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Abstract.  All polynomial solutions of the WDVV equations for the case= 4 are determined.

We find all five solutions predicted by Dubrovin, namely those corresponding to Frobenius
structures on orbit spaces of finite Coxeter groups. Moreover we find two additional series of
polynomial solutions of which one series is of semi-simple type (massive). This result supports
Dubrovin’s conjecture if modified appropriately.

1. Introduction

Recently in the physics literature on two-dimensional topological field theory [1,3] a
remarkably and amazingly rich system of partial differential equations appeared. Roughly
speaking, this system describes the conditions for a quasi-homogeneous funetidm(r)

of the variabler = (71, ...,t,) such that the third-order derivatives form the structure
constants of an associative algebra. This system of equations is known as the Witten—
Dijkgraaf-H Verlinde—E Verlinde (WDVV) system.

In the paper [2] and the review article [3], Dubrovin describes, given any finite Coxeter
group, how to determine a polynomial solution of the WDVV system. Furthermore, he
shows that the algebras associated to these polynomial solutions satisfy a certain semi-
simplicity assumption. More generally Dubrovin conjectures that any polynomial solution
of the WDVV system with positive degrees, such that the associated algebra is semi-simple
(massive), can be obtained in such a way.

In this letter we discuss the case= 4. We have determined all polynomial solutions
with positive degrees, see the appendix. We recover the five solutions associated to the Cox-
eter groupsA4, B4, D4, F4 and Hy. However, we also find two series of additional polyno-
mial solutions. Only one of these series yields semi-simple algebras. This series corresponds
to the direct product of two (irreducible) Coxeter groups. This result supports Dubrovin’s
conjecture if modified slightly, such that appropriate reducible Coxeter groups are included.

2. The WDVV equations

2.1. Definition
Our aim is to find functions () = F(t%, ..., ") such that the third-order derivatives,
33F (1)
apy (1) = ———
Capy (1) = 5 aiBor

obey the following conditions, cf [3].
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1. Normalization
0 fa+pB#n+1
Clap = .
1 fa+pB=n+1

We introduce the metrig®” = ny,s = c14p-
2. Associativity
The functions

s =) 0" Ceap
€

for anyr, must define an-dimensional associative algebra with basis. . ., ¢, and product

given by
ey - ep = Zc;’ﬁey.
Y
3. Homogeneity
F(t) must be quasihomogeneous in the variables. ., ¢, i.e. there must exist constants
di, do, ...,d, anddr such that

IF
> dut* - =drF. (2.1)
~ ar®

This system of conditions, we call, following [3], the WDVV equations [1, 4]. We assumed
that the metricn,g is in standard form. We will restrict our attention to the case that
di, ..., d, are allstrictly positive In this case we will assume (unless stated differently)
thatd; = 1, and we will write, following physical conventiondr = 3 — d. For physical
reasons we will also assume that- 0.

The associativity condition leads to an overdetermined system of partial differential
equations (PDEs),

Z 33F (1) 33 F (1) _Z 93F (1) 93F (1)

— 1% 9rP o 1Y rdgntich T L 9rv Pt 9reargrich

2.2)

for any «, 8,y and$. From these equations, the dependencyFobn ¢! can be solved
completely. Namely we get

l n
F(t)= =t opnott 2. 2.3
=3 Z:; + f( ) (2.3)
Now for F' to be homogeneous we need (assuming- 1 anddr = 3 — d) that
d,=1-d and dy +dyr1-a =2—4d. (2.4)

Since we requirel, > 0, we need tha# < 1. Hence O< d < 1.

3. Polynomial solutions forn=4

3.1. The results

We will denoter?, 3, t* by x, y,z. The system (2.2), taking into account (2.3), is now
equivalent to

Sozz= fxzyz - fxxyfyzz - fxyyfxzz + fxxzfyyz (3-1)
fxzz = _fxyyfxxz + fxxx f_vyz (32)
fyzz = _fxxyfyyz + fyyyfxxz (3-3)

fxyz = _:’zlfxyyfxxy + %fxxxfy_vy' (34)
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We have determined all polynomial solutions corresponding to thedzase€l, d, > ds > 0,

ds > 0 andd > 0. This was done using the computer algebra package REDUCE [5]. The
technique that Dubrovin uses far= 3 does not work forn = 4. However, one can deduce
from the conditions only, do, d3, d4 andd that f is at most cubic inc. This splits the
system (3.1)—(3.4) into a system of 18 PDEs, now in two variablesd z. Carefully
analysing this system leads to the seven solutions presented in the appendix.

3.2. Discussion of the results

Studying the seven classes of solutions, we find that the first five correspond to Coxeter
groups. For (A.6) it turn out that for generict andg there are no nilpotent elements. For
(A.7) the situation is completely different. In this case we have &E\ai c21(2e3 — c21€1),
independent of andg. Now takinga = cpe1 — e, we have that? = 0. Hence we
disregard (A.7).

The solution (A.6) can be interpreted in the following way. In the case 2 there is
one series of polynomial solutions

F(t' 13 = 2% + a(td)F,

Now we can take the sum(r1, 1?)+ F (3, t*) (with two differenta). This will be a solution
of the associativity condition; this construction corresponds to taking the direct sum of the
algebras, cf [3]. The unit will now correspond tb+ 3. Sinced, andd, are the sameF
will again be quasi-homogeneous.

Concluding, we can say that in the case- 4 all semi-simple solutions correspond to
(irreducible) Coxeter groups, or to direct products of compatible Coxeter groups.

In general, one sees that to direct products of Coxeter groups with the same Coxeter

numbers, one can associate solutions of the WDVV system. Hence Dubrovin’s conjecture
should be modified to include these cases.

Appendix

The weights are rescaled to obtalp= 2.

d=3,d,=5,d, =4,ds =3, dys = 2; corresponds tal,:

f = caox® + 108c5,cax?z? + 36cz0caxy?z + cay? + 864c3,c5y%2> + %%gocif (A1)
d=6,d,=8,d, =6,d3 =4, ds = 2; corresponds t®;:

f = caox® + 9csoc1axyz + 54c§0c%3x2z3 + 130y + 2763oc%3xy2z2 + %cfgy‘lz
3.3.3, 14582 4 25, 131224 6 9
+2Tcg0c13y’2° + 1E0C5c1ay 72 + gty (A.2)

d=4,dy=6,d, =4,d3 =4, dy, =2: corresponds tdy:
82y’ + fochie’ (A.3)

d =10,d1 =12,d, = 8, d3 = 6, dy = 2; corresponds td:

f = caox®z 4 crxyz® +

f = caon’z + %6c§OC4x215 + 12c30caxy%2 + cay*z + #c%ociyzf + %cgocf{zl?’ (A.4)

d =28,d1 =30,d, = 20,d3 = 12,d, = 2; corresponds td,:
f= 6‘3ox31 + gC30C13X2yZS + %cgocfe,xzzll + 613xy3Z3 + §C3oc§3xy2z9 + 2*10%3)752

32 47, 3. 3.313, 72 2 4 219 3456 4 6 31
+T10€13Y 2+ 25C30C13Y 2" + 3375€30€13Y ¢ T+ 12048730138 (A.5)
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d=q—-3,di=q—1,dy=q—1,d3=2,dy=2;q > &
f = (ca1y + c200)x* + c1(y + (—c21+ D)2)? + ca(y + (—ca1 — D)z)?

with D = ,/cgl + 2¢5 (A.6)
d=2q—-4,d1=2q—2,dp =29 —2,d3=2,dy=2,q > 3:
f=ca(y — 3ca2)x® + cua(y — ca12)x + (cry + c22)(y — c212)* 2 (A7)
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