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Abstract In this paper a recently developed method is used to calculate the main effects 
of excluded volume on the distribution of ions around a charged central sphere in thermal 
equilibrium. The authom find significant corrections to the results of the conventional Gouy- 
Chapman theory when the electrostatic energy due to the charge ofthe sphere is large compared 
with the thermal e n q y .  The concemation shows a distinct saturation effect, while at the 
surface of the sphere the known saturation of the potential is lifted. Furthermore, the effect 
of excluded volume is found to be strongly dominated by the excluded volume of ions with a 
charge opposite to the charge of the sphere. 

I 

1. Introduction 

The distribution of counterions around a central charge in a~solvent is a well-known topic 
in chemisay and physics. The Gouy-Chapman model of a diffuse layer of ions shielding 
the central charge, and its linearization according to Debye-Hiickel, are among the more 
familiar results, see, for instance, [l] ch 4. 

In real physical systems the counterions are not point particles, hence it is necessary 
to study the influence of steric hindrance on the counterion distribution. Physically one 
expects  that because of the steric hindrance the counterion concentration cannot exceed a 
saturation value of where u3 is the effectively blocked (excluded) volume of a single 
.ion. One expects steric hindrance to occur in regions of high concentration. i.e. close to the 
central charge. 

In a recent paper [Z] the   authors studied the effect of the excluded volume of the 
counterions on the charge distribution around the sphere, using a new method, which had 
recently been developed by one of the authors [3] and which provides a particularly simple 
way of dealing with the main effect of the excluded volume of more or less spherical 
particles. They found a nice effect of saturation in the region of high concentration near the 
central sphere. However, only the case in which there is only one species of counterions 
was considered, while in the usual Gouyxhapman model the sphere is immersed in a 
neutral fluid containing two types of counterion with opposite charge. Experimentally this 
formulation of the problem is also important, as most ionic solutions are the result of 
dissolving a salt into positive and negative ions. To appreciate fully the corrections to the 
Gouy-Chapman results obtained with this new method, the authors now present a calculation 
taking into account the mobility of the second type of counterions. The method, however, 
requires that these additional counterions have the same effective excluded volume as the 
counterions of the first type. 
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We will study the charge distribution around a central sphere of radius R and total charge 
Q. The solvent, with dielectric constant E ,  contains two types of counterion with spatial 
concentration c+(T) and c-(T) .  Each counterion carries a charge of q or -q (where we 
assume that qQ < 0) and has an effective excluded volume a3. At infinity the concentration 
of ions is c+(w) and c-(w), and to obtain neutrality we demand c + ( w )  = c-(w) E CO. 

We want to calculate the counterion concentrations ti(?-) in thermal equilibrium. 
Because of the spherical symmetry the concentrations c+ depend only on the radial distance 
r from the centre of the sphere. 

2. Basic equations 

In the method described in [31 the excluded volume is taken into account by adding to the 
diffusive current density, which is usually given by jD,+(T)  = -DoVci(T),  an extra term 
describing the steric hindrance 

where Do is the diffusion coefficient, given by kBT/fT with f7 the translational coefficient 
of friction, kg Boltzmann’s constant and T the temperature. Equation (1) is an example of 
gradient diffusion and can be obtained as follows. 

If inertial effects are neglected, the particles move in the direction of a local average 
force Fa,, which is assumed to be slowly varying. The particle cument density becomes 
j = c (T)w(T) ,  with C ( T )  the local concentration and W ( T )  = FaV(7)/f~ the local average 
velocity. We now assume that this current density can be written as the sum of two terms: 

(2) 

where j, is due to diffusion with steric hindrance and the second term is the result of 
an external force with potential V,,,.~ In equilibrium, the total density Current must be 
identically zero, yielding a relation between jD and the external potential. Furthermore, 
in equilibrium a relation exists between C(T)  and the external potential, which can be 
used to eliminate the external potential. This relation, however, should contain the effects 
of excluded volume, because using the Boltzmann equilibrium distribution only yields the 
normal diffusion equation. An approximate equilibrium distribution can be found by treating 
the rigid particles as if they were placed on a lattice, and noticing that the excluded volume 
phenomenon is equivalent to a geometric exclusion principle. The equilibrium distribution 
is then found to be 

j = jD +.&XI = j D  - C ( T ) V V e x f / f T  

c(T) = a-3/(1 + &v-t(+t) (3) 

which is a Fermi-Dirac-like distribution (( is a constant Lagrange multiplier). Equation (3) 
can be readily extended to the case  in which two types of counterion are present, from 
which equation (1) follows. The result no longer depends on the external potential and (. 
Note that a class of diffusion equations can be deriv6d from knowledge of the equilibrium 
distributions for various systems, of which the lattice system is  only one example: ’ 

We can now write down the basiGformulae. The local particle current density is given 
by 

Doa3ci C i F i  
V ( C +  + c-) + -. &(TI = -DoVC+ - 1 - a3(c+ + c-) fT 

(4) 
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8'' is the force on a single counterion of the kind + or -, given by Fi(r) = f q E ( r )  
with E(r) the local (average) electrostatic field. In thermal equilibrium the current of 
equation (4) should vanish identically; using spherical symmetry and E = -Vp (p is the 
electrostatic potential), we find 

These are two coupled equations relating p(r)  to c+(r) and c-(r) .  To obtain a closed set 
of equations we need a third equation. We invoke the Maxwell relation d ivEE = 4 n p  (we 
use Gaussian units in which EO = I.; see, for instance, [4]), which reads, in terms of the 
potential, 

Ap = - 4 n p / ~  (6) 

with the charge density p ( r )  = qc+(r )  - qc-(r) outside the sphere. Thus we have found 
a third relation between p and c i ;  in spherical coordinates 

Before continuing we simplify the appearance of these formulae by introducing the 
dimensionless concentrations f = a3c and fo = a3cO. which are effective volume fractions, 
and a dimensionless coordinate x = (xo/R)r with 

We have written xo in this particular form to show that the only 
is the result of two factors: a geometrical factor R j a  and a 
measures the maximum energy of the electrostatic interaction of two ions outside the central 
sphere, compared with the thermal energy. 

In terms of f and x equations (5) and (7) are (for x 3 X O )  

and 

One now wants to combine these three equations. To achieve this we introduce two functions 

fo 
1 - 2fo 

-In -. f i  
1 - f+ - f- 

gi = In 

The constant on the right-hand side has been added for later convenience. These relations 
can be inverted to 
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Then the equations (10) can be rewritten as 
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with the solutions 

q’p 
b T 

g+ + A+ =+g- + A -  (14) _ = _  

where the A* are integration constants. Because of the neutrality of the fluid, at infinity ‘p 

is supposed to be zero at infinity. Then, using the boundary condition for f ,  we find that 
the g* should also be zero at infinity. Therefore the constants A+ must be zero and 

g+(x) = -g-(X) = -q(o/kBT. (15) 

So gi are dimensionless potentials. We~now call g = g+ and solve in terms of this function. 
This gives us our fundamental equation with only one unknown function 

From the solution g(x) of this equation, q ( x )  and f * ( x )  can be derived using equations 
(12) and (15). 

Besides the boundary condition for g at infinity we need to have a second boundary 
condition to incorporate the charge of the central sphere and to find a unique solution. 
Therefore we integrate equation (6) over the volume VR of the sphere with radius R and 
use Gauss’ theorem to obtain 

which gives us the desired boundary condition 

or, in terms of g, 

where we have introduced the dimensionless parameter p = -qQ/kBT&R, which is always 
greater than zero and measures the competition between the thermal energy and the potential 
energy of the counterions at the surface of the sphere. Recalling equation (8) one sees that the 
solution of equation (16) depends on the various parameters in the system only through the 
three dimensionless parameters Rja,  (4Rq2/&U)/k~T and q Q / k s T e R ;  more specifically 
through their combination p/xo. 
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3. The Debye-Hiickel limit 

In the Debye-Huckel theory one linearizes the nonlinear differential equation for q ( r )  
(equation (16)) in the region where q q / k B T  << 1, which may be true everywhere outside 
the central sphere, but usually only holds in the asymptotic region r + CO. We discuss this 
linearization briefly. 

Note that the quantity which should be small is our function g. After linearization of 
equation (16) we are left with 

This equation can be solved exactly to give the asymptotic solution for g (the - sign denotes 
proportionality) 

e-+m e-rr 
g(x) - - , or g ( r )  - 7 

X 

with the Debye-Huckel inverse screening length K 

This is precisely the same result as one would obtain neglecting excluded volume effects. 
The a3-dependence has disappeared by inserting fo. = u3co into equation (22). 

If the linearization is valid throughout the whole space, solution (21) should satisfy the 
boundary conditioLat x g  as well, and one finds the approximate solution 

4. Properties of the solution and numerical results 

Before turning to the results of a numerical integration of the full equation we give some 
general properties of the solution of equation (16). From a physical point of view, g must 
be smooth and bounded for all x > xo. We now show that g is positive and monotonically 
decreasing. Suppose dg/dx = 0 at x = X. Then according to equation (16) this must always 
be a minimum if g(X) > 0, because the second derivative of g is positive. But to satisfy the 
boundary condition at infinity it would require an additional maximum, and a maximum is 
not possible as long as g > 0. A similar argument shows that g cannot have an extremum 
below the line g = 0. Moreover, with the same reasoning, g can never cross the line g = 0. 
Finally, we are left to show that g cannot reach h e  line g = 0 with zero derivative at finite 
X. Again, suppose this would happen, then g would obey the linearized equation (20) in 
a small region near X. Solving this equation shows kat the only solution with the desired 
properties at X is g ( x )  = 0 for all x near X, and this means that the region of validity of 
the linearization can be enlarged to find that g = 0 in this larger region. Repeating this 
process, the region of linearization can be arbitrarily enlarged to comprise the whole range 
x > no. But the solution g = 0 for all x does not satisfy the boundary condition at no 
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X 

Figure 1. The concentrations /+ and /- as a function of .x (xg = 1. /U = 0.25). 

and we must discard the possibility that g becomes zero at finite x .  Because g starts off at 
xg with a negative derivative, we can conclude that g is a positive definite, monotonically 
decreasing function. With these properties of g, it is easily shown using equation (12) that 
f+ is monotonically decreasing and fo < f+ < 1, and that f- is monotonically increasing 
and 0 c f- fa. 

In figure 1 we have plotted~ f+ and f-, as calculated from the numerical solutions 
of equation (16), for various boundary conditions. The solutions g were calculated using 
fourth- and fifth-order RungeKutta algorithms. It is clearly visible that while the solution 
for f+ is extremely unexciting for w/xo  < 1, it develops a beautiful plateau close to the 
sphere for larger ratios of p/xo. So when the attractive force of the central sphere is 
strong as compared to the diffusive force, there is a region of saturation with close packing 
concentration c+ = a-3 .  At the same time the counterions with opposite charge are expelled 
from this region. In figure 2 we have plotted the solutions g(x )  of equation (16) themselves. 

Table 1 gives the values of the dimensionless potential at the surfaee of the sphere for 
various boundary conditions, i.e. for different p/xo and different fo. The solutions f and 
g do not only depend on p/xo. but also on fo, the concentration at infinity, but only in 
a quantitative way. The qualitative behaviour is identical for all fo c 1. We only note 
that for higher values of fo the effect of excluded volume is visible for smaller p. Table 1 
shows that g(x0) does not depend very strongly on fo. 

Curve 3(a) is a plot of the values of g(x0)  at the surface of the sphere corresponding 
to figure 2; it can be seen that the potential at the surface depends almost linearly on the 
value of p. This is quite remarkable, because it is known that in the Gouy-Chapman model 
the potential saturates at the surface. The disappearance of the saturation of the potential is 
related directly to the fact that the particle concentration cannot exceed the close packing 
value a-3 .  The slope of the curve 3(a) for small p can be calculated to be (1 + x o f i ) - ' ,  
using the approximate solution (23). To show the difference between our present results 
and the usual Gouy-Chapman model without excluded volume, curve 3(b) is the plot of 
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Figure 2. The dimensionless potential g as a function of x (xo = 1, fo = 0.25). 

Table 1. Potentid values at the surface of the sphere for different boundary conditions & and 
fo (xn = I ) .  

fn 
IL 0.01 0.05 0.1 0.2 0.25 0.3 0.4 

0.1 0.0871 0.0760 ~ 0.0691 0.0613 0.0586 0.0564 0.0528 
0.5 0.436 0.380 0.345 0.306 0.293 0.282 0.264 
1 0.873 0.758 0.690 0.613 0.587 0.565 0.531 
2 1.73 1.51 1.38 123 ., 1.18 1.14 1.08 
3 2.60 2.25 2.05 1.85 1.78 1.73 1.64 
5 4.24 3.68 3.40 3.12 3.03 2.96 2.85 
7 5.79 5.09 4.76~ 4.44 4.34 4.26 4.13 

10 801 7.22 6.86 6.50 6.39 ~ 6.29 6.15 
15 11.9 10.9 10.5 10.1 9.96 9.86 9.70 
20 15.7 14.7 14.2 13.8 13.7 13.6 13.4 
25 19.6 18.5 18.1 17.6 17.5 12.4 17.2 

the values of g(x0) obtained in the absence of excluded volume effects. At approximately 
p = 3 curves a and b separate. 

As we have noted in the introduction, the present method is only applicable if the two 
counterion species have the same excluded volume a3. However, the concentration profile 
in figure 1 suggests that the physics of packing in this problem is dominated by only one 
type of counterion, namely those ions with charge opposite to the central charge. To get a 
qualitative picture of the effect of an asymmetry in the excluded volume of the two types of 
ion, we have done calculations for the two cases in which one type of ion has zero excluded 
volume and the other has excluded volume a3. These are the extrema1 cases of the largest 
possible difference in excluded volume, for which it is also possible to write down closed 
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mu 

Figure 3. Potential values at the surface of the sphere (xn = I, fo = 0.25), with curve (a) 
the present method, both ion species have excluded volume a3; curve (b) tho Gouy-Chapman 
model, no excluded volume; curve (c), only +q ions have non-zero excluded volume; and curve 
(d) only -4 ions have non-mo excluded volume.. 

equations for the dimensionless potential g. One finds 
-, 

if the ions with charge +q have non-zero excluded volume, and 

if the ions with charge -q have non-zero excluded volume. These equations can be derived 
by assuming a Boltzmann equilibrium diskibution for the ions without excluded volume 
and again a Fermi-Dirac-like distribution for the ions with excluded volume a3. For these 
equations the potential values at the surface of the sphere have been calculated and plotted 
as respectively curves 3(c) and 3(d). One sees that curve 3(c) almost coincides with curve 
3(a), while curve 3(d) seems to coincide with 3(b) and cannot be seen at all, which is caused 
by the limited resolution of the graph. Furthermore, the shape of the curve g(x)  shows the 
same tendency to follow either the case of no excluded volume at all, or the case where 
both types of counterion have the same excluded volume. We can conclude that, in the 
region where excluded volume is important, only one type of counterions dominates the 
physics. This suggests that, to a very good approximation, our method may also be applied 
to problems with asymmetric excluded volume, as long as one takes as a3 the effective 
excluded volume of the ions with charge opposite to the central charge, i.e. the +q ions. 
In dynamical problems, however, the situation may be more complicated. 
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5. Conclusions 

In our previous paper [21 we have argued that with the present method it is possible to 
extend the Gouy-Chapman model into the so-called Stern layer. This is a layer of close 
packed, immobilized ions attached to the  surface^ of a central charge. In this paper we 
have demonstrated that the same method is also applicable if there  is more then one type 
of counterion present, which is not a priori'obvious, and which increases the relevance of 
the calculations for real physical systems. Although the method is only applicable if the 
two~counterion species have the same excluded volume a3,  we have argued that the results 
will not be very different if the counterions do not have the same excluded volume. This 
is caused by the fact that in the region where excluded volume plays a role, the ions with 
charge -q are expelled, leaving the region effectively to the ions of opposite'charge. This 
property greatly enhances the possibilities of testing the results. 

One interpretation of equation (1) is that we have added a steric repulsion force to the 
diffusive force. This steric force is given by 

F,I = kBTVln( l  - a3(c+ + C L ) ) .  (26) 

If we combine this with the quite common expression for the diffusive, often called 
'Brownian', force FB = -kBTVln c/co, one sees that the diffusion process with excluded 
volume is governed by a new Brownian  force^ 

a3c* 
1 - d ( C +  + c - )  

Fi ,= - ~ B T V  In 

which is a strongly repulsive force in regions of close packing. 
Finally, despite fierce nonlinearities, the physical solutions of equation (16) are smooth 

and well behaved (as well as the concentrations derived from them) and this fact is very 
encouraging if one ,wants to apply the method to various problems in physics. 
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