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Abstract. In this note we propose a simple solution to the 
regulation problem of rigid robots based on the availability of 
only joint position measurements. The controller consists of two 
parts: (1) a gravitation compensation, (2) a linear dynamic first- 
order compensator. The gravitation compensation part can be 
chosen to be a function of either the actual joint position or the 
desired joint position. Both possibilities are proved to yield 
global asymptotic stability. Performance issues of the controller 
are illustrated in a simulation study of a two degrees-of-freedom 
robot manipulator. 

Keywords: Robot control; dynamic compensator; Lyapunov 
theory. 

1. Introduction 

In the last decade, several strategies that solve 
the regulation (also known as position or point- 
to-point control) and tracking control problem 
have been presented in the literature, see for in- 
stance [14]. One main ingredient in the majority of 
these controllers is a proportional-derivative (PD) 
feedback, which shows that these controllers rely 
on the assumption of ideal full state information. 
Unfortunately, in practice this assumption can only 
partially be fulfilled for two reasons. First, although 
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robot systems generally are equipped with high- 
precision sensors for position measurements, velo- 
city measurements, for instance from tacho meters, 
are often contaminated with a considerable amount 
of noise. Second, in robotic applications today, 
velocity sensors are frequently omitted due to the 
considerable savings in cost, volume and weight 
that can be obtained in this way [8]. 

One way to remedy the velocity feedback prob- 
lem is to determine a velocity signal by first-order 
numerical differentiation of the accurate position 
signal. The simplicity of this technique makes it 
particularly useful from an implementation point of 
view. However, especially for low- and high-range 
velocities, such a simple approximation of the velo- 
city signal may be inadequate [1,4]. Moreover, the 
quantization effect that inherently goes along with 
this approach may produce undesired oscillations 
in the robot joint response, or even cause it to 
become unstable [8]. In addition, up to now there 
is no theoretical justification for this ad hoc solu- 
tion, that is closed-loop stability properties have 
not been proved. 

Motivated by the foregoing, recently the control 
problem of robots using only position measure- 
ments have attained an increasing interest. 
A straightforward approach to this problem goes 
along a two-step design procedure: (1) construct an 
observer, driven by the available inputs and out- 
puts, which reconstructs the lacking velocity signal, 
(2) design a state-feedback controller and replace 
the actual velocity by the one reconstructed from 
the observer. Indeed, based on this procedure 
a number of conceptually different methods for 
both regulation and tracking control of robots 
equipped with only position sensors have been de- 
veloped, see for instance [2-5,10, 11]. Unfortun- 
ately, as opposed to the state-feedback solutions to 
robot control, the stability properties of these con- 
troller-observer combinations are only of local 
nature. This shows one important drawback of 
these controller-observer combinations. 
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In this note we adopt a different approach that 
allows us to come up with a globally asymptotically 
stable solution to the regulation problem of robots 
using only position feedback. The starting point for 
our result is the beautifully simple position control- 
ler of Takegaki and Arimoto [15]. This controller 
is based on the intuitive idea of reshaping the 
potential energy of the robot system such that it 
achieves a global energy minimum at the desired 
equilibrium position, and add damping via velocity 
feedback for global asymptotic stabilization pur- 
poses. Our results also employ the energy reshap- 
ing idea, but we inject damping in the control loop 
via a first-order linear compensator, which requires 
only position measurements. Despite this modifica- 
tion, global asymptotic stability is preserved, as we 
will show. A simulation study of a two-degrees-of- 
freedom robot manipulator supports the theoret- 
ical results. 

The organization of this note is as follows. In 
Section 2 our main results are presented. Section 3 
discusses the outcomes of a simulation study. We 
end with some concluding remarks. 

2. Global regulation using only position feedback 

2.1. Main result 

Consider the general equations describing the 
dynamics of an n-degrees-of-freedom rigid robot 
manipulator 

M(q)gl + C(q,q)4 + G(q) = r, (2.1) 

where q is the n x 1 vector of generalized coordin- 
ates and r is the n x 1 vector of external torques, 
M(q)  represents the n x n positive-definite inertia 
matrix, C(q,4)4  is the n x 1 vector of Coriolis and 
centrifugal torques, and G(q) is the n x 1 vector of 
gravitational torques. 

Before presenting our main result, let us recall 
the seminal paper by Takegaki and Arimoto [15] 
concerning the position control problem of robots. 
These authors propose the controller (amongst 
others) 

r = G(q) - Kdq - -  K p e ,  (2.2) 

where Kd = K T > 0, Kp = K T > 0 and e =-- q - qa 
represents the position error, and qa is the constant 
desired position. This controller consists of a gravi- 
tation compensation and a linear static state feed- 

back, which underscores its simplicity. To prove 
global asymptotic stability of the closed-loop 
dynamics ((2.1) and (2.2)), i.e. 

M(q)f~ + C(q, 4)4 + Kdq + Kpe = 0, (2.3) 

in [1 5] the modified energy function 

Vl(4, e) = ½4TM(q)4 + ½erKpe (2.4) 

was used as Lyapunov function. The time-derivat- 
ive of Vl(4,e) along the closed-loop dynamics (2.3) 
equals 

Pl(4, e) = --4TK,tq- (2.5) 

Although this time-derivative is only negative- 
semi-definite, global asymptotic stability can be 
established by invoking LaSalle's invariance 
theorem [6]. Characteristic of the controller (2.2) is 
that the gravitation compensation part together 
with the proportional feedback reshape the poten- 
tial energy of the robot system, and that the velo- 
city term injects damping in the loop (cf. [13]). 

One practical disadvantage of the controller (2.2) 
is the need for velocity measurements. To overcome 
this problem, we propose to modify the controller 
(2.2) as 

r = G(q) - Ka2 -- Koe, (2.6a) 

.,~ = - L x  + Kde, (2.6b) 

where L = L v > 0. Then we can prove the follow- 
ing result. 

Theorem 2.1. The position controller (2.6) globally 
asymptotically stabilizes the robot system (2.1) at the 
equilibrium point (4, e, x) = O. 

Proof. The equations for closed-loop error 
dynamics are 

M(q)~/ + C(q, 4)4 + KaYC + Kpe = 0, (2.7a) 

.~ = - L x  + Kae. (2.7b) 

Consider the Lyapunov function candidate 

V2(4,e,x ) = ½4VM(q)4 + ½e'rgpe 

+ ½(Kae -- Lx)T(Kd e -- Lx). (2.8) 

The time derivative of F2(4,e,x) along the error 
dynamics (2.7) equals 

172(4,e,x) = - ( K a e  - Lx)TL(Kde -- Lx), (2.9) 

which, by virtue of (2.7b), can be written as 

I79 (4, e, x) = - ~TL~. (2.10) 



H. Berohuis, H. Nijmeijer / Reoulation of  robots 291 

Equation (2.9) shows that l?2(4,e,x) is only nega- 
tive-semi-definite. As before, LaSalle's invariance 
theorem can be applied to complete the proof. To 
this end, we have to verify that the largest invariant 
set in 

{(4,e,x)l l)2(4,e,x) = 0} = {(4,e,x)12 =0}  (2.11) 

is the equilibrium state (4, e, x) = 0. Note that 

2 = 0  ~ x = c o n s t a n t  

and, according to (2.7b), this implies 

e = constant. 

In addition, 

e = c o n s t a n t  ~ 4 = 0 , / / = 0 .  

Then, from (2.7a), we obtain e = 0 and, using (2.7b), 
x = 0, which implies the thesis. [] 

The gravitation compensating part in the con- 
troller is a function of the actual position q. From 
the literature [15, 16] it is well known that under 
a sufficiently strong proportional gain Kp, global 
asymptotic stabilization of the position controller 
(2.2) is preserved if G(q) is replaced by G(qd). It is 
interesting to notice that the same modification can 
be implemented in our controller (2.6), as shown 
below. 

Theorem 2.2. Consider the controller 

z = G(qd) -- Kd2 -- Kpe, (2.12a) 

= - L x  + Kde, (2.12b) 

in closed loop with (2.1). I f  

• J,m(Kp) > GM, (2.13) 

where 2m(Kp) represents the smallest eigenvalue of  
Kp, and 

~3G( q) 
< GM (2.14) 

with GM > 0 a constant [16]. Then the equilibrium 
point (4, e, x) - 0 is globally asymptotically stable. 

Proof. Consider the function 

n(q ,  qa) = P(q) - -  qTG(qd) + ½qTKpq - -  q T K p q d ,  

(2.15) 

where P(q) represents the potential energy of the 
robot, which is related to the gravitational torque 
as 

gP(q) 
G(q) - (2.16) 

gq 

In [16] it is shown that H(q, qd) has a global 
minimum at e = q - qd = 0 under condition (2.13). 
Introduce the following Lyapunov function 
candidate 

V3(4, e,x) = ½4T M(q)4  + H(q, qd) - H(qd,qd) 

+ ½(Kde -- Lx)T(Kde - Lx), (2.17) 

which is positive-definite with respect to (4,e,x). 
The time derivative of (2.17) along the closed-loop 
dynamics ((2.1) and (2.12)) equals 

V3(4,e,x) = --2TL2. (2.18) 

By invoking LaSalle's invariance theorem the proof 
can be completed (see also [16]). [] 

2.2. Discussion 

(1) A comparison of the controllers (2.2) and (2.6) 
shows that we actually replace the velocity feed- 
back part by a first-order linear compensator. The 
striking point is that we do not employ the natural 
state variable x of this compensator in the control- 
ler part (2.6a), but its time derivative 2. To motivate 
this choice, note from (2.6b) that for Ka = L we 
have 

= - L ( 2  - 4). (2.19) 

Owing to the asymptotic convergence of 2 to zero, 
(2.19) implies that 2 actually asymptotically recon- 
structs the velocity signal q. In terms of classical 
control theory this linear compensator represents 
a tame D-action. 

(2) By rewriting the controller (2.6) as 

z = G(q) - y, (2.20a) 

where 

2 = - L x  + Kde, (2.20b) 

y = Kd2 + Kpe = - K d L x  + (K~ + Kp)e. (2.20c) 

one can see that the controller consists of a gravi- 
tation compensation part and a first-order linear 
dynamic output feedback part. 
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(3) For practical purposes it is useful to know 
that the controller (2.6) can be generalized as 

r = G(q) - Kd-;: -- Kpe, 12.21a) 

.~ = - L l x  + Lze, (2.21b) 

where L1 = L T > 0 and L2 = L~ > 0. In compari- 
son to (2.6), this controller does not restrict the 
choice of L2 to Kd. Under the assumption that 
L1,L2 and Kd are diagonal, a natural choice in 
practice, global asymptotic stability of (2.1) and 
(2.21) can be shown with the Lyapunov function 

V4(~, e, x) = ½[ITM(q)~I + ½eXKpe 

+ ½(Lee - L l x ) T K ( L 2 e  - L l x ) ,  

(2.22) 

where K = L ~ 1 K d  > 0 is diagonal. The proof is 
analogous to the proof of Theorem 2.1. It will be 
clear that the same generalization holds for the 
desired gravitation compensating control law 
(2.12). 

Fig. 1. Two DOF robot system [9] 

ditions for q,~ and x are assumed to be equal to 
zero. The controller gain matrices satisfy 

l E 0J I 5 0  0 Kd = 1 0 0  
Kp = 100 ' 60 ' 

3. Simulation results 
[80 0] 

L =  100 ' 

The performance of the controller (2.6) was 
studied by simulation. To this end, a two-degrees- 
of-freedom robot manipulator moving in the 
vertical plane was considered, see Figure 1 [9]. 
The dynamics of this system satisfy (2.1), where 
M(q) ,  C(q,  CI), G(q) are given in the Appendix. 

In these simulations, performed with 
SIMULAB TM, the robot system is required to move 
to the desired set point qd r = [1 1]. The initial con- 

The results are depicted in Figure 2. From this 
figure it can be concluded that the robot system 
moves reasonably fast initially towards its desired 
endpoint, but the final positioning at this endpoint 
requires more time. This is apparently caused by 
the presence of the dynamic compensator, which 
represents a kind of integral action, for which it is 
well known that it generally slows down the stabil- 
ization process. 

qdl,ql 
(tad) 

qd2,q2 
(tad) 

Y 
1.0 . . . . . . . . . . .  

0.5 

0.0 

0.0 0.1 

1.0 . . . . . . . . . . .  

0.5 

0.0 

0.0 0.1 

0'.2 0'.3 0'.4 0.5 time (s) 

02 03 0'4 05 time (s) 

Fig. 2. Desired and actual positions 
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4. Conclusions 

A computationally efficient position controller 
for robots is presented that requires only joint 
position measurements. The controller consists of 
a gravitation compensation and a linear dynamic 
first-order compensator. It was shown that the 
gravitation compensation part can be implemented 
in two ways, either by exact gravitation compensa- 
tion or by desired gravitation compensation. For 
both solutions global asymptotic stability is estab- 
lished by invoking LaSalle's invariance theorem. In 
a simulation study of a two-degrees-of-freedom 
robot system, the performance of the presented 
controller was illustrated. 

We would like to stress that the presented con- 
trollers are especially interesting for industrial 
purposes. As is well known, an important design 
constraint in the development of robotic systems is 
their economic feasibility. The stabilizing position 
controllers presented in this note replace the need 
for expensive velocity acquisition hardware by 
a linear first-order compensator, which can easily 
be realized in software. This underscores the attrac- 
tivity of the controllers. 
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Appendix 

The robot system is characterized by [9] 

F8.77 + 1.02cos(q2) 0.76 + 0.51cos(q2) 7 
M(q) = [_0.76 + 0.51 cos(qz) 0.62 .J' 

(A.1) 

F--0.51 sin(q2)02 -0.51 sin(q2)(01 + 02 ) ]  
C(q,4)= [- 0.51 sin(q2)~ 0 

(A.2) 

I7.6 sin(q1) + 0.63 sin(q1 + q2)] 
G(q) = g 0.63 sin(q~ + q2) ' 

where g is the acceleration of gravity. 

(A.3) 
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