91) are attained to be nonredundant. 

Step 3: Generate u from a uniform distribution on [0, 1] and set 

X " + ~ = X " + ( A - + u ( A ' - A  ))v". (10) 

Step 4: Set n := n + 1 and go to Step 1, unless a stopping criterion is satisfied. 

We conclude this section with a comparison of the computational efficiency of 

the two algorithms. It is easily verified that the determination of the intersection 

points of a direction vector with the m hyperplanes (cf. (7)) is the most time 

consuming part of both algorithms. Since S c ~J, the computation of one intersection 
point for the hypersphere directions algorithm requires O(d) time, which implies 

that it requires O(rod) time to evaluate the intersection points of a straight line with 

all the m hyperplanes. The major advantage of the coordinate directions algorithm 

is that since only a single coordinate is changed when moving from one interior 

point to the next, no more than 2 multiplications are needed to update A~ 

( i=  1 , . . . ,  m) (cf. (7)). Hence, for the coordinate directions algorithm the computa- 

tion of the intersection points requires O(m) time, rather than O ( m d ) .  

3. The uniform limiting distribution of the interior points 

In this section we will prove that for both hit-and-run algorithms the random 

sequence {X'}i" o of interior points converges to the uniform distribution /~ on S, 

for each possible starting point in its interior S ~'. These results are an essential part 

of the justification of our application of the generalized multinomial model, which 
underlies the stopping criterion proposed in Section 4. We remarked earlier that 
for the hypersphere directions algorithm this result has already been proved in 

(Smith, 1984). However, our proof for this case is new, and it provides an introduction 

to the proof for the coordinate directions algorithm. 

For the remainder of this section we fix a starting point x ~  ~ and a Borel set 
B ~  S with I*(B")> 0, and without loss of generality we assume that the Lebesgue 

measure of S is equal to 1. 
From the description of the algorithms in the previous section it is immediate 

that for all n~[~ ~,and x l , . . . , x " c S  

Pr{X"+'c B ~ I X ~  x" . . . . .  X" = x"} = Pr{X"~'c  B~ X' '  =x"},  (11 

and that 

Pr{X"* 1 ~ B " I X " =  x ~'} -- Pr{X' ~ B" I X"= .x"}. (12 

Hence, for both algorithms the sequence of interior points defines a Markov  chain 
with a stationary transition probability.Junction and continuous state space S. 
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Theorem 2. The hypersphere directions algorithm generates a sequence of  interior points 

whose limiting distribution is unffbrm on S, i.e.: 

lira Pr{X" c B"] X ~  x ~ = tz(B~ (13) 

Proof. According to Theorem 7.1 in Orey (1971) it is sufficient to prove Proposinons  

(i) and (ii). 
(i) tx is invariant, i.e. if a current interior point  is uniformly distributed, then 

the next interior point is uniformly distributed as well: 

, Pr{X' 6 B~  ~  x} dx = ~(B~ (14) 

(ii) The Markov chain is ~-recurrent, i.e. B ~ is visited at least once with probabili ty 

1" 

Pr{3i6[~+: X ' ~  B~176176  1. (15) 

To prove (i) and (ii), we first derive the expression for the transition densio, Jhnction 
p : SO• S ~  R + w {0}. For x, y c S ~ (x # y),  let Hy denote a d-d imensional  hypercube 

with centre y and volume h a, oriented along the ray from x to y. Then the transition 

density o f  x, y is defined as 

p ( x , y ) = l i m  P r { X ' e  H,,IX ~ x} 
~'~" h a (16) 

Denote  the surface area of  a d-dimensional  hypersphere with radius r by c(r) ,  and 

let m(x , y )  be the diameter  o f  S measured along the ray from x to y. Then, since 

the hypersphere directions algorithm in x generates its direction vector uniformly 

on the (unit) hypersphere  with centre x, and chooses the next interior point uniformly 
on the intersection of  this direction vector with S we have (cf. Figure 1): 

P r { X ' c H ,  t X ~  1 2h ~ ' h 2 
lira = lira ha - . ( 1 7 )  

,,- c({ly-xll) m(x,y) c({ly-x{I)m(x,v) h 1 o h d 

Hence, 

fsPr{Xl~B~176 I p(x,y)dydx 
= ,3" c(IJY-xl l ) -  rn(x, y) dy dx 

u" s c ( I ]x -y l l )  �9 re(y, x) dx dy 

= f Pr~X' ~SIx~ f d y = . ( B ~  
Bo B t~ 

(18) 

which proves (i). We observe that for this p roof  it is sufficient that a transition 

density funct ion exists, and that it is symmetric  in its arguments. 
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Fig. 1. 

To prove (ii), let 
& 

rs = sup []y-x[[ .  
.x,v~ 5 

(19) 

Since S is assumed to be bounded,  rs is finite. Hence 

P r { X ' ~ B ~  " = x " } = ~  p ( x " , y ) d y  
3 B" 

I 2 f 2 
x I I )m(x ,  d v ~  - - d r  

~,, c / [ l y -  " " ~' y)  " t~" c(rs)rs 

2/~(B ~ 
- (20) 

c( "s ) rs 

Thus, since the lower hound (20) is independent of  x ~ we have 

Pr{B i e ~+: X i e B~ ~ = x ~ = 1 - Pr{X ~ ~ B ~ V i e  [~+lX ~ = x ~ 

= 1 - l i r a  P r { X ~  B ~  = 1 , . . .  , j ] X " = x  ~} 
j ~ : x ,  

In addi t ion to x ~ and B ~ we define H ~ to be a hypercube with p . ( H ~  which 
is fully contained in & and whose edges h, ( i =  1 . . . . .  d)  are oriented along the 

coordinate  axes e~ (i = 1 . . . .  , d). 

Theorem 3, The coordinate directions algorithm generates a sequence o f  interior points 

whose limiting distribution is uniform on S: 

lira P r { X " c  B~ ~ x ' )  B~ : .  = / , (  (22) 
n ~ , x  

Proof. Analogously  to the p roof  of  Theorem 2 we proceed by proving Proposit ions 
(i) and (ii). 

We note, however,  that given the location x of  the n-th interior point,  X "§ will 
be contained in the set of  coordinate  axes through x. This set is of  g-probabi l i ty  0, 
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which implies that for the coordinate directions algorithm the l-step transition 
density function is not defined. Hence, to prove (i) we cannot apply the simple 
method of proof of Theorem 2. 

To prove Proposition (i) it is sufficient to show that (cf. (14)) 

fs Pr{X~ e H~176 x} dx = # (H~ (23) 

Define T~ c S as 
step if a move is 

the set of points starting from which H ~ can be reached in one 
made along e~ ( i=  1 . . . . .  d). Then (cf. Figure 2): 

t P r { X ' c H ~  
.g 

= ~" I Pr{XlcH~ Pr{X'cH~176 
i = I T, H I' H u 

= ~ I Pr{X'eH~177176 
i = I T, t~l ~ 

't I + v Pr{X ~ 
i =  1 , H u 

c H ~ v ~ • ~ x} dx 

f 
= ,., | Pr{X'~H",v~177 lX"=x}dx. (24) 

i = 1 d l ;  

Choose y S T~, and define FI. as the intersection of  S with the straight line through 
y along direction e,. Then, for all x c F',., 

Pr{X'c H ~ v" • l x ~  Iit,,11 (25) 
dllF;ll '  

which does not depend on x. Hence, 

f Pr{X ~ r  ~ = •  ~ - -  
f 

!) ~ 

v; ./ v~. 

if xi denotes the i-th component of x, then 

tlh'lJ dx,  Ijh, ll ~ jjh, ij 
a FI.I - a l l F ; l l  I ICI I=  d 

(26) 

F i g .  2 .  
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Thus, integration over all remaining components j # i gives 

f P r { X ' c H  ~176177 (27) 
E;L, IIh~ll 

T, d 

and, substitution of (27) in (24) yields 

PF{XI c n~ dx = 11 IIh, II = /x(H") ,  (28) 

which proves (i). 

From (21) it should be clear that the proof  of Proposition (ii) follows easily if 

inf Pr{.If I c B~ ~  x} > 0. (29) 

However, as only moves along the direction of the coordinate vectors are allowed, 
(29) is obviously not true. Furthermore, one can easily devise polytopes S for which 
(29) does not hold if instead of one perpendicular step any finite number n of such 

steps may be taken, so that this problem cannot be remedied by considering n step 
transition probabilities either. 

A diflerent approach is therefore necessary to prove Proposition (ii). Our proof  
will be based on Proposition 5.1 in Orey .(1971), in which the initial starting point 
is assumed to be a random variable with distribution rt rather than being fixed at 

x". Let Pr,,{C} stand for the probability' of an event C, given that X ~ is distributed 
according to rl, and choose a real scalar c2'> 0. Then Orey's Proposition states that, 
if a set A c S exists (possibly depending on B" and c2 ~) such that 

and 

then 

i ~- o Pr,{{X }, :o~ A infinitely' of ten}> 1 -  c~ (30) 

Pr ,~{ (X '} i ' ocB" in f in i t e lyo f t en}> l  c2 ~. (32) 

This implies in turn that 

Pr,.,{{X'}~oc. B ~ infinitely often} = 1, (33) 

and a fortiori 

Pr,~{3iE ~ :  X ' e  B~ = 1. (34) 

Let the set A~ be defined as the subset of those points in S whose distance to the 

boundary of S is greater than e. > 0. Then, with Orey's Proposition in mind, we will 

inf P r { 3 i ~ N * : X ~ c B ~  (31) 
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prove the following statements l and II, under  the additional assumption that r/ is 

bounded  from above by/z ,  i.e. there exists a constant  c > 0 such that r / (E)  <~ c/z (E)  

for all Borel sets E contained in S. 

I. There exists an e (B  ~ such that for all e ~< e(B~ A =  At- satisfies (31). 

II. There exists an e(a  ~ such that for all s ~< e(a~ A = A~ satisfies (30). 
If  I and II are true, then A = At with e -- min{~(B"), s (a~ simultaneously satisfies 
(30) and (31), which then proves (34). We then have proved (ii) for the case that 

the starting point follows an initial distribution which is bounded  from above by 

/~. It then still remains necessary to extend (34) to the case that the process is started 

in x ~ 

We will first make that final step. The proof  consists of  first performing n steps 

o f  the procedure,  starting from x ~ The distribution of  X" then will serve as the 

initial distribution r/, and the result desired is obtained by applying (33), assuming 
that I and I1 are satisfied. 

By the Lebesgue Decomposi t ion  Theorem (Ash, 1972) the n step transition 

probabili ty distribution can be decomposed  into a singular part, o,, say, whose 

probabili ty mass is concentrated on a set with /z-probability 0, and an absolutely 
continuous part, w,, say, with an integrable function p"(x~ . ) so that for all Borel 

sets E in S 

,o,,(E) r " " . (351) = p ( x ,  v) dr. 
J E 

Clearly the Markov chain is concentrated on a set of  0 /z-probability if not all d 

distinct coordinate vectors have already been generated as random direction. If  

n ~>d it is easily verified that the probabili ty of  this event does not exceed 

d ( 1 - ( 1 / d ) ) " ,  so that also 

v,,(S)<~d 1 -  (36) 

for n ~> d. Now define 

a3,,& w, (37) 
1 -v , , (S)" 

Then a3,,(S)--1, so that o3,, is a probabili ty distribution with a probabili ty density 

function. From the description of  the coordinate  directions algorithm and from (35) 
it follows that oS,,(E) is determined by n successive 1-dimensional integrations o f  

constant functions over line segments through x ~ ' , X ~ , . . . , X "  ~ whose function 

value is the inverse of  the length of  the line segments. Given any n and our  starting 

point  x", these line segments are bounded  from below by a positive constant,  so 
that o3,, is bounded  from above by/z .  Hence, assuming 1 and I1, (33) is satisfied for 

rt = oOn. Furthermore,  for each Borel set E contained in S 
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1 -  o,,(S) 
Pr{X" c E IX ~  x ~ = w,,(E) + v, ,(E) = w,,(E) ~- v, ,(E) 

l -o , , (S)  

> o~,,(E)(1 - ~,,,(S)). (38) 

Hence, by (36) and (33) we have, for all n ~ d, 

Pr{{X~};~_o ~ B ~ infinitely often IX ~ = x ~ 

= [ Pr{X" ~ dy IX" = x ' )  Pr{{X~}L,, c B ~ infinitely often IX  ~ = y} 
3 S 

> ( 1 - o , , ( S ) )  [ tb,,(dy) Pr{{X*}Z,,< B ~ infinitely often ] X ~  
.1, 

= ( 1 -  o,,(S)) Pr,a,,{{X'}~_oC B ~ infinitely often} 

~> Pr,a,,{{X };=~,c B ~ infinitely often} 

( -• 
= l - d  1 d ! ,  (39) 

so that 

Pr{{X'}~, ,c  B ~ infinitely of ten lX"  = x u} = 1. (40) 

and a fo r t io r i  

Pr{3ic1%1+: X iE B~  ~ x ~ = 1. (41) 

This proves (ii) for the case that I and II are satisfied, so that it remains to establish 

the latter facts. 
We recall that to prove l, we have to show that there is an e (B ~ such that for  

all e<~ ~(B ~ 

inf P r { 3 i ~ : X ' E B ~ 1 7 6  (42) 
x c ,at 

Choose  any e > 0, and y, z z A~ with Ily - z II ~ e. Let H, be a hypercube with centre 

at the origin and edges of  length e / , / d  oriented along the coordinate  axes, and let 

/-7 c H, be an arbitrary hypercube whose edges are parallel to the coordinate  axes 

as well. Now construct  the hyperrectangle R,.: oriented along the coordinate  axes, 
which contains y and z as vertices. Then, since S is convex, and each point in A~ 

is at distance at least e from the boundary  of  S, it is easily verified that s + H~ = S 
for each vertex s ( including y and z) of  R,.:. The edges of  R,,- are perpendicular .  

Thus, if the vertices s ~ and s 2 only differ in the j - th  coordinate,  we can reach each 

point in s2+H,, from each point  in sJ+H,, by a move along the direction ei 

( j  = 1 , . . .  ,d) .  Hence, since the coordinate  directions algorithm searches along one 
of  the coordinate  vectors with equal probability,  and since a next interior point  is 
chosen uniformly on the linesegment connect ing the two previous hitpoints, we 

have that, for all x 6 y + H, ,  
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/z(/q) (43) Pr{X J e z + / q J X  ~ = x}/> (drs)a 

where rs is the maximal  d i ame te r  of  S (cf. def ini t ion (19)). 

Next,  let y and  z be a rb i t ra ry  points  in A~, not necessar i ly  sat isfying NY- z[[ <~ e. 

It is c lear  that  we can choose  q & r , / e  points  x ~ , . . . , x  ~ on the straight  l ine l 

connec t ing  y and z, such that  each two successive points  are at d is tance  at most  e. 

Fur the rmore ,  since S is convex,  A,  is convex,  and  /c= AF. Thus,  app ly ing  (43) q +  1 

t imes,  we find that  for  all x c y + H , ,  and,  for all Borel sets E such that  

p . (Ecvz+H~)>O,  

Pr{X Iq+l~J c E IX ~ x} 

>~Pr{X(q+~)acEc~z+H~,X~'lcxi+H~; i = ! ,  . . . .  q ] X ~  

with 

>~6#(E ~ z +  H~.)>O (44) 

3 = ~ \ ~ )  (45) 

Since the above  lower  b o u n d  does  not d e p e n d  on x, it fol lows that  for all  Borel 

sets E with ~ ( E ~ A ~ + H F ) > 0  that  

inf  P r { 3 i ~ N * :  X i ~  E I X ~  (46) 

We now return to our  fixed Borel set B ~ with /x(B ~ > 0. It is immedia t e  that  there 

is an e ( B  ~ such that,  for all e <~ e(B~ p.(B'~ca A,  + H,.) > 0. Hence,  (46) is satisfied 

for E = B ~ which proves  I. 

F inal ly ,  we will prove II ,  i.e. if 7/ is b o u n d e d  from above  by /x ,  then for our  fixed 

a ~ there exists an e ( a  ~ such that  for all e <~ e(c~ ~ 

i ~ 0 Pr~{{X }i=oc A~ infinitely o f t en}>  1-o~ . (47) 

Since p . ( S ) < o o ,  we can choose  e ( d  ~) such that  Clx(S-Ao~#,~)<~t ~ Since tx is 

invar iant  this choice impl ies  that ,  if  e ~< e(c~~ 

P r , { X  ~ c S -  A~} <~ cp . (S -  A, ) <  c~ ~ (48) 

for all n. Thus,  if  

_N & sup{n IX" c A,} (49) 
n>~d 

then,  by (48), 

Pr ,7{N< n}<~ Prv{X" e S - A , }  ~ a ~ (50) 

for all n >/d, so that  

Pr,~{N = ~ }  > 1 - o~ ~ (51) 

which proves  II. 
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4. A Bayesian stopping criterion 

Let the number  of  nonredundan t  constraints of  a system of  m linear inequalities 

be k~< m. We already observed that unless k = m and m distinct nonredundant  

constraints have been found,  it remains uncertain if all nonredundan t  constraints 

have been identified. Let ~ be the number  of  hitpoints, and define w as the number  

of  distinct nonredundant  constraints which have been found in the course of  these 
trials. (Notice that after n iterations of  an hit and run algorithm f i = 2 n ) .  In this 

section we will develop a Bayesian stopping criterion which determines for each pair 

(& w) if the search procedure  should be terminated, or not. 

Assume that the k nonredundan t  constraints are labeled 1 , . . . ,  k, and for each 

x c  S ~ define (~(x) as the subset of  the hypersphere with centre x, such that a search 

from x in the direction of  _s will yield a hitpoint on the nonredundan t  constraint 

with index i (i = 1 . . . . .  k). Denote the ( d -  l ) -d imensional  Lebesgue measure by 
L,l ~{ �9 }, and assume without loss of  generality that the ( d -  l ) -d imensional  Lebes- 

gue measure of  the surface area of  the above hypersphere is equal to 1. Then the 

probabili ty that the ~-th search of  the hypersphere directions algorithm will yield a 

hitpoint on the i-th nonredundant  constraint is given by 

0 ~ ( f i ) = f  La , { s 1 7 6  ~ ( i = 1  . . . . .  k). (52) 
, )  5 

Next, define G , , c  S as the set of  points in S from which the i-th nonredundan t  

constraint can be found by a search along direction es (i = 1 . . . . .  k; j = 1 . . . .  , d). 

Then, analogously to the above reasoning, we obtain for the coordinate directions 
algorithm that the hitting probabilities are given by 

O~(~)=~Tdl ~" Pr{X, ,cG,, lXO=xO } ( i = 1 ,  . . . .  ,k ) .  (53) 
i - I  

Hence, applying Theorems 2 and 3 to respectively (52) and (53) we obtain that 
given X" = x ~ 

pm 0,H(fi)= f L,,_~{~,(x)}p.(dx) ( i =  1 . . . .  , k) (54) 

and 

1 a 
lira 0 ~ ( ~ ) = - -  x~ g ( G u  ) ( i = 1 ,  k). (55) 
,~-, 2d i~l . . . .  

Hence, the hitting probabilities are asymptotically.lbced; the convergence rates are 

addressed in Smith (1984). For the two versions of  the hit-and-run algorithm we 

denote these limiting values 0~ and 0~ respectively; observe that 0~ is not necessarily 
equal to 0~, (i = 1 . . . .  , k). In order to be able to proceed we will exploit this result 
by assuming that the actual hitting probabili ty of  nonredundan t  constraint i at each 

trial of  the hypersphere and coordinate directions algorithm is equal to the 
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corresponding asymptot ic  probabili ty 01 ~ and 0~ c respectively (i = 1 , . . . ,  k). Then, 

if the values of  these probabilities would be given, several proper  s topping rules 
are obvious. In that case, a procedure  could be terminated, for example, if the total 

probabili ty o f  the observed nonredundant  constraints exceeds a prescribed value, 

or if the total probabili ty of  the observed nonredundan t  constraints is equal to 1, 

i.e. if all k nonredundant  constraints have been found. The true number  of  nonredun-  

dant  constraints of  a system of  linear inequalities, and a for t io r i  the corresponding 
hitting probabilities, are of  course frequently unknown.  Therefore we adopt  a 

statistical approach  in which the data produced by an hit-and-run algorithm are 

used to gain information about  their values. Our  starting point  is the assumption 

that the actual hitting probabilities at each trial are equal to the asymptot ic  prob- 
abilities. Then the output  of  an algorithm is a sample from a multinomial distribution: 

each cell of  the distribution corresponds to a nonredundan t  constraint,  and the cell 

probabilities are equal to the corresponding hitting probabilities. Thus, if we make 
no further notational distinction between 0, H and O~(i = 1 , . . . ,  k), the joint probabil- 

ity that in fi searches the ith nonredundan t  constraint will be found n~ times 

( i =  1 . . . .  , k) is equal to 

ti! k 
n p(n,  . . . .  , nk lk ,  O, . . . . .  0k) l-[k | [  0,, (56) 

z.,~=~0~ 1, v)=~n~ f i ) . G i v e n a s a m p l e ( n ~ , . . . , n ~ ) t h e m u l t i n o m i a l f o r m u l a ( 5 6 )  
would enable us to learn about  the values of  the unknowns (k, 0~, . . . ,  Ok). However,  

since it is unknown in advance which of  the m constraints are nonredundant ,  it is 

impossible to distinguish between different samples ( t h , . . . ,  nk) up to a relabeling 

of  the nonredundan t  constraints. For example, if in fi = 5 searches one nonredundan t  

constraint has been found 4 times and another  one once, it is unknown whether 

we observed ( n ~ , n , ) = ( 4 , 1 ) ,  (n~,n_~)=(1,4) or ( n l , n : , n 3 ,  n4, ns, n6, nv)= 
(0, 4, 0, 1,0, 0, 0) etc. Thus we have to restrict ourselves to distinguishable aggregates 

of  the sample outcomes ( n ~ , . . . ,  nk) that are independent  of  the labeling of  the 
nonredundan t  constraints and which do not contain n /s  which are equal to 0. Given 

the result of  ~ searches we denote the appropria te  aggregates by { n ~ , . . . ,  n,,.} (recall 

that w is the number  of  observed nonredundant  constraints). The required probabili ty 

of  these aggregates ~ n ~ , . . . ,  n,,} is given by the generalized multinomial distribution. 

Theorem 4 (Boender  and Rinnooy Kan, 1983a; Boender, 1984). Let a system ~1" 
linear inequalities be given with k nonredundant constraints with probabilities 

0~, . . . ,  Ok. Then the probability that in ii trials w d(Oerent nonredundant constraints 

are found, ~1 which one constraint is.lound n~ times, another constraint n, times etc., 

is given by the generalized multinomial distribution 

1 f i !  " 
- [1" E [1 o;: p I { n , , . . . ,  nw)lk, o, . . . . .  ok) I17 : ,  ci! , = ,  n,! , •  ...... , . . ,~.~- .1 , ,  (57) 
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(V~ 10i = 1, Z~'~ln~ = r], n i > 0 ;  i =  1 , . . . ,  w), where 

cj ~= the number qf n,'s that are equal to j  (j = 1 . . . . .  fi), (58) 

Sk [ w] ~- the set of  all permutations of  w d!fferent elements of  
the set {l . . . .  , k}. (59) 

Now, (57) can be used in a Bayesian approach  in which the unknowns  k, 0~,. .  , 0k 
are assumed to be themselves random variables K, 0~ . . . .  ,0K for which a prior 
distribution can be specified. Given the result of  an hi t-and-run algorithm, Bayes'  

rule is used to compute  the posterior distribution of  K, which incorporates  both the 

prior beliefs and the sample information about the true number  o f  nonredundan t  
constraints. 

Theorem 5 (Boender  and Rinnooy Kan, 1983b; Boender, 1984). Under the assumption 
of an arbitrary prior distribution p( �9 )./br the number of nonredundant constraints K, 
and, conditional on K = k, a symmetric Dirichlet prior with hyperparameter o~ for the 
hitting probabilities 0 ~ , . . . ,  Ok, i.e. 

k 
_ / ~ k - 1 ) ~  I1 01'-' (60) p(Ol , . . . ,Ok]k )  ( ( a _  1)!)k i_i 

the marginal posterior distribution of the true number of nonredundant constraints, 
conditional on an observed aggregate {n~ , . . . ,  nw}, is equal to 

p ( k [ { n , , . . . ,  n~.})oc p(k  ) 
( a k - l ) ! k !  

( f i + c ~ k -  1 ) ! ( k -  w)! ' 
(61) 

where oc denotes proportionality. 

Our s topping rule will be based on the knowledge about  the number  of  nonredun-  
dant  constraints contained in the posterior distribution (61). Observe that (61) is 

independent  of  the number  of  times n~ that each of  the observed nonredundant  

constraints has been found ( i =  1 , . . . ,  w), but only involves the total number  of  

hitpoints ~ and the number  of  distinct observed nonredundan t  constraints w, so 

that also our  s topping rule only depends on the pair (ri, w). 

Before we can apply (61) it remains to choose a proper  prior distribution, Since 

a system of  m linear inequalities in a d dimensional  space consists of  at least d + 1, 
and at most of  m nonredundan t  constraints, the range of  the prior for K is 
d + 1 , . . . ,  m. The prior probabili ty that the true number  of  nonredundan t  constraints 

g is equal to k is assumed to grow linearly with k. Thus 

p(k)ock  ( k = d + l  . . . .  ,m) .  (62) 

Note that in a Bayesian context a prior distribution is frequently chosen uniform. 
Since our  analysis is based on the assumption that the actual hitting probabilities 
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are equal to the asymptot ic  hitting probabilities, we deliberately chose a prior that 

will result in longer running times of  the algorithms than would be obtained for a 

uniform prior for K. However ,  the reader need not follow our  suggestion and may 

choose any other version for (62), based on his own system of  linear inequalities. 

Given K = k, we are only free to choose the hyperparameter  c~ of  the symmetric 

Dirichlet prior distribution for the hitting probabilities 0 ~ , . . . ,  0k (cf. (60)). The 

value o f  a is a measure o f  the deviation o f  the prior (60) from its expectation 

E(Oi)=l/k  ( i =  l , .  . . ,  k) (cf. Wi[ks, 1962). For  a = l  the symmetric  Dirichlet 

corresponds to the uniform distribution on the unit simplex (~k=j 0, = 1; 0 <  0~ < 1; 
i = 1 , . . . ,  k). For a > 1 a unique maximum is attained at the expected value, whose 

size increases if a gets larger: if a = oo then all probabilities are a priori assumed 

to be equal to l /k  with probabil i ty 1: For 0 <  a < 1 the distribution attains a unique 

min imum at the expected value which decreases as a approaches  0. Preliminary 

diagnostic experiments showed that the posterior (61), and a fo r t io r i  our  s topping 

rule, are sensitive to the choice for a. Hence, a user who is uncertain about  the 

correct value for c~ is in a difficult position. To cope with this problem we run a 

hi t-and-run algorithm a certain number  o f  iterations and estimate a by Good ' s  
formula (Good,  1965): 

w ) 

i = l \ f f /  

- l + w  
i~l \ ff / 

Then this estimate is used as if it is the true value corresponding to the system of  
linear inequalities under  investigation. 

Now, given a choice of  the prior distribution and an observed sample of  hitpoints 

we can compute  the posterior  distribution of  the true number  o f  nonredundan t  

constraints f rom (61). Then we can easily calculate the posterior expected value of  

the number  of  nonredundan t  constraints, which is well known to be the optimal 
Bayesian estimate with respect to a quadratic loss function (Lindley, 1978). For most 
(if, w) pairs, however,  this may yield a real valued estimate, whereas the true number  

of  nonredundan t  constraints is evidently an integer. Therefore,  since it easily shown 

that the optimal integer Bayesian estimate under  a quadratic loss function is the 

round-off  o f  the real valued estimate, we will terminate our algorithms when this 

round-off  o f  the real valued optimal Bayesian estimate of  the number  o f  nonredun-  

dant  constraints is equal to the number  of  distinct nonredundan t  constraints 

observed. That is, the algorithms are s topped when the current (fi, w) pair satisfies 

kZ ( ~ , k -  l ) ! k !  

. . . .  I,l~,.wl ( f i + ~ k - l ) ! ( k - w ) ! < w + ~  " 
E(K[( rL  w)) - k  

" ( d k  - 1 ) ! k  T 
Z.., 

k ....... {,1~,,,.I ( f i + 3 z k - l ) ! ( k - w ) !  

(64)  
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5. Computational results 

In this section we describe the performance of the two hit-and-run algorithms 

and the Bayesian stopping rule on 3 practical and 3 randomly generated test 

problems. Note that the algorithms require an initial interior point. 11" not readily 

available, this may be obtained from a phase 1 procedure. This starting problem is" 

a common burden of all nonredundancy identification procedures (cf. Karwan et 

al., 1983). 
The most important features of our test problems are displayed in Table 1. The 

experimental design for the randomly generated test problems is taken from Karwan 

et al. (1983). The practical problems A and B are from Tischer (1968), practical 

problem C is from Meyerman (1966). The practical problems incorporate x~ 1> 0 

( i=  1 , . . . ,  d) as part of the set of constraints. The density of the problems (i.e., the 

fraction of non-zero coefficients of the constraints) is denoted by 6. 

In Table 2 the number of seconds is shown that the hit-and-run algorithms required 

on a DEC 2060 computer to generate ~ = 100000 hitpoints; the table shows the 
estimates of the hyperparameter ~t as well. The Figures 3 up to 8 depict the evolution 

of the fraction of observed nonredundant constraints in the course of sampling: 

stopping times (in seconds) are shown in Table 3. HD denotes the hypersphere 

directions algorithm and CD is the coordinate directions algorithm. 

Figures 3-8 and Tables 1-3 reveal substantial differences between the hypersphere 

and coordinate directions algorithm. A final issue of theoretical and practical 

relevance is to what extent these algorithms are successful in approximating the 
uniform distribution over S in a limited number of experiments. Theoretically, 

exponential speed of convergence was established for the hypersphere directions 

method in Smith (1984), and we conjecture that a similar result is true for the 

coordinate directions method. Experimentally, we compared their performance on 

two 2-dimensional polytopes, of which the first one (Figure 9) was chosen to be 

very disadvantageous for the coordinate directions method and the other one (Figure 
10) to be very advantageous. The restllts for 100 and 500 iterations of both methods 
are depicted in the figure. In spite of its simplicity, the coordinate directions method 

presents a very acceptable short run picture, providing additional practical confirma- 

tion of its superiority over its competitor. 

6. Concluding remarks 

Our experiments show that the hypersphere directions algorithm is inferior to its 

rival with respect to the required computer time to generate a given number of 

hitpoints as well as with respect to the number of identified nonredundant constraints 
per hitpoint. We will therefore in this section refer only to the coordinate directions 

algorithm. Although the best deterministic method does outperform this method on 

problems of small size (Karwan et al., 1983), it can be applied to (very) large 
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Tab le  1 

Test p r o b l e m s  

P rob lem m d k ,,5 

A 91 26 52 0.33 

B 29 5 11 0.78 

C 59 23 54 0.15 
D 20 I0 19 1.00 

E 20 10 18 0.50 

F 30 10 18 0.50 

Tab le  2 

C o m p u t a t i o n  t imes for  1 0 0 0 0 0  h i tpo in t s ,  a n d  es t imates  for  a 

P rob lem Algo r i t hm C o m p u t a t i o n  d, 

t ime 

A H D  1747 0.62 

C D  61 4.18 

B H D  315 1.55 

C D  49 8.65 

C H D  721 0.49 

C D  20 1.02 

D H D  577 0.71 

C D  24 0.71 

E H D  572 1.02 

C D  24 0.79 

F H D  813 1.01 

C D  45 0.79 

Tab le  3 

S t o p p i n g  t imes 

Problem A l g o r i t h m  Time  ~ w 

A H D  1041 59 600 51 

k = 52 C D  0.30 500 48 

B H D  16.7 5300 7 

k - I1 C D  0.05 100 11 

C H D  721 100 000 49 

k - 54 C D  1.1 5400 54 
D H D  5.2 900 11 

k - 19 C D  0.45 2000 18 

E H D 1.7 300 11 

k - 18 C D  0.26 1100 15 

F H D  2.4 300 11 

k = 18 C D  0.5 1100 15 
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problems and therefore was judged in Karwan et al. (11983) to be one of  the most 
attractive practical possibilities to test for redundancy. 

So far the random method has been viewed as a preprocessor that is capable of  
identifying nonredundant constraints. In an optimization algorithm for (possibly 
nonlinear) objective functions with linear inequality constraints, the nonidentified 
constraints can be omitted. Obviously, the solution produced by the optimization 
algorithm has to be checked for feasibility afterwards, since the omission of  some 
constraints may not be justified. In case of  linear programming, feasibility can be 
easily restored by dual simplex steps. 

It is well known that the optimal solution of  a linear programming problem is 
attained in one of  the vertices of  the feasible region. Therefore for linear programming 
applications one may investigate the possibility of  modifying the coordinate direc- 
tions algorithm to move in the direction of  the optimal vertex. The modified method 
may even converge rapidly to this optimal vertex. If not, then at least a better 
preprocessor will be obtained, since the nonredundant constraints which are active 
in the optimal vertex will have relatively greater hitting probabilities. 

Finally, for nonlinear objective functions with linear inequality constraints the 
optimal solution may be situated anywhere in the feasible region. Since the coordin- 
ate directions algorithm involves an extremely fast method to generate (asymptoti- 
cally) uniform points over such a feasible region, the method offers a starting point 
for various constrained global optimization procedures in which the generation of  
such points would be a first step (Timmer, 1984). 
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