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Abstract. All polynomial solutions of the WDVV equations for the casen = 4 are determined.
We find all five solutions predicted by Dubrovin, namely those corresponding to Frobenius
structures on orbit spaces of finite Coxeter groups. Moreover we find two additional series of
polynomial solutions of which one series is of semi-simple type (massive). This result supports
Dubrovin’s conjecture if modified appropriately.

1. Introduction

Recently in the physics literature on two-dimensional topological field theory [1, 3] a
remarkably and amazingly rich system of partial differential equations appeared. Roughly
speaking, this system describes the conditions for a quasi-homogeneous functionF = F(t)
of the variablet = (t1, . . . , tn) such that the third-order derivatives form the structure
constants of an associative algebra. This system of equations is known as the Witten–
Dijkgraaf–H Verlinde–E Verlinde (WDVV) system.

In the paper [2] and the review article [3], Dubrovin describes, given any finite Coxeter
group, how to determine a polynomial solution of the WDVV system. Furthermore, he
shows that the algebras associated to these polynomial solutions satisfy a certain semi-
simplicity assumption. More generally Dubrovin conjectures that any polynomial solution
of the WDVV system with positive degrees, such that the associated algebra is semi-simple
(massive), can be obtained in such a way.

In this letter we discuss the casen = 4. We have determined all polynomial solutions
with positive degrees, see the appendix. We recover the five solutions associated to the Cox-
eter groupsA4, B4, D4, F4 andH4. However, we also find two series of additional polyno-
mial solutions. Only one of these series yields semi-simple algebras. This series corresponds
to the direct product of two (irreducible) Coxeter groups. This result supports Dubrovin’s
conjecture if modified slightly, such that appropriate reducible Coxeter groups are included.

2. The WDVV equations

2.1. Definition

Our aim is to find functionsF(t) = F(t1, . . . , tn) such that the third-order derivatives,

cαβγ (t) = ∂3F(t)

∂tα∂tβ∂γ

obey the following conditions, cf [3].
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1. Normalization

c1αβ =
{

0 if α + β 6= n+ 1

1 if α + β = n+ 1.

We introduce the metricηαβ = ηαβ = c1αβ .
2. Associativity

The functions

c
γ

αβ(t) =
∑
ε

ηγ εcεαβ

for anyt , must define ann-dimensional associative algebra with basise1, . . . , en and product
given by

eα · eβ =
∑
γ

c
γ

αβeγ .

3. Homogeneity
F(t) must be quasihomogeneous in the variablest1, . . . , tn, i.e. there must exist constants
d1, d2, . . . , dn anddF such that∑

α

dαt
α ∂F

∂tα
= dFF. (2.1)

This system of conditions, we call, following [3], the WDVV equations [1, 4]. We assumed
that the metricηαβ is in standard form. We will restrict our attention to the case that
d1, . . . , dn are all strictly positive. In this case we will assume (unless stated differently)
that d1 = 1, and we will write, following physical conventions,dF = 3− d. For physical
reasons we will also assume thatd > 0.

The associativity condition leads to an overdetermined system of partial differential
equations (PDEs),∑

λ

∂3F(t)

∂tα∂tβ∂λ
· ∂3F(t)

∂tγ ∂tδ∂n+1−λ =
∑
λ

∂3F(t)

∂tγ ∂tβ∂λ
· ∂3F(t)

∂tα∂tδ∂n+1−λ (2.2)

for any α, β, γ and δ. From these equations, the dependency ofF on t1 can be solved
completely. Namely we get

F(t) = 1

2
t1

n∑
α=2

tαtn−α+1+ f (t2, . . . , tn). (2.3)

Now for F to be homogeneous we need (assumingd1 = 1 anddF = 3− d) that

dn = 1− d and dα + dn+1−α = 2− d. (2.4)

Since we requiredn > 0, we need thatd < 1. Hence 0< d < 1.

3. Polynomial solutions for n = 4

3.1. The results

We will denotet2, t3, t4 by x, y, z. The system (2.2), taking into account (2.3), is now
equivalent to

fzzz = f 2
xyz − fxxyfyzz − fxyyfxzz + fxxzfyyz (3.1)

fxzz = −fxyyfxxz + fxxxfyyz (3.2)

fyzz = −fxxyfyyz + fyyyfxxz (3.3)

fxyz = − 1
2fxyyfxxy + 1

2fxxxfyyy. (3.4)
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We have determined all polynomial solutions corresponding to the cased1 = 1, d2 > d3 > 0,
d4 > 0 andd > 0. This was done using the computer algebra package REDUCE [5]. The
technique that Dubrovin uses forn = 3 does not work forn = 4. However, one can deduce
from the conditions ond1, d2, d3, d4 and d that f is at most cubic inx. This splits the
system (3.1)–(3.4) into a system of 18 PDEs, now in two variablesy and z. Carefully
analysing this system leads to the seven solutions presented in the appendix.

3.2. Discussion of the results

Studying the seven classes of solutions, we find that the first five correspond to Coxeter
groups. For (A.6) it turn out that for genericc, t andq there are no nilpotent elements. For
(A.7) the situation is completely different. In this case we have thate2

2 = c21(2e2− c21e1),
independent oft and q. Now taking a = c21e1 − e2, we have thata2 = 0. Hence we
disregard (A.7).

The solution (A.6) can be interpreted in the following way. In the casen = 2 there is
one series of polynomial solutions

F(t1, t2) = 1
2(t

1)2t2+ α(t2)k.
Now we can take the sumF(t1, t2)+F(t3, t4) (with two differentα). This will be a solution
of the associativity condition; this construction corresponds to taking the direct sum of the
algebras, cf [3]. The unit will now correspond tot1+ t3. Sinced2 andd4 are the same,F
will again be quasi-homogeneous.

Concluding, we can say that in the casen = 4 all semi-simple solutions correspond to
(irreducible) Coxeter groups, or to direct products of compatible Coxeter groups.

In general, one sees that to direct products of Coxeter groups with the same Coxeter
numbers, one can associate solutions of the WDVV system. Hence Dubrovin’s conjecture
should be modified to include these cases.

Appendix

The weights are rescaled to obtaind4 = 2.
d = 3, d1 = 5, d2 = 4, d3 = 3, d4 = 2; corresponds toA4:

f = c30x
3+ 108c2

30c4x
2z2+ 36c30c4xy

2z + c4y
4+ 864c2

30c
2
4y

2z3+ 93312
5 c4

30c
3
4z

6 (A.1)

d = 6, d1 = 8, d2 = 6, d3 = 4, d4 = 2; corresponds toB4:

f = c30x
3+ 9c30c13x

2yz + 54c2
30c

2
13x

2z3+ c13xy
3+ 27c30c

2
13xy

2z2+ 9
4c

2
13y

4z

+27c30c
3
13y

3z3+ 1458
5 c2

30c
4
13y

2z5+ 13122
7 c4

30c
6
13z

9 (A.2)

d = 4, d1 = 6, d2 = 4, d3 = 4, d4 = 2: corresponds toD4:

f = c30x
3z + c11xyz

3+ 1
6
c11
c30
y3z + 3

70c
2
11z

7 (A.3)

d = 10, d1 = 12, d2 = 8, d3 = 6, d4 = 2; corresponds toF4:

f = c30x
3z + 36

5 c
2
30c4x

2z5+ 12c30c4xy
2z3+ c4y

4z + 144
7 c

2
30c

2
4y

2z7+ 1728
143 c

4
30c

3
4z

13 (A.4)

d = 28, d1 = 30, d2 = 20, d3 = 12, d4 = 2; corresponds toH4:

f = c30x
3z + 9

5c30c13x
2yz5+ 72

275c
2
30c

2
13x

2z11+ c13xy
3z3+ 3

5c30c
2
13xy

2z9+ 1
20
c13
c30
y5z

+ 3
10c

2
13y

4z7+ 3
25c30c

3
13y

3z13+ 72
2375c

2
30c

4
13y

2z19+ 3456
14046875c

4
30c

6
13z

31 (A.5)
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d = q − 3, d1 = q − 1, d2 = q − 1, d3 = 2, d4 = 2; q > 4:

f = (c21y + c20z)x
2+ c1(y + (−c21+D)z)q + c2(y + (−c21−D)z)q

with D =
√
c2

21+ 2c20 (A.6)

d = 2q − 4, d1 = 2q − 2, d2 = 2q − 2, d3 = 2, d4 = 2; q > 3:

f = c21(y − 1
2c21z)x

2+ c11(y − c21z)
qx + (c1y + c2z)(y − c21z)

2q−2 (A.7)
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