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Summary. The first part is the study of several conditions 
which are sufficient for the coincidence of the prenucleo- 
lus concept and the egalitarian nonseparable contribution 
(ENSC-) method. The main sufficient condition for the 
coincidence involved requires that the maximal excesses at 
the ENSC-solution are determined by the ( n -  1)-person 
coalitions in the n-person game. The second part is the 
study of both a new type of games, the so-called k- 
coalitional n-person games, and the interrelationship 
between solutions on the class of those games. The main 
results state that the Shapley value of a k-coalitional n- 
person game can be written as a convex or affine 
combination of the ENSC-solution and the centre of the 
imputation set. 

Zusammenfassung. Im ersten Teil der Arbeit werden 
verschiedene hinreichende Bedingungen fiir die Koinzi- 
denz des Prenukleolus-L6sungskonzepts und der ENSC- 
Regel vorgestellt. Es wird dabei gezeigt, dab der Prenu- 
kleolus mit der ENSC-L6sung zusammenf~illt, falls die 
maximalen Exzesse der ENSC-L6sung durch die ( n -  1)- 
Personen Koalitionen des n-Personenspiels bestimmt wer- 
den. Im zweiten Teil der Arbeit untersuchen wir eine 
Klasse yon Spielen, die sogenannten k-Koalitions-n-Per- 
sonenspiele und untersuchen die Zusammenh~inge zwi- 
schen den LSsungskonzepten ffir diesen speziellen Typ 
yon Spielen. Es stellt sich heraus, dab der Shapleywert 
eines k-Koalitions-n-Personenspiels beschrieben werden 
kann als eine Linearkombination der ENSC-L6sung und 
des Schwerpunktes der Auszahlungsmenge. 

1. Introduction 

There are many solution concepts for cooperative games 
in characteristic function form. The existence of relation- 
ships between solution concepts is an important issue for 
the theory of cooperative games as well as the application 
of game theoretic analysis to real problems (e.g., the cost 
allocation problem). 

Generally speaking, relationships between the distinct 
solution concepts are known to some extent. For instance, 
the bargaining set includes both the kernel and the core, 
while the intersection of the kernel with the nonempty 
core contains the nucleolus. The Shapley value of any 
convex game coincides with the centre of gravity of the 
core, whereas the Shapley value of an arbitrary balanced 
game may fall outside the core. 

In the context of game theoretic applications, the one- 
point solution concepts of the (pre)-nucleolus and the 
Shapley value are widely used. Further, the separable 
contributions remaining benefits (SCRB)-method is a 
well-known cost allocation method in the water resources 
field. The main goal of the paper is to establish relation- 
ships between the (pre)-nucleolus, the Shapley value and 
the egalitarian nonseparable contribution (ENSC-) 
method which is a simple variant of the SCRB-method. 
The ENSC-solution is based on the separable contribu- 
tions which are one of the various marginal contributions 
that are taken into account for the determination of the 
Shapley value. In addition, the equal excesses of the 
(n -- 1)-person coalitions at the ENSC-solution of any n- 
person game give rise to compare the ENSC-method with 
the (pre)-nueleolus concept which is defined in terms of 
excesses. 

The organization of the paper is as follows. Section 2 
treats the relevant game theoretic notions and solution 
concepts, e.g., the (pre)-nucleolus. In Sect. 3 we present 
the ENSC-method and we review several sufficient condi- 
tions for the coincidence of the ENSC-solution and the 
prenucleolus. The main sufficient condition (3.1) requires 
the effectiveness of the (n--1)-person coalitions with 
respect to the excesses at the ENSC-solution. 

In Sect. 4 we study the set of pre-imputations for which 
the ( n -  l)-person coalitions are effective with respect to 
the excesses. Due to a close determination of the intersec- 
tion of the set involved with the prekernel (cf. Theorem 
4.6), we formulate a sufficient condition for the coinci- 
dence of the prenucleolus and the ENSC-solution. The 
main Theorem4.7 states that both solutions coincide 
whenever the ENSC-solution belongs to the set involved. 
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Section 5 deals with one specific type of games, the so- 
called glove games. The coincidence of the (pre)-nucleolus 
concept and the ENSC-method on the class of glove 
games is established with the aid of the results obtained in 
Sect. 3. The main Theorem 5.2 expresses that the Shapley 
value of any glove game is a convex combination of the 
ENSC-solution and the centre of the imputation set. In 
Sect. 6 we introduce the class of k-coalitional n-person 
games and describe the locus of the Shapley value for this 
type of games. The main Theorems 6.3, 6.6 and 6.9 state 
that the Shapley value of a k-coalitional game can be 
written as a convex or affine combination of  the ENSC- 
solution and the centre of the imputation set. Section 6 
consists of three subsections which correspond to the 
cases k : n -- 1, k = 1 and 2 < k < n - 2 respectively. In 
the final Section 7 we list two concluding remarks. 

The idea of excess forms the basis of several solution 
concepts for cooperative games such as the core, the (pre)- 
nucleolus and the prekernel. The definition of the (pre)- 
nucleolus of an n-person game v is as follows. We associate 
with any pre-imputation x E I*(v) the complaint vector 
O(X) ~ ~ 2n whose components are the excesses e~(S,x), 
S CN, arranged in nonincreasing order. The (pre)-nu- 
cleolus consists of (pre)-imputations that minimize the 
complaint function O(x) in the lexicographic order ~L on 
~2 ,  over the (pre)-imputation set. Thus, 

Y * (v )  : =  {x E I*(v)l O(x) ~L O(y) for all y C I*(v)} 

and 

Y ( v )  :={xEI (v ) [O(x )<LO(y )  f o ra l l ye I ( v ) } .  

2. Notions and solution concepts 

A cooperative n-person game in characteristic function form 
is an ordered pair (N',v), where the player set 
N = J l , 2 , . . . , n } ,  n > 3, and the characteristic function 
v: 2 ~ -, R is a real-valued set-function on the set 2 N of all 
subsets of N. The worth v(S) of coalition S C Nin  the game 
v represents the profits obtained solely by cooperation 
between the members of S. The number of players in a 
coalition S is denoted by I SI. It is always required that the 
worth of the empty coalition is zero, i.e., v(~3):= 0. The 
class of all cooperative n-person games is denoted by G n. 

A distribution of the total worth v(N) among 
the n players is represented by an n-tuple 
x = ( X l ,  X2 . . . . .  Xn) E Rn of real numbers satisfying the 

efficiency principle ~" xj = v(N). In case the payoff  
jEN 

xi to any player i E N is at least his own worth in the game 
v, i.e., xi>v({i}) for all iEN,  then we say the efficient 
payoff vector x E Rn meets the individual rationality 
principle. Besides, the group rationality principle may be 
met by the efficient payoff vector. In accordance with 
these principles, we define the pre-imputation set I* (v), 
the imputation set I(v) and the core C(v) of the n-person 
game v by 

I*(v) : =  {x E RnIx(N) : v(N)}, 

I(v) : :  {x C I*(v)[xi > v({i}) for all i G N}, 

C(v) := {x E I*(v)lx(S ) ~ v(S) for all S C N}, 

where x(S) :=  ~ xj for all S C N, S 4: 9 ,  and x(~3) :=  0. 
jES 

In other words, the core consists of pre-imputations 
that give rise only to nonpositive excesses. Here the excess 
of coalition S with respect to the pre-imputation x in the 
game v is defined to be 

e~ : =  v ( s )  - x (S )  = v ( s )  - ~ ,  xj. 
jES 

The prekernel of the game v is defined to be 

~ * ( v )  : = { x C I  (U)ISij(X)=Sji(X) foralli ,  j E N ,  iCj}  

where the maximum surplus of player i over another player 
j with respect to the pre-imputation x in the game v is given 
by 

s~.(x) :=  max [eV(S,x)[S C N, i E S , j  q~ S]. 

It is well-known that the (pre)-nucleolus is a singleton and 
the prenucleolus is included in the prekernel (cf. 
Schmeidler 1969). The unique point in the nucleolus and 
the prenucleolus respectively are denoted by r/(v) and 
~/*(v). Clearly, the prenucleolus of a game coincides with 
the nucleolus of the game whenever the prenucleolus is 
individually rational. Further, the nucleolus is always 
contained in a nonempty core. In the numerical examples 
we delete the braces for the sake of notation and we write i 
instead of the set {i}, etc. 

3. Coincidence of the prenucleolus and the egalitarian 
nonseparable contribution method 

A standard principle requires that the payoff to any player 
i C N in the game v is at most the separable contribution 
SCi(v) = v(N) -- v(N-- {i}) of player i with respect to the 
formation of the grand coalition N. The egalitarian 
nonseparable contribution (ENSC-) method is character- 
ized by the fact that the remaining nonseparable contri- 
bution NSC(v) = v(N) -- ~ SCj(v) is equally charged 

jEN 
to the n players in the game v. That is 

ENSCi(v) : =  SCi(v) -~- n-lNSC(v) for all i E N. 

As such, the ENSC-method can be regarded as a naive 
version of the well-known separable contributions 
remaining benefits (SCRB-) method which is a widely used 
approach in the water resources field (cf. Young, et al. 
1982). 

The purpose of the section is to review one main and 
several related conditions which are sufficient for the 
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coincidence of the ENSC-method and the prenucleolus 
concept. The idea of the main condition involved was 
mentioned for the first time in Suzuki and Nakayama 
(1976). They require that the maximal excesses at the 
ENSC-solution are determined by the (n--1)-person 
coalitions, i.e., 

e~(S,z) < e~ -- {i}, z) (3.1) 

for a l l i E N a n d  all S C N - - { i } ,  $4= O, w h e r e z  = 
ENSC(v). 

In the context of  excess, we say that the ( n -  1)-person 
coalitions are effective at the ENSC-solution. For  the sake 
of completeness, we also present a proof  of the following 
main theorem. 

addition, C(v) = ~ whenever there exists a coalition S C N 
with gV(S)< 0. Consequently, the nonnegativity of the 
gap function g~ is a necessary condition for the nonempti- 
ness of the core of the game v. 

In the following three subsections we first review the 
conditions, as mentioned in Funaki (1986), Legros (1986) 
and Driessen (1983; 1985; 1988, page 73) respectively, and 
secondly, we reformulate their conditions in terms of the 
gap function. 

Subsection3.1. Funaki's approach to the study of the 
ENSC-method is based on the condition that determines 
whether or not the ENSC-solution is bounded above by 
the smallest contributions of the single players to the 
nonempty coalitions. In terms of the game v itself, 
Funaki's condition is specified as follows: 

Theorem3.1. Let v@ G n and put z :=  ENSC(v). Then 
~l*(v) = z whenever the effectiveness condition (3.1) for z 
holds. 

Proof Put x :=q*(v ) .  Suppose that the effectiveness 
condition (3.1) for z holds. Obviously, we have for all i C N 

e~ - {i}, z) = v ( N -  {i}) -- z ( N -  {i}) 

= zi  - S G ( v )  = n 1NSC(v). 

SCi(v) + n-INSC(v) < v(S U {i}) -- v(S) (3.2) 

for all i E N a n d  all S C N -  {i}, S r ~.  

The equivalent condition in terms of the corresponding 
gap function gO is given by 

g~ U {i}) -- g~(S) < n-lgV(N) (3.3) 

for all i E N and all S C N -- {i ], S v a O. 

Together with (3.1), this yields 

e~ z) < e~ -- {i}, z) = n-lNSC(v) 

for all i C N and all S C N -- {i 1, S r G. 

In the lexicographic comparison between the two com- 
plaint vectors O(x) and O(z), we may ignore the excesses 
of N and ~ since e ~ (S, x) = e~ (S, z) = 0 whenever S = N or 
S = ~.  Therefore, we obtain Offz) = n 1NSC(v). Further- 
more, we have O(x)<_L O(z) because of x = ~/*(v). Now it 
follows that for all i E N 

x i - -  S C i ( v  ) = v(N -- {i}) -- x(N -- {i}) ---- e~ -- {i}, x) 

<_ O , ( x )  <_ O , ( z )  = n - l N S C ( v ) .  

So, xi < SCi (v) + n-INSC(v) = zi for all i E N. From x < z 
and x ( N ) = v ( N ) =  z(N), we conclude the vector equality 
x = z. Thus, q*(v) = z as was to be shown. [] 

In the remainder of the section we pay attention to 
conditions which are stronger than the effectiveness 
condition (3.1). In order to present a uniform treatment of 
the several related conditions, we introduce the notion of 
the gap function gV : 2 u ~ • corresponding to the charac- 
teristic function v: 2 N-. R. The gap g~ = ~ SCj(v) 

jEs 
- -  v(S) of coalition S in the game v represents the loss (or 
gain) to the coalition S whenever its worth is compared 
with the total amount of the separable contributions of its 
members. By straightforward calculations, we obtain 
g~ = --NSC(v), g~ {i}) = gV (N) for all i @ N, and in 

Subsection3.2. Legros' approach to the study of the 
ENSC-method is based on the so-called pseudo-convexity 
condition. Opposite to the condition (3.2), pseudo-con- 
vexity requires that all the contributions of the single 
players are bounded above by their separable contribu- 
tions. In terms of the game v itself, Legros" pseudo- 
convexity condition is specified as follows: 

v(S U {i}) -- v(S) < SCi(v), 

SCi(v) -- v({i}) ~ --n-l(n -- 1)NSC(v) 

for all i E N and all S C N -- {i}. 

(3.4) 

The equivalent condition in terms of the corresponding 
gap function gO is given by 

gV(S U {i}) > g~ 

gO({i}) > n-l(n _ 1)gO(N) 

for all i C N and all S C N -- {i}. 

(3.5) 

(3.6) 

The condition (3.5) is known as the monotonicity con- 
dition for the gap function gO and as a consequence, the 
gap of the grand coalition is at the top level. For  any game 
with many players, the two conditions (3.5)-(3.6) imply 
that the corresponding gap function is almost constant. 

Subsection3.3. Driessen's approach to the study of the 
ENSC-method is based on the so-called 1-convexity 
condition. Here 1-convexity requires that the contribution 
of any coalition with respect to the formation of the grand 
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coalition N is at least the total amount of the separable 
contributions of the members of the coalition involved. In 
terms of the game v itself, Driessen's 1-convexity con- 
dition is specified as follows: 

NSC(v) < 0  and 

for all S C N, S 4: N. 

v(N) -- v(N -- S) >__ ~ SCj(v) 
j ~ s  

The equivalent condition in terms of the corresponding 
gap function gO expresses that the nonnegative gap of the 
grand coalition is at the bottom level, i.e., 

r/(v) = q*(v) ---- ENSC(v) E C(v). 

Proof Suppose that (3.3), (3.5)-(3.6) or (3.7) holds. In 
view of Proposition 3.2, it is sufficient to show g~ >_0 
and 

-gV(S) + n I]S]gV(N) < - - n  lgV(N) 

for all S C N, S ~ N, ~. 

The equality holds whenever [S[ = n -  1. Thus, let S C N 
be such that 1 < [SI _< n--2.  We distinguish three cases. 

0 < g~ < gO(S) for all S C N, S r ~.  (3.7) 

Subsection 3.4. The relationship between the effectiveness 
condition (3.1) and the other conditions will be derived 
from the next characterization of the effectiveness con- 
dition (3.1) in terms of the gap function. 

Proposition 3.2. Let v @ G n and put z : =  ENSC(v). 

(i) The effectiveness condition (3.1)for z is equivalent to 

n-lg~ ~ (ISI + 1)-lg~ for all S C N, S ~ N, O. 
(3.8) 

(ii) I f  (3.8) holds and gV(N)>O, then q(v)= r/*(v) = 
ENSC(v) E C(v). 

Proof (i) For any coalition S, the excess of S at z satisfies 

eV(S,z) = v(S) - ~,  SCj(v) - n-llSlNSC(v) 
jGS 

= -- g~ + n- l l s I  g~ 

In particular, we get that eV(N-- {i}, z) ----- --n-lgV(N) for 
all i E N. Now it follows that the effectiveness condition 
(3.1) for z is equivalent to 

e~ z) < --n-lg~(N) for all S C N, S ~ N, • (3.9) 

or equivalently, 

--g~ + n -1 IS[ g~ < --n-lgO(N) 

for all S C N, S 4: N, O. 

From this we conclude that the equivalence (3.1) ~ (3.8) 
holds. 

(ii) Suppose that (3.8) holds and g~ > O. Because (3.8) 
is equivalent to (3.9), it follows that e~ for all 
S C N, S ~ N,O. Hence, z CC(v). The equalities 
z = r/*(v) = r/(v) are due to Theorem 3.1 and the individual 
rationality of the prenucleolus respectively. [] 

Theorem 3.3. Let v E G n. I f  Funaki's condition (3.3), Le- 
gros" condition (3.5)-(3.6) or Driessen's condition (3.7) 
holds, then the effectiveness condition (3.1) holds and 

Case one. Suppose that (3.7) holds. Then we have 
0 X_g~ and hence, 

--g~ + n -l[Slgv(N) <_ --g~ 

+ n-l(n -- 1)gO(N) = --n lg~ 

Case two. Suppose that (3.5)-(3.6) holds. Take iES .  
By the monotonicity condition (3.5) and (3.6), we 
obtain gV(N)>__gV((~)=O as well as gV(S)>__gV({i})>__ 
n-l(n -- 1)g~ Now it follows that 

--gO(S) + n-llSlgV(N) ~ --n-l(n -- [SI -- 1)g~ 

< --n-lgO(N). 

Case three. Suppose that (3.3) holds. Take i E N - - S .  
From (3.3) we derive n-lgV(N) >g~(N) --g~(N-- {i}) = 0 
and so, g~(N) > O. Further, we obtain gV(N-- {i}) --g~(S) 
<_ n - l ( n - I S [  - 1)gO(N) by applying repeatedly the con- 
dition (3.3). Together with g"(N-- {i}) = gO(N), this yields 

--g~ + n -1 [SIgV(N) < --g~ {i}) 

+ n-I(n _ 1)g~ = --n-lgV(N). 

Thus, (3.8) holds and gV(N)>__O. This completes the 
proof. [] 

For games v satisfying (3.8) and gV(N)>0, the core is 
nonempty, but the locus of the ENSC-solution inside the 
core may be arbitrary. However, 1-convex games possess 
a very regular core structure in such a way that the ENSC- 
solution is the centre of gravity of the vertices of the core 
(cf. Driessen 1983, 1985, 1988). Further, the intersection 
of the (pre)-kernel with the core of a 1-convex game is a 
singleton consisting of the ENSC-solution. Finally, the 
theory of this section is illustrated by a practical example 
concerning Japan. 

Example 3.4. We consider the model of the cooperative 
water resource development as described in Suzuki and 
Nakayama (1976). Especially, we pay attention to their 
model applied to the case of Kanagawa prefecture in 
Japan. There are two agricultural associations (of the 
Rivers Sakawa and Sagami, denoted as 1 and 2) who view 
the existing water supplies as being more than adequate 
for their own irrigation needs, and three city water service 
authorities (of the cities Kanagawa, Yokohama and 
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Table 1 

19 

S c(S) v(S) gV(S) gV(S) S c(S) v(S) gV(S) gV(S) 

ISl 4- 1 ISl + 1 

0 0 0 - 123 440.0 49.7 306.1 76.5 
1 0 0 116.4 58.2 124 518.1 229.5 247.1 61.8 
2 0 0 116.7 58.3 125 490.2 259.6 280.8 70.2 
3 489.7 0 122.7 61.3 134 998.0 239.3 243.3 60.8 
4 747.6 0 243.5 121.7 135 961.5 278.0 268.4 67.1 
5 749.8 0 307.3 153.6 145 1069.2 428.2 239.0 59.7 

12 0 0 233.1 77.7 234 948.2 289.1 193.8 48.4 
13 440.0 49.7 189.4 63.1 235 950.7 288.8 257.9 64.5 
14 700.5 47.1 312.8 104.3 245 1069.2 428.2 239.3 59.8 
15 694.0 55.8 367.9 122.6 345 1554.3 432.8 240.7 60.2 
23 486.4 3.3 236.1 78.7 1234 865.4 371.9 227.4 45.5 
24 546.3 201.3 158.9 53.0 1235 803.8 435.7 227.4 45.5 
25 512.2 237.6 186.4 62.1 1245 940.9 556.5 227.4 45.5 
34 1106.5 130.8 235.4 78.5 1345 1424.6 562.5 227.4 45.5 
35 1108.3 131.2 298.8 99.6 2345 1424.3 562.8 227.4 45.5 
45 1209.0 288.4 262.4 87.5 12345 1307.9 679.2 227.4 - 

Kawasaki,  denoted as 3, 4 and 5) whose current or future 
water needs are not met by existing sources. Each city 
might acquire the quantity of  additional water it needs in 
two ways: construct a dam on the River Sakawa with or 
without the cooperation of other cities and /or  arrange 
with the agricultural associations for the direct diversion 
of water from them to the city. The characteristic cost 
function c is derived from the minimum cost c(S) of 
meeting the additional water needs of  the cities in S, on the 
understanding that there is no cooperation from those 
agents outside S. 

The data concerning the cost figures in 108 yen is 
taken f rom Suzuki and Nakayama (1976, page 1085) and 
is listed in Table 1. With the cost function c :2  N--, R we 
associate the cost savings function v :2  Iv--* R by means 

of v(S) : =  ~ c({j}) --  c(S) for all S C N. The corre- 
jES 

sponding saving figures in 108 yen is also listed in Table 1. 
In the same table we observe that the associated savings 
game v satisfies neither of  the three conditions (3.3), (3.5)- 
(3.6), (3.7), but nevertheless, the condition (3.8) is satisfied 
by the game v. Therefore, we obtain the coincidence 
q*(v)=ENSC(v)  and as such, the prenucleolus cost 
allocation is determined by 

r/*(c) ----- c({i}) --  r/*(v) : c({i}) --  ENSCi(v) for all i E N. 

In view of this, straightforward calculations yield 

q*(c) = (--70.92, --71.22, 412.48,549.58,487.98). 

4. Properties of  the prekernel and the prenueleolus 

In addition to his study of the ENSC-method,  Funaki 
(1986) investigated the behaviour of  both the prekernel 
and the prenucleolus with respect to the smallest contribu- 
tions of  the single players to the nonempty coalitions. 
Funaki 's  main result states that those smallest contribu- 

tions give rise to an upper bound for the prenucleolus if 
and only if the ENSC-solution is bounded above by those 
smallest contributions, i.e., iffthe condition (3.2) holds. In 
this section we derive a similar result for the case that the 
relevant notion of the smallest contribution of any player 
to nonempty coalitions is changed into the smallest 
contribution of any coalition with respect to the forma- 
tion of (n --  1)-person coalitions. 

Let v E G n. The smallest contribution of coalition S 
with respect to the formation of (n -- 1)-person coalitions 
in the n-person game v is defined to be 

mV(S) : =  min [v(N--  {j}) -- v((N--  {j}) -- S)[j @ N - -  S] 

for all S C N, S ~ N, (4.1) 

m v (N) : = v (N). 

Remark that mY(O) : 0 and m V(N-- {i}) : v(N--  {i}) for 
all i E N. According to the next proposition, the smallest 
contributions of the coalitions with respect to the forma- 
tion of (n -- 1)-person coalitions are useful to characterize 
the effectiveness condition (4.2) for an arbitrary payoff  
vector x E 9~ n. 

Proposit ion4.1.  Let v@G ~ and x E R  ~. The following 
statements are equivalent. 

(i) eV(S,x) < eV(N-- {i}, x) (4.2) 

for all i E N and all S C N -- {i}, S ~ O 

(iO x(S) <_ mV(S) for all S C N with 1 < l S I  < n - - 2 .  
(4.3) 

Proof Evidently, we have the following equivalences: 

x ( S ) < m V ( S )  f o r a l l S C N w i t h  1 < ISI < n - 2  

x ( S )  < v(N - -  {j})  --  v ( ( N  - -  {j})  --  S)  
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for all S C Nwith  1 < ISI _< n - 2, for a l l j E  N -  S U(v)  : {x E ~ 3 l x  1 --  x 2 , ,  x 3 = 18, X i _~ 9 fo r  al l  i C N}. 

e~ -- {j}) -- S, x) < eV(N -- {j}, x) 

for a l l S C N w i t h l  < l S [ _ < n - - 2 ,  f o r a l l j ~ N - S  

eV(T,x) < e ~ ( N -  {j}, x) 

for a l l j  E N and all T C N -- {j}, T :/: O. 

So, the equivalence (4.2)'='(4.3) holds. [] 

In view of the condition (4.3), we define the set U(v) C P," 
by 

U(v) := {x E I*(v)lx(S) ~ m~ for all S C N 

with 1 < ISI ~ n -  2}. 

Thus, the set U(v) consists of pre-imputations that give 
rise only to payoffs not greater than the relevant smallest 
contributions for all coalitions containing at most n -  2 
players. Proposition 4.1 expresses that the effectiveness 
condition (4.2) for the efficient payoff vector x E I*(v) is 
satisfied if and only if x E U(v). Due to Theorem 3.1, we 
obtain the coincidence t /*(v)=ENSC(v) whenever 
ENSC(v) E U(v). 

Clearly, the core of the game v can be written as 

C(v) = {x E I*(v)lx(S) ~ v(N) -- v(N -- S) for all S C N}. 

In other words, the payoffs according to any core-element 
are bounded above by the contributions of the coalitions 
with respect to the formation of the grand coalition N. 
Analogously, the payoffs according to any element of the 
set U(v) are bounded above by the smallest contributions 
of the coalitions with respect to the formation of (n -- 1)- 
person coalitions. In the remainder of the section we 
compare the location of the set U(v) with the core C(v) and 
the prekernel ~*(v ) .  We first treat two examples. 

Example 4.2. Consider the 3-person game v as listed in the 
second row. 

S {1} {2} {3} {1,2} {1,3} {2, 3} N 

v(S) 0 0 0 9 9 15 18 
gV(S) 3 9 9 3 3 3 3 
mO(S) 9 9 9 9 9 15 18 

Then the separable contributions are given by 
SCi(v) = 3, 9, 9 for i = 1,2, 3 respectively. The corre- 
sponding gap function gO is listed in the third row, from 
which we derive that the game v satisfies Driessen's 1- 
convexity condition (3.7) as well as Funaki's condition 
(3.3), whereas Legros' pseudo-convexity condition (3.5)- 
(3.6) does not hold. By applying Theorem 3.3, we obtain 
the coincidence q*(v) = ENSC(v) = (2, 8,8). Due to the 1- 
convexity of the game v, the core is the triangle with the 
three vertices (0, 9, 9), (3, 6, 9) and (3, 9, 6). Note that the 
ENSC-solution is the centre of gravity of the three vertices 
of the core. The function m ~ of (4.1) is listed in the fourth 
row, from which we deduce that the set U(v) is given by 

Thus, the set U(v) is the convex hull of the three points 
(0, 9, 9), (9, 0, 9) and (9, 9, 0). We conclude that the in- 
clusion C(v) CU(v) is strict and furthermore, 
ENSC(v) E U(v). 

Example 4.3. Consider the 3-person game w as listed in the 
second row. 

S {1} {2} {3} {1,2} {1,3} {2, 3} N 

w(S) 0 0 0 10 11 12 15 
gW(S) 3 4 5 -3 -3 -3 -3 

gW(S) 1.5 2 2.5 -1 -1 -1 - 
ISI + 1 

mw(s) 10 10 11 10 11 12 15 

Then SCi (w) = 3, 4, 5 for i = 1,2, 3 respectively. From 
gW(N)=--3 < 0 ,  it follows immediately that the core is 
empty and none of the three conditions (3.3), (3.5)-(3.6), 
(3.7) does hold. Nevertheless, from the fourth row we 
derive that the game w satisfies the main condition (3.8) 
and hence, we obtain the coincidence r/*(w)= 
ENSC(w) = (4, 5, 6). Notice that ENSC(w) E U(w) be- 
cause the set U(w) is given by 

U(w) = {x E ~31xl , ,  x2 " x3 : 15, Xl ~ 10, x2 _< 10, 

x3 ~ 11,}. 

From the first example we learn that the set U(v) may 
contain points outside the core C(v). The next theorem, 
however, states that the part of the set U(v) inside the core 
can be characterized as the intersection of the set U(v) with 
the comprehensive orthant O (v) that is bounded above by 
the separable contributions. As a consequence, a necess- 
ary and sufficient condition for the inclusion U(v) C C(v) 
can be given in terms of the boundedness of the set U(v) by 
the separable contributions. 

Theorem4.4. Let v E G  n and put O ( v ) : : { x E R " l x i < _  
SCi(v) for all iEN} .  

(i) U(v) 71 C(v) = U(v) ('1 0 (v) 

(ii) U(v) C C(v) if f  U(v) C O(v). 

Proof (i) Note that the inclusion C(v) C O(v) holds since 

xi = v(N) -- x (N -- {i}) < v(N) -- v(N -- {i}) = SCi(v) 

for all x ~ C(v) and all i E N. So, it remains to establish the 
inclusion U(v)(q O(v)C U(v)N C(v). Let x E U(v) (30(v)  
and S CN,  S r N, 0.  We show x(S) >_ v(S) or equivalent- 
ly, e o (S, x) < 0. Because S :~ N, there exists i E N such that 
S C N--{i  }. By Proposition 4.1, we deduce from x E U(v) 
that 

e~ x) < eV(N -- {i}, x) ---- v(N -- {i}) -- x(N -- {i}) 

:- xi - S G  (v) <_ 0 
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where the last inequality follows from x C  O(v). There- 
fore, x C C(v) as was to be shown. 

(ii) The equivalence is a direct consequence of part 
(i). [] 

The following results concerning the intersection of the set 
U(v) with the prekernel are established with the aid of the 
lemma which gives a characterization of the effectiveness 
condition (4.2) in terms of the maximum surplus. The 
proof  of the lemma is straightforward and is left to the 
reader. 

Theorem 4.7. Let v C G n. 

(i) q*(v) ~ U(v) tffENSC(v) E U(v) 

(ii) I fENSC(v)  E U(v), then ~/*(v) = ENSC(v). 

Proof The "if" part of (i) as well as part (ii) are due to 
Proposition 4.1 and Theorem 3.1. To prove the "only if" 
part of (i), suppose tl*(v)CU(v). We always have 
r/*(v) E ~*(v) .  From r/*(v) E U(v) Yl JY'*(v) and Theorem 
4.6(i), we conclude that ENSC(v)=t /* (v)E  U(v). There- 
fore, (i) holds. [] 

Lemma 4.5. Let v E G n and x E Rn. The following state- 
ments are equivalent. 

(i) eV(S,x) ~ eV(N--  {i}, x) (4.2) 

for  all i E N and all S C N -- {i }, S ~ Q 

(ii) s~(x) = eV(N -- {j}, x) for  all i, j@N, i vej. 

Finally, we treat the relationship between the set U(v) and 
the part of the pre-imputation set that is bounded above 
by the smallest contributions of the single players to the 
nonempty coalitions. The formal definition of the relevant 
set W(v), as presented in Funaki (1986), is as follows: 

m(v) : -  {x E I*(v)lxi < v(S U {i}) -- v(S) 

for all i C N and all S C N -- {i}, S r Q}. 

Theorem 4.6. Let v E G n. 

(i) V(v) 63 ~ * ( v )  C {ENSC(v)} 

(ii) V(v) O Jff*(v) = {ENSC(v)} i f fENSC(v)  C U(v). 

Proof (i) Suppose U(v) 63 ~'*(v)  r ~ ,  say x @ U(v) (~ 
J{*(v). By Proposition 4.1 and Lemma 4.5, we derive 
from x E U(v) that 

s~(x) = xj -- SCj(v) for all i, j E N, i =~j, while 

s~(x) = sj;(x) for all i , j  C N, i v~ j, 

because of x E JY'*(v). From this, it follows immediately 
that 

X1 - -  S O l ( V )  = x 2  - -  S C 2 ( v )  : . . .  : Xn - -  S C n ( v )  : :  ct. 

Thus, we have that X i = S C i  ( v )  q- a for all i E N. Together 
with x(N)  = v(N), this implies a = n-INSC(v) and hence, 

X i = S C i ( o )  -~ n 1NSC(v) = ENSCi(v) for all i E N. 

We conclude that x = E N S C ( v )  whenever x E U(v)~  
~*(v). 

(ii) The "only if" part is trivial. In order to prove the "if" 
part, suppose z :~- ENSC(v) E U(v). In view of part (i), it 
suffices to show zEA#*(v).  By Proposition 4.1 and 
Lemma 4.5 applied to the vector z, we deduce from 
z ~ U(v) that for all i , j  E N, i v~j, 

Sly(Z) = zj -- SCj(v) = ENSCj(v) -- SCj(v) = n-INSC(v). 

In particular, siy(z)=sj;(z) for all i , j E N ,  i r j. So, 
z E ~ff*(v) as was to be shown. [] 

Theorem 4.8. W(v) C U(v) for  all v C G n. 

Proof Let x C W(v) and let S C N  be such that 
1 < IS[ < n  --2. In order to prove x E  U(v), we show that 

x(S)  < v(N -- {j}) -- v((N -- {j}) -- S) for a l l j  @ N -- S. 

Let j ~ N - -  S. Write S = {il, i2 . . . . .  is} where s :=  IS[ and 
put [ io] '=N--{ j} ,  [ ik]:=N--{ j ,  il,i2 . . . . .  ik} for all 
1 < k < s. Because s < n -- 2, we have that [ik] 4: Q for all 
1 < k < s .  Together with x C W(v), this implies that 
Xik<_V([ik a]) -- v([ik]) for all l < k < s .  Summing up 
these s inequalities, we obtain 

• xik ~ 2 (v([ik-1]) -- v(Eik])) = v([i0]) -- v([is]). 
k = l  k = I  

Now it follows immediately that 

x(S) = 2 xik ~ v([i0]) -- v([is]) 
k = |  

= v(N -- {j}) -- v ( ( N -  {j}) -- S) 

as was to be shown. [] 

It is left to the reader to verify the emptiness of the get 
W(w) for the game w of Example 4.3, while the inclusion 
W(v) C U(v) for the game v of Example 4.2 is strict. The 
general inclusion enables us to present an alternative 
proof  of Funaki's main results. 

Corollary 4.9. (cf  Funaki 1986) Let v @ G n. 

(i) W(v) C C(v) 

(ii) W(o) ~ ~ * ( v )  C {ENSC(v)} 
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aio w(v) n w , ( v )  = {ENSC(v)}/ffENSC(v) @ W(v) 

(iv) q*(v) E W(v) /ffENSC(v) E W(v). 

Proof (i) The proof of the inclusion W(v) C C(v) is similar 
to the proof of Theorem 4.8. 

(ii) From Theorem 4.8 and 4.6(i) respectively, we con- 
clude 

W(v) (3 X*(v) C U(v) (1 ~ff*(v) C {ENSC(v)}. 

(iii) The "only if" part is trivial. Further, the "if" part is a 
direct consequence of part (ii), Theorem 4.8 and 4.6(ii). 

(iv) If ENSC(v) @ W(v), then ENSC(v) @ U(v) and hence, 
~/*(v)----ENSC(v) E W(v) where the equality follows from 
Theorem 4.7(ii). The proof of the "only if" part is similar 
to the proof of part (i) of Theorem 4.7. [] 

5. Coincidence of and eollinearity between solutions 
for glove games 

The previous two sections were devoted to the coincidence 
of the prenucleolus and the ENSC-solution. Hencefor- 
ward, we mainly investigate the relationship between the 
ENSC-solution and the so-called Shapley value. To be 
exact, we consider two types of games for which the 
Shapley value can be obtained as a convex or affine 
combination of the ENSC-solution and the centre of the 
imputation set. Generally speaking, the centre of the 
imputation set (CIS-vector) of any n-person game v is 
defined by 

I- 

:=  v({i}) + n - '  Iv(N) -- Z v({j}) for all i E N. CISi(v) 
l jEN 

For n-person games v satisfying v({i}) = 0 for all i @N, the 
centre of the imputation set is characterized by the 
egalitarian distribution of the total worth v(N) among the 
n players in the game v, i.e., CIS i ( v )=n-qv (N)  for all 
iCN .  

In this section we treat a type of games which is 
formulated in terms of traders and gloves (cf. Shapley and 
Shubik 1969). The trader set Nis divided into two disjoint 
nonempty subsets R and L consisting of initial owners of 
right- and left-handed gloves. So, N = R U L  where 
R A L = O. Each trader possesses one glove and the worth 
of an assembled pair of gloves is one to whoever holds the 
pair. Due to cooperation between the traders of coalition 
S, the largest possible worth of the assembled pairs of 
gloves within S is represented by 

v ( S ) = m i n [ I S O R I ,  I S N L I ]  f o r a l l S C N .  (5.1) 

Throughout the section we write r =  IRI and l =  ILl. 
Obviously, the glove game v of (5.1) satisfies 
v(N) =- rain (r, 1) and v({i}) = 0 for all i EN. First of all, we 
elucidate the coincidence of the (pre)-nucleolus concept 
and the ENSC-method on the class of glove games. For 
that purpose, we study the validity of the conditions (3.3)- 
(3.8) for a glove game. 

Theorem 5.1. Let v E G n be the glove game of  (5.1). 

(i) I f  r = 1, then (3.8) does not hold. 

(ii) I f  r 4: l, then Driessen' s condition (3.7) as well as (3.8) 
hold, Legros" condition (3.5)-(3.6) does not hold, 
Funaki's condition (3.3) holds i f f  r = 1 or l =  1. 

(iiO l f  r = l, then ENSCi(v) = 1 for  all iEN.  

l f  r 4 ~ l, then C(v) = {t/(v)} = {ENSC(v)}. In addition, 
i fr  < L then ENSCi (v) = 1 for  i E R and ENSCj (v) = 0 
f o r j E L ;  
if  r > l, then ENSCi (v) = O for i E R and ENSCj (v) = 1 
f o r j @ L .  

Proof (i) Suppose r = l .  Then we have v ( N ) = r ,  
v ( N - - { i } ) = r - - 1  for all i E N  and so, SCi(v) 
= v ( N ) - - v ( N - - { i } ) =  1 for all i E N .  Now it follows that 
g ~  and g~ 1 for all i E R ,  all j ~ L .  This 

yields that n lg~ = 1  > 1 = 3_lgo({i,j}) for all 
2 3 

i E R ,  all j E L .  Therefore, the condition (3.8) does not 
hold. Moreover, the ENSC-solution is given by 

ENSCi(v) ~ SCi(v) + n-INSC(v) = 1 1 _ 1 for all 
2 2 

i E N .  

(ii) & (iii) It remains to consider the case r 4: I. Without 
loss of generality, suppose r < l (otherwise, interchange 
the roles of the sets R and L). Then we have v ( N ) =  r, 
v(N--{ i})  = r - -  1 for iER,  v ( N - - { j } ) = r f o r j E L  and so, 
S C i ( v ) -  1 for i E R ,  SCy(v)=0 fo r j@L.  Now it follows 
that gO(S)= I S ~ R I  - v ( S ) > O  for all S C N .  In particu- 
lar, g~ = O. From this, it is obvious that the 1-convexity 
condition (3.7) as well as (3.8) hold. However, the 
monotonicity condition (3.5) for the gap function does not 
hold since g~ 1 =gV({i}) for all i E R .  In case 
r > 2 ,  then gV(R)- -gV(R--{ i } )= 1 for all i E R  and so, 
(3.3) does not hold. In case r = 1, then g~ = 1, g~ = 0 
for S4:R  and as such, (3.3) holds. This proves the 
statement (ii). Because (3.8) holds and g~  we 
conclude from Proposition 3.2(ii) that 
q(v)=ENSC(v)@C(v) .  Further, the core is at most a 
singleton because of gO (iV) = 0. Therefore, 
C(v)={rl(v)}={ENSC(v)}.  Moreover, we get that 
ENSCi(v) = SCi (v) for all i C N. This proves the statement 
(iii). [] 

Secondly, we direct the attention to the behaviour of 
the Shapley value on the class of glove games. The 
Shapley value of an arbitrary n-person game v is usually 
seen as an efficient payoff vector which meets a certain 
expectation principle. That is, the expected payoff to any 
player i E N  is derived from his marginal payments 
v ( S U { i } ) - - v ( S )  for joining coalitions S not contain- 
ing player i himself, and the probability distribution 

S C N -- {i} over the collection of all 
ISl 
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such coalitions. Formally, the Shapley value 4) (v) C ~n of 
the game v is given by its classical formula (cf. Shapley 
1953): for all i E N  

4)i(V) ~" n - l ( n - - 1 )  -1 "= [v(S U {i}) -- (v(S)]. 
SCN {i} ] S I  (5.2) 

It is well-known that the Shapley value is an efficient 
payoff vector, i.e., 4)(v) EI*(v) for all v E G n. In addition, 
the Shapley value possesses the symmetry property be- 
cause symmetrical players in a game receive the same 
payoff according to the Shapley value. Especially, the 
symmetry property of the Shapley value can be applied to 
the traders of R and L respectively in the glove game v of 
(5.1). In fact, their Shapley value payoffs for the case r > l 
are as follows (cf. Shapley and Shubik 1969): 

1 r- -I  x--,z r!l! 
4) i(v) for i E R ,  

2 2~- ? o  (r+k)! (1--k) !  
(5.3) 

1 + r- -I  + r!l! 
4)j(v) =-~- 2----7- ~=i (r+k)!(1--k)[  fo r j@L.  

The results for the case r < l  are obtainable by inter- 
changing the roles of the sets R and L in the formula (5.3). 
If r = l ,  then it appears that the Shapley value, the 
nucleolus and the ENSC-solution coincide with the pay- 

(1  l __l)@~n.  The following theo - off vector 2 '  2 . . . . .  2 

rem describes the exact locus of the Shapley value of a 
glove game whenever r > l. 

Theorem 5.2. Let v E G n be the glove game of (5.1) where 
r > l. Then 

Then d 0 = l + d l  as well as f l = ( 2 r ) - l ( r - - l ) +  
(2 r l ) - l ( r+ l ) ( r - l )d l .  Due to the formula (5.3) for the 
Shapley value of v, we get 

1 _ (2r) l(r--l)do fo r i@R,  4)i(v) = T 

1 
4)j(v) = ~- + ( 2 l ) - l ( r - l ) d l  f o r j ~ L .  

(i) First of all, we prove that 4)i (v)=  (r + l)-II  (1 --fl) for 
iER .  Let iER .  By straightforward calculations, we 
obtain 

1 
4)i(v) = ~ - -  (2r) l(r--l)do = (2r)-1l--  (2r)-l(r l)dl 

and so, 

l - l (r  + l)4)i(v) = (2r) l(r + l) -- (2rl)-l(r + l)(r -- l)dl 

= I - / L  

(ii) Secondly, we prove that 4)j (v) - -  4)i (v) : p for all i C R 
and all j @ L. Let i C R and j E L. Then we obtain 

4)j(v) -- 4)i(v) = (2l)-1(r l)dl + (2r) l(r -- l)d0 

= (2l)-1(r - -  l ) d l  + ( 2 r )  l ( r  - -  l )  + (2r)-l(r -- l)dl 

= (2r)-l(r -- l) + (2r/) 1(r + l)(r -- l)dl = ft. 

(iii) From the parts (i)-(ii), it follows immediately that 

4) j (v )=f l+4) i (v )=f l+(r+l ) - l l (1 - - f l )  f o r jE L ,  iER .  

This completes the proof. [] 

4)(v) = flENSC(v) + (1 -- fl)CIS(v) Lemma 5.3. The real number fl of  (5.4) satisfies 0 < fl < 1. 

where 

f t . _  r - - I  + ( r + l ) ( r - - l )  l r!l! 
2r 2rl ~ (r + k)!( l - -  k)! (5.4) 

k = l  

Proof In view of Theorem 5. l(iii), the ENSC-solution for 
the case r > l  is given by ENSCi (v )=0  for i@R and 
ENSCj(v)=  1 for j C L .  Further, CIS i (v )=(r+l ) - l l  for 
all i E N. Consequently, we must establish that 

4)i(v) = (r+l)  ll(1 --fl)  for i E R ,  

4)j(v)=fl + (r+l)- l l( l  -- f l)  f o r j E L .  

For the sake of notation, we write 

l r!l! 
60 := ~ (r+k)!(l--k)' 

k=O 

and 

Proof The strict inequality fl > 0 is a direct consequence of 
the formula (5.4) and the assumption r > l .  Thus, it 
remains to show the strict inequality f l <  1. For the 
relevant glove game v of (5.1), we have that 
v(S U { i} ) -  v(S)E {0, 1 } for all i E N and all S C N--{i}. 
Together with the classical formula (5.2) for the Shapley 
value, this yields that 

0 < 4)i(v) < ~ n - l ( n - - l )  -1 _ = 1 for all i C N 
SCN-lil ISI 

where the last equality holds because of the probability 
distribution. In point of fact, the strict inequality 4)i (v) > 0 
holds for all i E N since v({i, j}) -- v ({j}) = 1 whenever i and 
j a re  of a different type. We conclude that 0 < 4)i(v) ~ 1 for 
all i E N. Take i E R and j E L. By part (ii) of the proof  of 
Theorem 5.2, we have fl~-4)j(V)--Oi(V ). From this, 
4)i (V) > 0 and 4)j (v) < 1, it is now clear that fl < 1. [] 

l rV lV 
d l : = ~  " " 

=1 (r+k)! (1--k) !  

For any collection of one-point solution concepts which 
possess the symmetry property, the corresponding ef- 
ficient solutions for the glove game v of (5.1) lie on the 
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same line because the traders of R and L respectively are 
symmetrical players in the glove game v. Theorem 5.2 and 
Lemma 5.3 state that the Shapley value of the glove game 
of(5.1) is a convex combination of the ENSC-solution and 
the centre of the imputation set with coefficients fl and 
1 -- ft. If r > l, then the real number fl is defined by (5.4). In 
other words, the Shapley value of the glove game of (5.1) 
lies on the straight line segment with end points the ENSC- 
solution and the centre of the imputation set. The locus of 
the Shapley value on this line segment may coincide with 

( ' t the midpoint e .g . , c ]=  2 m c a s e r  2, l 1 , it may 

1 in lie near the centre of the imputation set e.g., C] < ~- 

case r = 3, l = 2 ) or it may lie near the ENSC-solution 

\ 

/ 

(e.g.,C]>--21 i n c a s e r = 4 ' l = 2 ) "  Further, i t appea r s  

that the Shapley value almost coincides with the ENSC- 
solution whenever the number of left-handed gloves is 
fixed and the number of right-handed gloves approaches 
infinity. In the next section we establish a version of 
Theorem 5.2 for another type of games, the so-called k- 
coalitional n-person games. 

6. Collinearity between solutions for K-eoalitional games 

Example 6.1. Consider the 4-person glove game with two 
owners 1, 2 of one right-handed glove, one owner 3 of two 
left-handed gloves and one owner 4 of one left-handed 
glove. The associated characteristic function v is then 
given by 

v(N) = v(123) = 2, v(124) = v(134) = v(234) = 1, 

v(13) = v(14) = v(23) = v(24) = 1, 

v(S) = 0 otherwise. 

Clearly, SCi (v) = 1, 1, 1,0 for i = 1,2, 3, 4 respectively 

1 
and NSC(v) = --1. Thus, ENSC(v) = -~- (3, 3, 3, --1). 

Because the nucleolus is equal to the unique core-element 
(1, 1,0,0), we have rl(v)r From the classical 
formula (5.2) we derive that the Shapley value ~b(v) = 

1 
i2 (7, 7, 7, 3). Observe that the Shapley value, the 

ENSC-solution and the centre of the imputation set lie on 

the same line in such a way that th(v) = 1 ENSC(v) 
3 

+ 2 CIS(v). 
3 
For the game of the above example, the Shapley value 

is the convex combination of the ENSC-solution and the 
centre of the imputation set with certain coefficients. The 
purpose of the section is to account for those coefficients 

by introducing a specific type of games, the so-called 
k-coalitional games. Especially, we describe the interrela- 
tionship between the Shapley value, the ENSC-solution 
and the CIS-vector on the class of k-coalitional n-person 
games. 

By means of the integer k satisfying 1 < k < n -- 1, we 
divide the coalitions in an n-person game into three kinds: 

- essential coalitions which contain precisely k players, 
- small coalitions which consist of  less than k players, 
- large coalitions which consist of more than k players 
and different from the grand coalition N. 

Definition 6.2. An n-person game v is called a k-coalitional 
game if it satisfies the next two conditions. 

(i) v(S) = v(T) for all S, T C N with lS[ = [ T I  < k .  
(ii) there exist aTE ~ for all T C  N, ITI = k, and Yg+l, 

?k + 2, ..., Yn- 1 C R such that 

v(S) = Z aT q- )~lSI f o r a l l S C N  
:rcs, with k < IS[ < n. 
ITI ~k 

(6.1) 

Remark that nothing is required about the worth of any 
essential coalition in a k-coalitional game. Here aT C R 
represents the maximal profit obtainable from the forma- 
tion of the essential coalition T within any large coalition. 
Concerning the condition (6.1), we note that the worth of 
any large coalition may be independent on the worths of 
essential coalitions. However, in case the profit aT- of any 
essential coalition T for its formation within a largc 
coalition happens to be the same as the worth v(T) of the 
essential coalition in the game v, then the worth of any 
large coalition is completely determined by the worths of 
the essential subcoalitions and the coalition size depen- 
dent constant. For  instance, the last situation applies to 
each unanimity n-person game un, R C N, R r N, ~ ,  which 
is given by 

UR (S) : =  1 if S 3 R 

= 0 otherwise. 

Say [R[ = k .  Then the unanimity game uR is a k-coali- 
tional game because the main condition (6.1) holds by 
choosing aT=uR(T) for all T C N  with IT] = k  and 
Yk + 1 = ?k + 2 = . . . ,  = ?,-- l = 0. Recall the well-known fact 
that the set {UR@Gn[RCN, R--/:O} of all unanimity 
n-person games forms a basis of the class G n. 

The remainder of the section consists of three subsec- 
tions which correspond to the cases k = n -  1, k = 1 and 
2 < k <~ n -- 2 respectively. Throughout  each subsection 
we suppose that any n-person game v is zero-normalized, 
i.e., v({i})----0 for all i@N. It is easily shown that the 
Shapley value cb, the ENSC-solution and the CIS-vector 
possess the linearity property on the class of zero- 
normalized n-person games. That is, for all n-person 
games v, w and all a, fl E 

v (av + flw) = a v  (v) + fl~u (w) 
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where q/E{4~, ENSC, CIS} and the n-person sum game 
av + flw is given by (av + f lw)(S)  :=  av(S )  + f lw(S)  for all 
S C N .  In each of  the following three subsections we 
describe the exact locus of the Shapley value of a 
k-coalitional game in terms of the ENSC-solution and the 
CIS-vector. 

From this and qS(v)- qS(z), we conclude that for all i E N  

4~i(v) -- qSi(z) -- (n 1) IENSCi(v) 

+ ( n -  1) l(n --2)CISi(v). [] 

Example 6. 4. Consider the 4-person game v given by 

Subsection 6.1. In case k : n -  1, then the condition (6. I) 
is superfluous. So, an n-person game v is an 
(n -- 1)-eoalitional game if and only if the game is symmet- 
ric with respect to the coalition size up to n - -1 ,  i.e., 
v ( S ) : v ( T )  for all S, T C N  with ISI : ITI < n - - 1 .  Evi- 
dently, any zero-normalized 3-person game can be seen as 
a 2-coalitional game. According to the next theorem, the 
Shapley value of an (n -- 1)-coalitional game is the convex 
combination of the ENSC-solution and the CIS-vector 
with coefficients (n- -1)  -J and (n --1)-1(n -- 2). Conse- 
quently, the Shapley value of any zero-normalized 
3-person game is the midpoint of the straight line segment 
with end points the ENSC-solution and the CIS-vector. If 
n > 3, the Shapley value of (n --  1)-coalitional games lies 
near the CIS-vector and far off the ENSC-solution. 

Theorem 6.3. I f  v E G ~ is an (n -- 1)-coalitional game, then 

~b(v) : (n -- 1)-IENSC(v) + (n -- 1)-l(n -- 2)CIS(v). 

Proo f  Let v C G n be an (n -- 1)-coalitional game. Define 
the two n-person games w and z by 

v(N)  : v(123) : v(124) : 12, v(S)  : 0 otherwise. 

Obviously, this 4-person game is a 3-coalitional game. 
Here S C i ( v ) =  12, 12,0,0 for i =  1,2,3,4 respectively 
and NSC(v)=--12.  Thus, ENSC(v)= (9 ,9 , - -3 , - -3)  
and as such, the ENSC-solution lies outside the impu- 
tation set. Further, the CIS-vector is given by 
CIS(v) = (3, 3, 3, 3). Theorem 6.3 states that the Shapley 
value, the ENSC-solution and the CIS-vector lie on 

the same line I in such a way that ~b(v)= 1 ENSC(v) 
3 

+ 2 CIS(v). As a result qS(v) : (5, 5, 1, 1) which payoff 
3 

vector is also obtainable from the classical formula (5.2) 
for the Shapley value. Besides, the core C(v) is the straight 
line segment with end points (12,0,0,0) and (0, 12,0,0). 
Because the players 1,2 are symmetrical in the game v, 
the nucleolus is determined as the midpoint of the core, 
i.e., q (v) = (6, 6, 0, 0). We observe that the nucleolus lies 

2 
on the above line l in such a way that 4~ (v) = ~- 11 (v) 

+ 1 CIS(v). 
3 

w(S)  := v(S)  i f [ S l < n - 1 ,  

w(S)  :=  0 if [SI >_ n - 1, 

z ( S )  :=  0 if [SI < n - 1, 

Subsection 6.2. Now we direct the attention to the behav- 
iour of solutions on the class of 1-coalitional games. For  
that purpose, we first treat three characterizations of a 
1-coalitional game. 

z ( S )  :=  v(S)  if ISI ~ n - l. 

Then the equality v ( S ) :  w ( S ) +  z ( S )  holds for all S C N. 
By applying the symmetry property of the Shapley value 
to the symmetric game w, we obtain that 
O i ( w ) : n  l w ( N ) : 0  for all i E N .  Together with the 
linearity property of the Shapley value, this yields 
0(v) = 4~(w + z) ---- qS(w) + 4~(z) = ~b(z). From the classical 
formula (5.2) applied to the game z, we derive that for all 
i E N  

Proposition 6.5. Let  v E G n. The following statements are 
equivalent. 

(i) v is a 1-coalitional game, Le., (6.1) holds where k =  1 

(ii) there exist a unique q ~ I * ( v )  and 72, 73 . . . .  , 7n -  ~ E I1t 
such that 

v ( S ) = q ( S ) + Y l S l  f o r a l l S C N w i t h  l < l S ]  < n  
(6.2) 

4~i(z) = [n(n -- 1)] 1 ~ v ( N - -  {j}) 
j E N  {i} 

+ n - l [ v (N)  -- v (N  -- {i})] 

= [n(n -- 1)]-l[SCi(v) --gV(N) + (n -- 2)v(N)] 

+ n - l S C i  (v) 

: (n  - -  1 ) - l [ s C i ( v )  - -  n - l g V ( N ) ]  

+ [n(n -- 1)]-l(n -- 2)v(N). 

(iiO gV(S)=gV(T)  f o r a l l S ,  T C N w i t h  1 < [SI = ITI <n. 

Proof  We prove the implications (ii) ~ ( i)~(i i i)  ~ (ii). 
The implication ( i i )~ (i) trivially holds. 

(a) Suppose that (i) holds. Then there exist 
a = (al, a2 . . . .  , an) E R n and Y2, 73 . . . .  ,7n 1 E • such that 
v ( S ) = a ( S ) + 7 1 s l  for all S C N  with 1 < [S[ < n .  It fol- 
lows that for all i E N 

S G ( v )  = v(N)  - v ( N -  {i}) = v(N)  -- a ( N )  -- ~ - 1  + ai 
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and hence, 

gV(S) : ~ SCj (v )  - -  v (S )  
jGs 

= Igl[v(N) - a ( N )  -- 7, 1] -- 71sl 

for all S C N  with 1 < IS I < n .  From this, it is clear that 
g~(S) = gV(T) for all S, TC N with 1 < I SI = [TI < n. So, 
(i) implies (iii). 

(b) Suppose that (iii) holds. Choose the payoff vector 
q E I * ( v )  and the real numbers 7s, 1 < s < n ,  by 
q : = E N S C ( v )  and 7 s : = n - l s g V ( N ) - g ~ ( S )  for all S C N  

with ISI =s .  The real numbers 7s are well-defined for 
1 < s < n because (iii) holds. It follows that for all S C N 
with 1 < ISI < n  

q(S )  + 71sl = ~'~ ENSCj(v) + n - l l S l g V ( N )  - gV(S) 
jES 

= ~ .  S C j ( v ) + n - I I S [ N S C ( v )  
jES 

+ n - l l S [ g V ( N )  --  gV(S) : v(S) .  

This completes the proof  of the existence part of statement 
(ii). In order to prove the uniqueness part for the pre- 
imputation q, suppose that (6.2) holds. By q EI*(v)  and 
(6.2), we obtain that for all i EN  

qi = v (N)  --  q ( N  --  {i}) = v (N)  --  v ( N  --  {i}) + 7.-1 

= S f i ( v )  + 7 n - 2 .  

Summing up these n equalities, we deduce 

v (N)  = q (N)  = ~ SCj (v )  + nyn-1 or equivalently, 
jGN 

7n-  1 = n - l [ v ( N )  --  ~ SCj(v)]  = n-1NSC(v). 
j@N 

Consequently, 

qi = SCi(v)  + 7 , - 1  = SCi(v )  + n-INSC(v) = ENSCi(v) 

for all i EN. 

We conclude that the pre-imputation q coincides with the 
ENSC-solution. This completes the proof  of the unique- 
ness part of statement (ii). So, (iii) implies (ii). [] 

The unique pre-imputation q to which Proposition 6.5(ii) 
refers is called the quota vector of the 1-coalitional game v. 
As a matter of fact, each player i E N  in a 1-coalitional 
game has a quota qi E ~. potentially and the players can 
get their quotas solely by the formation of multiperson 
coalitions. In addition to the sum of the members' quotas, 
each multiperson coalition can gain or lose an additional 
amount  which varies with the size of the coalition 
involved. Due to the above characterization, a 1-coali- 

tional game is also called a quasi quota game. Recall that 
the quota vector coincides with the ENSC-solution. 

Another characterization states that a quasi quota 
game is completely determined by the symmetry of the 
corresponding gap function on the multiperson coali- 
tions. As a direct consequence of the last characterization, 
any 3-person game can be seen as a quasi quota game. The 
next theorem expresses that the Shapley value of a quasi 
quota n-person game is the convex combination of the 
ENSC-solution and the CIS-vector with coefficients 
(n -- l ) - l (n - -2)  and (n -- 1) -I .  In contradistinction to the 
locus of the Shapley value of (n -- 1)-coalitional games, the 
Shapley value of quasi quota n-person games where n > 3 
lies near the ENSC-solution and far off the CIS-vector. 

Theorem 6.6. I f  v E G" is a quasi quota game, then 

~b(v) = ( n -  1) I ( n - 2 ) E N S C ( v ) +  (n -1 ) - ICIS(v ) .  

P r o o f  Let v E G" be a quasi quota game with quota vector 
q and coalition size dependent constants 7s, 1 < s < n ,  
where 71 = 7n = 0. Define the two n-person games w and z 
by 

w ( S ) ' = T s  for a l l S C N ,  S r  

z({i}) "= --qi for all i E N, 

z ( S )  :=  0 otherwise. 

Then the equality v (S )  = q (S )  + w(S )  + z ( S )  holds for all 
S C N. Together with the linearity property of the Shapley 
value on G", this implies ~b(v) = q + ~b(w) + 4~(z). Further- 
more, the symmetry property of the Shapley value applied 
to the symmetric game w yields that ~bi (w)=  n ~w ( N ) =  0 
for all i C N. From (5.2) applied to the game z, we derive 
that for all i @ N 

~)i(z) = n- l z ( { i } )  --  [n(n --  1)] -1 ~ z({j}) 
jCN--{i} 

and hence, 

(n -- 1) tbi(z) = n- l  q ( N  - {i}) -- n- l (n  --  1)qi = n - l  q (N)  --  qi. 

Since the quota vector q = ENSC(v), we conclude that for 
all i E N  

(n -- 1)~bi(v)= (n -- 1)qi+ (n -- 1) 4~i (z) = (n --  1)qi 

§  = (n --  2)qi § n Iv(N)  

= (n -- 2)ENSC~{v) + CISi(v). [] 

Because any zero-normalized 3-person game can be 
regarded as both a quasi quota game and a 2-coalitional 
game, we obtain that the two Theorems 6.3 and 6.6 are 
identical for zero-normalized 3-person games. Finally, we 
investigate the coincidence of the ENSC-method and the 
nucleolus concept on the class of quasi quota n-person 
games. 
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Corollary 6.7. Let  v E G n be a quasi quota game with quota 
vector q and coafition size dependent constants 7~, 1 < s < n. 

(i) The condition (3.8) holds i f f  

7s ~ Yn-1 f o r  all l < s < n 

--qi ~_~ ~n 1 for  all i E N. 

(/0 

and 

(6.3) 

I f  (6.3) holds and 7n-  1 ~ O, then q (v) = ENSC(v) and 
qS(v) = (n -- 1)-l(n -- 2)r/(v) + (n -- 1)-lCIS(v). 

late the main theorem, we first fix some notation. The set 
of all essential coalitions is denoted by F~, i.e., 

Fk :=  {TIT C N, I TI = k}. 

Consider any n-person game v and any real numbers, aT, 
TCFh.  For any player i E N ,  we define the set F~, of 
coalitions and the real numbers v i, a i by 

r~ : = { T I T E r k ,  iET},  

Proo f  It was already shown in the second part of(b)  in the 
proof  of Proposition 6.5 that S C i ( v ) = q i - ) ~ n _ l  for all 
i E N. It follows that for all S C N 

gV(S) = ~" SCj(v)  -- v (S)  = q (S)  -- v (S)  -- 1S17,-1. So, 
jGS 

g ~ ( N ) = - - n 7 ,  1, g O ( { / } ) = q i _ 7 ~ _ l  for a l l i E N ,  

g V ( S ) = - - s 7 ,  I--7~ f o r a l l S C N w i t h  ISI : s ,  1 < s < n .  

v i : =  Z .  v ( r ) ,  a i : =  ~ .  a T . 

red, r~r~ 

Here the real number v i (a i respectively) represents the 
total amount what player i can attain by acting as a 
member of essential coalitions with respect to the forma- 
tion of the essential coalitions within the game v itself 
(within large coalitions). The real numbers ~ and 8 are 
determined by averaging, i.e., 

In view of this, the equivalence mentioned in statement (i) 
is obtained by straightforward calculations. Moreover, 
the statement (ii) is a direct consequence of part (i), 
Proposition 3.2(ii) and Theorem 6.6. [] 

Concerning quasi quota n-person games, the condition 
(6.3) together with 7 , - l  _< 0 are sufficient but not necess- 
ary for the coincidence of the ENSC-method and the 
nucleolus concept. The nonnecessity is illustrated by the 
following example. 

Example6.8.  Consider the zero-normalized 4-person 
game v given by 

v ( N ) = 1 2 ,  v ( 1 2 3 ) = v ( 1 2 4 ) = 6 ,  v ( 1 3 4 ) = v ( 2 3 4 ) = 0 ,  

v(12) = 12, v(13) = v(14) = v(23) = v(24) = 6, v(34) = 0. 

This 4-person game is a quasi quota game with quota 
vector q = (6, 6, 0, 0) and coalition size dependent con- 
stants 72=0,  73=--6 .  Thus, the condition (6.3) does 
not hold, but nevertheless ENSC(v) = r/(v) = (6, 6, 0, 0). 
Here the ENSC-solution is derived from the quota vec- 
tor q, while the nucleolus is determined as the unique 
core-element. Note that the Shapley value can be calculat- 
ed with the aid of Theorem 6.6 and as a result, we get 

4)(v) = 2 ENSC(v) + 1 CIS(v) = (5, 5, 1, 1). 
3 3 

The 4-person game v of Example 6.4 is not a quasi 
quota game because the corresponding gap function is not 
symmetric with respect to the multiperson coalitions, e.g., 
gV(12) = 24, g~ = 0. It is left to the reader to verify that 
the 4-person glove game v of Example 6.1 is neither a quasi 
quota game nor a 3-coalitional game. 

Subsection 6.3. The main object is to describe the exact 
locus of the Shapley value on a subclass of k-coalitional 
n-person games where 2 < k < n -- 2. In order to formu- 

g : = n  -1 ~" V j and ~ : = n - 1  Z aj" 
jEN jEN 

According to the main theorem, the Shapley value of a 
k-coalitional n-person game where 2 < k  < n - - 2  is an 
affine combination of the ENSC-solution and the CIS- 
vector, on the understanding that the quotient of the two 
deviations g - -v '  and ~ - - a '  is the same for all players 
i E N .  

Theorem 6.9. Let  v E G ~ be a k-coalitional game such that 
(6.1) holds and 2 < k < n -- 2. I f  ( a -- al)- l (~ -- v i) = c for  
all i E N and a certain constant c E 1~, then 

4~(v) = oENSC(v) + (1 -- o)CIS(v) 

where 

(6.4) 

The proof  of Theorem 6.9 will be given at the end of this 
subsection. It may happen that the maximal profit aT, 
obtainable from the formation of the essential coalition T 
within any large coalition, is equal to the original worth 
v(T)  in the game v, i.e., a r = v ( T )  for all T C N  with 
I TI = k. Under these circumstances, it follows immediate- 
ly that v i =  a i for all i C N ,  ~ = a and hence, Theorem 6.9 
reduces to the next corollary. 

Corollary6.10. Let  v E G  ~, 2 < k < n - - 2 ,  and suppose 
there exist 7k+ 1, 7k+2,..., 7n- 1E • such that 

(i) v ( S ) = v ( T )  f o r a l l S ,  T Q N w i t h  IS[ ---ITI < k .  

(i 0 v ( S )  = ~ v (T)  + Tjsl f o r  all S C N 
TCS, with k < ]SI < n. 
ITI -k  
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Then ~b(v) = k - I E N S C ( v )  § k - l ( k  - 1)CIS(v). 

It is left to the reader to verify that the 4-person glove 
game v of Example 6.1 is a 2-coalitional game with respect to 

1 = - - '0  the profits al2 = a13 = ot14 = ~ - ,  0~23 = l ,  0~24 g 3 4  - -  

and the coalition size dependent constant 73 = 0. Notice 
that the profits are not uniquely determined. Straight- 
forward calculations yield that v z=  2 for all i E N, g v 2 
and so, ~ -- v i = 0 for all i E N .  From this, we conclude that 
Theorem 6.9 applies to the 2-coalitional 4-person glove 
game v and indeed, the Shapley value is the convex 
combination of the ENSC-solution and the CIS- 

1 2 
vector with coefficients - -  and - -  as was shown in Ex- 
ample 6.1. 3 3 

In case the constant c to which Theorem 6.9 refers is 
equal to zero (cf. Example 6.1), then the real number  ~ of 

(6.4) satisfies 0 < p < 1 and therefore, the Shapley 
2 

value is even a convex combination of the ENSC-solution 
and the CIS-vector. The next example illustrates that the 
affine combination to which Theorem 6.9 refers is not 
necessarily a convex combination.  

Example 6.11. Consider the 4-person game v given by 

v(N) = v(123) = o(124) = v(134) = 12, 

v ( 1 2 ) = v ( 1 3 ) = v ( 1 4 ) = 6 6 ,  v ( S ) = 0  otherwise, 

where ~ is an arbitrary real number.  It is straightforward 
to check that this 4-person game is a 2-coalitional game 
with respect to the profits a12 = 0~13 = a 1 4  ~ 6 ,  

a23 = a24 = a34 = 0  and the constant 73 = 0. Further,  it 
appears that g v i = 6 ( ~ - - a  i) for all iCN.  By applying 
Theorem 6.9, the Shapley value is an affine combina- 
tion of the ENSC-solution (12,0,0,0)  and the CIS- 
vector (3, 3, 3, 3) in such a way that qS(v)= 

1 
oENSC(v) + (1 --~o)CIS(v) where O = -~- (2 + 6). Evi- 

dently, th(v) lies on the straight line segment with end 
points ENSC(v) and CIS(v) if and only if - -2  < ~ < 4. 

Example 6.12. Consider the 4-person glove game with two 
owners 1,2 of  two right-handed gloves, one owner 3 of  one 
left-handed glove and one owner 4 of  two left-handed 
gloves. The associated characteristic function v is then 
given by 

v(N) = 3, v(124) = v(134) = v(234) = 2, v(123) = 1, 

v ( 1 3 ) = v ( 2 3 ) = l ,  v ( 1 4 ) = v ( 2 4 ) = 2 ,  

v (S) = 0 otherwise. 

This 4-person game is a 2-coalitional game with respect to 
1 

the profits a12 = 0, ot13 = 0t23 = 0~34 = 7 '  a14 = t ~ 2 4  = 1 

and the constant 73=0.  Straightforward calculations 
1 

yield the solutions CIS(v) = ~ (3, 3, 3, 3), ENSC(v) = 

1 (4, 4, 3, 7). We observe that 12 (1, 1, 1, 3) and 4~(v) = 

these three solutions of the 2-coalitional 4-person game v 
are not on the same line. The reason for this is that there 
exist no profits aT, T C N ,  IT[ = 2, satisfying (6.1) as well 
as 0~ --  a 3 =  a 4 -- d. The reader is invited to verify this fact. 
We remark that if owner 1 possesses only one instead of 
two right-handed gloves, then the Shapley value of the 
induced 2-coalitional 4-person glove game is the midpoint 
of the straight line segment with end points the ENSC- 
solution and the CIS-vector. 

Proof of  Theorem 6.9. Let v C G n be a k-coalitional game 
such that (6.1) holds and 2 < k < n -- 2. Define the two n- 
person games w and z by 

w(S) : =  v(S) if ISI < k 

=71st i f k <  Ial < n  

= 0  i f S E F k o r S = N ,  

z(S)  : =  v(S) - as for all S E Fk 

= v ( N ) - -  Z aT f o r S = N  
T E F  k 

= 0 for all S ~ N, S (~ Fk. 

Then the equality v(S) = ~" aruv(S) + w(S)  + z(S) 
T E F  k 

holds for all S C N .  Shortly, v =  ~" a v u z +  w + z 
T E F  k 

where UT is the unanimity n-person game with respect to 
the essential coalition T. 

(i) The game w is zero-normalized as well as symmetric. 
Therefore, we obtain that ~bi (w) = CISi(w) = n- lw(N)  = 0 
for all i E N .  Further, we have that S Ci ( w)=w(N) - -  
w(N--  {i}) = --Tn- l for all i E N a n d  so, NSC(w) = nTn-1. 
It follows that ENSCi (w) = SCi (w) + n-INSC(w) = 0 for 
all i E N. As a result, (~i ( W )  = C I S i  ( w )  = ENSCi (w) = 0 for 
all i CN. 

(ii) Let T@Fk. For  all i C N a n d  all S C N - - { i } ,  we have 

uv(S U {i}) -- ur(S) = l if i E T, T - -  {i} C S 

= 0 otherwise. 

Together with (5.2), this implies that ~bi(ur)=0 for all 
i E N - -  T. Because the members of  T are symmetrical in 
the game ur and the Shapley value is always a pre- 
imputation, it follows that ~bi (ur) = k-1 for all i @ T. Since 
IT[ = k >__2, the game ur is zero-normalized and thus, 
CISi(UT)=n -1 for all iGN.  In order to determine the 
ENSC-solution, we first note that SCi (ur) ----- 1 for all i E T, 
SCi ( u r ) =  0 for all i E N - - T  and NSC(uT)= 1 - -k .  These 
calculations yield 
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ENSCi(uT) = n- l (n  + 1 -- k)  for all i@ T 

= n 1(1 --  k) for all i E N  -- T. 

(iii) Because of 2 < k < n - - 2 ,  we have that z({i}) 
= O = z ( N - - { i } )  for all i E N .  From this we derive that 
E N S C i ( z ) = C I S i ( z ) = n - l z ( N )  for all i E N .  From (5.2) 
applied to the game z, we deduce that for all i E N 

n!fJi(z) = (n --  1)!z(N) 

+ (k - -1)!(n  --  k)! ~ [ v ( T ) - a r ]  
T G Ftk 

- k ! ( n  - k - 1 ) !  I v ( r )  - ~T] 
T@ V% 

where v i k : = { T I T C F k ,  i ~ T } .  Due to a combinatorial  
argument,  we have both 

v ( T ) =  k -1 ~ .  v j =  k-~ng and 
TEF k j@U 

or equivalently, 

k l ( a i - -  ~) + [ k (  

= o [ a  i --  a] 
1)11I 1 6 - - a i + v i - - ~  

k 

or equivalently, 

o It]  ' k [ - 1  +c ] .  

Clearly, the last equality holds because of the definition of 
the real number  ,o. [] 

Theorem 6.9 deals with k-coalitional n-person games 
where 2 < k < n -- 2, but the case k = 1 can also be added 
by presenting a slightly adapted proof  (involving the CIS- 
vector for the unanimity games and the game z). As a 
matter of fact, k =  1 implies vi:v({i}):O for all i E N ,  
~ = 0 ,  ~ = ( n -  1) l(n--2).  So, actually, Theorem 6.9 has 
been proved for the case k =  1 (namely Theorem 6.6). 

E a T = k  1 E c t J : k - l n &  
T@F k jGN 

As a consequence, we obtain that for all i @ N 

n!r  = (n -- 1)!z(N) + (k --  1)!(n -- k)!(v i --  a i) 

-- k! (n  -- k -- 1)!(k-ang --  v i -- k - l n a  + a i) and so, 

4~i(z) = n l z (N)  + k k a - -  g . 

(iv) The three solutions for the game v are determined by 
combining the obtained results of  the parts (i)-(iii) on the 
basis of the linearity property of the three solutions on the 
class of  zero-normalized n-person games. In point of  fact, 
we conclude that for all i E N 

7. Concluding remarks 

Remark  7.1. Notice the resemblance of the CIS-vector to 
the ENSC-solution whenever the principle of  a minimal 
payoff  (i.e., the worth v({i}) of  any single player i) is 
replaced by the principle of a maximal payoff  (i.e., the 
separable contribution SC/(v) of any single player i). In 
point of  fact, the relevant resemblance can be supported 
with the aid of the notion of the dual game. Given an 
n-person game v, its dual game v* @ G n is defined by 
v*(S) : =  v(N)  -- v ( N - -  S)  for all S C N. Here v*(S) repres- 
ents the contribution of coalition S with respect to the 
formation of the grand coalition N in the game v. It is 
easily shown that the CIS-vector of  the game v agrees with 
the ENSC-solution of the dual game v*. That  is, 
CIS(v) = ENSC(v*) for all v C  G n. 

C I S i ( v ) =  ~ n l a r + n  l z ( N ) = k  16 + n  lz(N),  
T@F h 

ENSC/(v) = E n - l a r ( n  + 1 -- k)  
TEFtk 

+ ~ n - l av (1  - - k )  + n - l z ( N )  
TE V~ 

= a i + k-a(1 -- k)a  + n ~z(N), 

c h i ( v ) = k  ' a i + I k ( n - - 1 ) l - ' I  a - - v  + v i - - a i  

+ n - l z ( N ) .  

(v) From now we suppose that ( a - - a i ) - l ( g - - v i )  = c  for 
all i C N and a certain constant c @ R. Let i E N and let the 
real number  P be defined by (6.4). It remains to verify the 
equality 

(/)i(o) = CISi(u) -}- p[ENSC/(v)  -- CISi(v)] 

R e m a r k  7.2. The dimension of the linear space G~ of all 
zero-normalized n-person games is equal to 2 n - n  l. 
The class of  k-coalitional n-person games is a linear space 
within G~ and its dimension equals 

2n -- 2 

2 k 

fork----- 1 o r k  = n  -- 1, 

f o r 2 < k < n - - 2 .  
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