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In this paper the Hubbard-Anderson model on a square lattice with two holes is studied. 
The ground state (GS) is approximated by a variational RVB-type wave function. The holes 
interact by exchange of a localized spin excitation (SE), which is created or absorbed if a hole 
moves to a nearest-neighbour site. An SE can move over the sublattice on which it is created. 
A variational calculation of the GS and the GS-energy is performed for an open-ended 4 X 4 
lattice with two holes with the restriction that the SE is neighbouring both holes and does not 
move over its sublattice. It is found that the two holes prefer a bound state in which their 
mutual distance is 1 or fi (with lattice spacing 1). 

1. Introduction 

Since the discovery of high-T, superconducting oxides there has been a 
growing interest in strongly correlated electron systems. Anderson [l] has 
suggested that the physics of these oxides is contained in the two-dimensional 
(2D), large-U, single-band Hubbard model. In this model doubly occupied 
sites are prohibited and the Hubbard Hamiltonian can be transformed into an 
effective Hamiltonian, called the Hubbard-Anderson (H-A) Hamiltonian [2], 

H H_A=Hl+H2+H3, (1) 

H, = -t c c (c;J~~ + H.c.) , 
(i,i) D 

(2) 

(3) 
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H3 = -; ,c 2 [(c~,,c~,&c~_~ + c;,nj_,ckJ + H.c.] . 
(l,l,k) u 

(4) 

We consider a positive hopping parameter t and a large on-site Coulomb 
repulsion U, so that 0 < t 4 U. A pair of nearest-neighbour sites is denoted by 
(i, j) , a triple for which i and k are different nearest neighbours of j by (i, j,k) . 
A site is either occupied by an electron with z-component of its spin +(+, 
(+ = kl (fi = l), or empty, i.e. occupied by a hole. 

In this paper we study the two-hole ground state (GS) of the H-A model on 
a 4M x 4N square lattice with periodic boundary conditions. In section 2 the 
system without holes is considered. Its GS, the pseudo vacuum, is approxi- 
mated by an RVB-type wave function. Two holes are made by an operator 
acting on the pseudo vacuum. In sections 3 and 4 the zeroth- and first-order GS 
of the two-hole system are described. A numerical study of the 4 x 4 open- 
ended system is discussed in section 5. 

2. The system without holes 

At half filling, i.e. all sites occupied by one electron, the H-A model is 
equivalent to a spin-: antiferromagnetic (AF) Heisenberg model. Disregarding 
an additive constant, HnA reduces to 

HHeis = J c Si -S, , 
(i,i) 

J=4;, (5) 

with (i, j) denoting nearest-neighbour sites on the square lattice. 
Liang, Doucot and Anderson proposed a variational RVB-type wave 

function for the GS of this model [3]. It is a singlet state and it obeys the sign 
rule for the GS of a spin-; AF Heisenberg model on a bipartite lattice, derived 
by Marshall [4]. We rewrite the GS wave function (eq. 2 of [3]) in the form of a 
determinant with creation operators and denote it by IO), the pseudo vacuum. 
It is convenient to divide the square lattice into an odd and an even numbered 
sublattice. See fig. 1. 

Then, 

IO) = 

(14 (14) . . . (116MN) 

(3 2) (34) . . . (3 16MN) 

ii6~~ - i 2) 

I >. 

(16~~ - 14) . . . (16~~ - 116~4~) 

(6) 
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16MN 
. 

. . . 
. 

l 
al+1 

l . . . 0 
8M 4M+l 

e 0 l -- l 
1 2 4M 

Fig. 1. Numbering of lattice, convenient for determinant notation. 

The symbol (i j) denotes the product of a positive parameter h, and a 
combination of electron creation operators representing a singlet bond on sites 
i and j, i.e. 

(i j) = $(ct+cj_ - Ct-Cf+) 

Such a bond only connects sites of different sublattices. The parameter h, can 
be interpreted as a weight factor for a bond as a function of its length. The real 
vacuum is denoted by 1 ). Note that (i j) and (k I) commute for distinct i, j, k 

and 1, so that the determinant obeys the usual determinant calculation rules. 
As [3] mentions, the strong but tenable assumption is made that the amplitude 
of each bond covering in 10) can be factorized into a product of bond 
amplitudes. In [3] the values of the bond amplitudes h, which lead to the 
lowest GS-energy of a 32 x 32 lattice are variationally determined. The 
tendency is that the bond amplitude h, decays fast with increasing bond length. 

3. Zeroth-order states of the two-hole system 

In [5] the zeroth-order GS for the one-hole and two-hole system are 
discussed in terms of Ising configurations [6]. It turns out that in zeroth order 
the holes move over their quarter lattices (QL), i.e. they make steps over two 
lattice spacings in the x and y direction. With zeroth-order GS is meant the GS 
of the dominant part of Hu_*, called H,. This GS is characterized by the fact 
that it is non-frustrated [5]. The first-order GS is the GS of Hn_*, for which 
H H-A - Ho is used to add frustrated components to the zeroth-order GS in an 
optimal way. I.e. those frustrated components are added that couple to the 
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zeroth-order components in the energetically most favourable way. The 
frustrated components form “bridges” between the zeroth-order components. 

In this paper we study the GS of the two-hole system in the RVB language. 
Therefore, consider a creation operator for a singlet pair of holes on sites i, on 
the odd sublattice and j0 on the even sublattice: cjO _ciO + - cjO +ci, _ . Then 

has the same phases for all Ising configurations and the same total spin (S = 0) 
as 

I(i, jo)) = (_l)(~a+io-3)‘2 

(12) ... (1 j,-2) (1 i. + 2) . . . (116MN) 

ii, - 2 2) . . . (i. - 2 j, - 2) (iO - 2 j, + 2) . . (i, - 2 16MN) 

(i, + 2 2) . . . (i, + 2 jO - 2) (iO + 2 j, + 2) . . (iO + 2 16MN) 

il6~~ - 12) ... (16MN-lj,-2) (16MN-lj,+2) ... (16MN-116MN) 

X I ). 

The parameters h, may differ from those in IO). They are expected to stay 
positive, because for positive h, the spin background obeys Marshall’s sign rule 
and therefore has optimal &-energy. This corresponds to the experimental 
fact that the copperoxide-planes of high-T, superconductors have an AF spin 
ordering. 

Throughout sections 3 and 4 we concentrate on the correct treatment of the 
phase factors, which are +1 or -1, because we deal with real states and 
expressions. Doing this, we keep in mind that all parameters are determined 
variationally when at last we minimize the energy-expectation value of the 
GS-approximation. 

The zeroth-order GS is built up from two-hole configurations like in eq. (8). 
Its structure is given in [5] and can be found by splitting Hn_* into 

Ho = 4 + f&,0 and H’=H,+H,,. (9) 

The Ho-GS with S = 0 is fourfold degenerate: 

](lJ)) Y ](3,4)) , \(I,4)) and )(2,3)) . (10) 

The numbers indicate the quarter lattices (QL) on which the holes move 
around due to H3 o , . These Ho-GSs can be linearly combined into Bloch states 

PI: 
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Ik) = l(L2)) + 1(3,4)) , k = { ;;$ , 
9 

]k) = 1(1,4)) * ](2,3)) , k = { ;:t; . 
7 

(11) 

(12) 

To give ](1,2)), etc., explicitly, we number the sites and the QL (l-4) as in fig. 
2. A site on QL 1,2,3,4 has coordinates (2m,2n), (2m - 1,2n), (2m - 1,2n - 
l), (2m,2n - 1). Then ](1,2)) reads 

(C*p-1,2q;-%iQn;+ - C*p-1,2q;+C2m,2n;-)10) 7 (13) 

in which the summation is over the integers m, n, p and q, so that it 
corresponds to all combinations of site indices of QL 1 and 2. The phase factor 
is such that each Z&-matrix element is zero or negative for positive co- 
efficients ar,,, [5]. The coefficients depend on the distance between the holes 
and must be determined variationally. In the calculations we work with real 
coefficients to allow them to be rendered negative by the minimalization 

procedure. The expression (c~~-~,~~;_c~~,~~;+ - c~~-~,~~;+c~~,~~;_)~O), short- 

hand (ciO-ci,+ - cjO+ci,-)]O), is (disregarding amplitudes) equal to I(& jO)) in 
eq. (8). For the phase factor, it is convenient to number the sites as described 
before eq. (13). For the determinant expression, however, it is better to use 
the numbering corresponding with eq. (8). The other three H,-GSs are 
described analogously. 

0 a 0 0 
(1.4N) W.4M 

l 0 0 a 
. 

. . . 
. 

1 

i 0 0 0 

; ; 

Y 

(1.1) 
0 0 

uhl.1) X 

Fig. 2. Numbering of lattice as an xy-coordinate frame and numbering of QL. 
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Besides the states in eq. (lo), one can construct a “bound” state. It 
corresponds to a different choice for H,: 

Ho = Hz + &,I and H’=H,+H,,. (14) 

In the zeroth-order bound GS the holes are always nearest neighbours. Other 
positions of the holes lead to frustration if one considers the expectation value 
of the total HnA (eq. (2.10) of [5]). Frustration is likely to raise the energy 
and therefore should be avoided, if possible. The bound GS is a Bloch state 
with k = (0,O) and S = 0. In zeroth order it reads (l-4 denote QL) 

I(O,O)) = l(l,2))’ + 1(3,4))’ + 1(1,4))’ + /(2,3))’ , (13 

with 

Itiyi))’ = izo (-l)'tcjo-cio+ - C,o+Cio_)lO) . (16) 

The summation is over all sites i, of Ql i and j0 of QL j with the restriction that 
i, and j, are nearest neighbours. The optimal H,,,-phases are expressed by 
(-l)fi, with 

0 for a pair of neighbour holes in the x-direction , 

p = 1 for a pair of neighbour holes in the y-direction . 

The expression (cjO_ciO+ - 

I(& j,)) in eq. (8). 

cjO+c~,_)~O) is (disregarding amplitudes) equal to 

4. First-order states of the two-hole system 

The largest unfrustrated sets of two-hole configurations with S = 0 are the 
zeroth-order states in eqs. (ll), (12) and (15). We expand the sets by 
introducing the first-order two-hole configurations that result if H, acts on the 
zeroth-order configurations. The most important first-order term is H, , because 
its amplitude t is much larger than the amplitude of H3, which is t2/ U. Both 
terms give an order-one contribution, because they act on a hole. This in 
contrast to H,, which is of the order of the number of electrons on the lattice. 

The term H, displaces a hole to a neighbouring site, leaving behind a spin 
excitation (SE). Excitation, because the spin on that site has ferromagnetic 
phase relations with its neighbours. This is energetically unfavourable due to 
Hz. The SE created by a hole can be absorbed by the same hole via the inverse 
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Hi-process. But an SE can also give rise to a hole-hole interaction if it is 
absorbed by the second hole via Hi. If the second hole is not initially a 
neighbour of the first hole, the SE can move over its sublattice towards a 
neighbour site of the second hole via HZ. Then it may be absorbed by the 
second hole via H1. We found phase relations coupling the first-order configu- 
rations optimally to the zeroth-order configurations. 

For example, consider the configuration in eq. (8) and let jl, on the even 
sublattice, be a neighbour site of i,. The configuration is depicted in fig. 3a for 
a 4 X 4 lattice. By one term of H, the hole on i, is displaced to jl, leaving 
behind an SE on i, (fig. 3b). Disregarding amplitudes, one gets 

- (H,)iO,,ll(i, j,)) = (-l)(i0+‘0-3)‘2 

(12) ... (j,-2) (i,) (j,+2) ... (j,-2) (jO+2) ... (16MN) 

ii, - 2 2) ... (j,-2) (i,) (j,+2) ... (j,-2) (j,+2) ... (16MN) 
(iO + 2 2) (j,-2) (i,) (j,+2) ‘) ... ... (j,-2) (jO+2) ... (16MN) 

... (j,-2) (i,) (j,+2) ... (j,-2) (j,+2) ... (16MN) 

= I(j, id; 4) (17) 

. 0 . . 0 * . l 

‘0 II i, 

. . . . . . . . 

. . 0 . 

i 
. . 

i 
. 

. . . . . . . . 

d I($ j,)> b) 1 (j, jo) ; io> 

0 . . . 0 . . . 

II J, 

. . . . . . . . 

. * 0 . . 0 . l 

i, j, 1, 

. . . . . . . . 

d I(& jo); i, > d) l(il jl)> 

Fig. 3. Interaction of two holes by exchange of an SE. 
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Note that in eq. (17) the row labeled i, and the column labeled j,, are gone. 
For convenience all columns after the first one are labeled with the second site 
of the singlet bond. The first site of the singlet bond is the row index. The 
column formerly labeled j1 now has label i,: all its entries are singlets 
connecting sites of the odd sublattice to i,, which is also on the odd sublattice. 

We use -H, to derive a first-order configuration with an optimal connection 
to the zeroth-order configuration I(& jO)), i.e. 

((j, ioh iOl(Hl)io,jlI(iO id) <O. (18) 

One can show that the SE can move over its sublattice via H,. Each position of 
the SE corresponds with a state of the same form as eq. (17) (figs. 3b and 3~). 
One can derive the following two rules: 

Rule 1. If the SE, created by a hole, reaches a neighbour site of the other hole, 
it can be absorbed by that hole via II, if and only if the final two-hole 
configuration has a minus sign relative to the initial two-hole configuration. 
The initial and final configuration belong to the zeroth-order GS. 

For example, the initial configuration I(& j,)) occurs in the GS as 

(-W(io id) = (-l)(p(cjo-ci,+ - cjo+Ci,-)lO) , 

and the final configuration I(il j,)) (fig. 3d) occurs in the GS as 

(-l)“‘l(il j,)) = (-l)‘p’l(cjI_cjl+ - cjl+cil_)IO) . 

The phases (- 1)’ and (-l)‘*’ are determined by 
0 H,; does one consider the GS-approximation with (-l)m+n+p+q or (-l)“? 
8 which Bloch state one considers. 

Rule 2. A hole can absorb the SE it created if and only if the final two-hole 
configuration has the same sign as the initial two-hole configuration. The initial 
and final configuration belong to the zeroth-order GS. 

Both rules result in a reduction of the number of neighbour sites of a hole on 
which the SE can be absorbed. 
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5. Numerical study of the 4 x 4 open-ended system 

To see which state, the one based on H, + H3,,, or the one based on 

H* + &,I, is energetically most favourable, we performed an exact variational 
calculation of the zeroth-order and first-order energies and states for the 4 X 4 
open-ended system. Open-ended, to study the dependence of the energies and 
the coefficients cu,,,,, (see eq. (13)) on the distance between the holes within a 
tractable size of the calculations. 

Because of the system being open-ended one has to work with the states 
1(1,2)) etc. of eq. (10) and ](1,2))’ etc. of eq. (15) instead of the Bloch states. 
The states are linearly combined in such a way that they transform according to 
irreducible representations of the point group of the square lattice, C,, [7]. The 
coefficients amnPp now depend on the distance between the holes and the 
position of the hole pair on the 4 x 4 lattice. In eq. (15) one has to add a 
position dependent coefficient ~~~~~~ 

Iti ‘I)’ = izo (-l)paiojo(cjo-C~,+ - Cjo+Ci,_)lO) . (19) 

Furthermore, in the first-order two-hole configurations the coefficients also 
depend on the position of the SE. The two-hole configurations that transform 
into one another by operators of C,, have the same coefficient. 

In the calculations we use the bond amplitudes (hii of eq. (6)) of the- best 
GS-approximation of the pseudo vacuum of [3] and interpolated values for the 
amplitudes of singlet bonds of lengths 2, 4 and 6. The bond amplitudes are 
kept fixed. See table I. The coefficients (Y are the only variational parameters 
in our calculations. 

First, consider the states of eq. (10). Define 

1(1,2)) = cl , 1(3,4)) = e2 , ((L4)) = e3 and 1(V)) = e4 . 

These four (H2 + H,,,)-GSs are linearly combined into four orthogonal states, 
transforming according to irreducible representations of C,, [7]: 

Table I 
Bond amplitudes of singlet bonds. 

Manhattan length of singlet bond Bond amplitude 

1 1.ooooo 
2 0.30000 
3 0.12500 
4 0.07000 
5 0.03125 
6 0.01000 
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11) = e, + e2 + e3 + e4 transforms according to the 1D irreducible representa- 
tion A,. 

12) = e, + e2 - e3 - e4 transforms according to the 1D irreducible representa- 
tion B,. 

IKr)=e,-e,-e,+e, and IK,)=e,- e2 + e3 - e4 transform according to 
the 2D irreducible representation E. 

The number of zeroth-order configurations and first-order configurations - 
with an SE - are denoted in column two and three of table II. Both rules of 
section 4 were used to derive optimal first-order configurations. Forced by the 
size of the computational problem, we only considered first-order configura- 
tions with the holes on Manhattan distance two and a non-moving SE 
neighbouring both holes. For states 11) and 12) the first-order configurations 
are given in figs. 4 and 5. The configurations of fig. 4 are only optimal on the 
2 x 2 squares, hereafter denoted by 8. Optimal means that the coupling of the 
first-order configurations (always with an SE) to the zeroth-order configura- 
tions (always without an SE) obeys eq. (18). So, in an 8 each configuration of 
fig. 4 is optimally coupled with two zeroth-order configurations. On the 2 X 2 

Table II 
Results of the 4 X 4 open-ended system 

tlU=O.lO #Oth order #SE (Hz +%o) (Hz+&,,) (Hz +K) (H,-,) 
confs. confs. 

11) 64 32 -5.43 _ -5.35* -7.42 

12) 64 36 -5.43 -5.77*** -5.60 -7.85 
34 -5.43 _ -5.43 -6.89* 
34 -5.43 _ -5.43 -6.89* 
36 - -5.37** -5.37** -s.17** 

0 

0 

0 

* 00 *o 03 

> , 3 

0 * 0 0 0 0 * 
Fig. 4. “Diagonal” first-order configurations. 

0 

* 0 9 

3t 

0 

Fig. 5. “Stretched” first-order configurations. 
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a) b) 
Fig. 6. Pattern of optimal and non-optimal squares for (a) state 11) and (b) state 12). 

squares, hereafter denoted by @, the couplings are not optimal and we do not 
add any of the corresponding diagonal first-order configurations to the linear 
combination that approximates the GS. Fig. 6a shows the pattern of optimal 
squares (e) and non-optimal squares ( @ ) for state 11). Fig. 6b does the same 
for 12). 

The configurations of fig. 5 are optimal on the whole 4 x 4 lattice and 
therefore all of them are added. For IK,) the first-order configurations are 
given in fig. 7. They are optimal on the whole 4 x 4 lattice. Analogously for 
I&): see fig. 8. 

Now, consider the bound state. It transforms according to B, of C,,. We 
keep calling the bound state I(O,O)), although it is not a Bloch state anymore. 
The first-order configurations are of the type depicted in fig. 4. They are 
optimal on the whole 4 x 4 lattice. 

Table II gives the results of the variational calculations for the commonly 
used values t = 1 and U = 10. 

l The entry (jl~,lj) of table II means that (jl~~lj)/ (jlj) is minimalized 
with respect to the coefficients (Y. We will denote this minimalized energy by 
((j&l j)) . The number of the coefficients (Y ranges from 4 to 18. 

l In columns four, five and six we worked with a linear combination only 

0 * 0 0 0 

, 0 * 0 and * . 

0 0 * 0 0 

Fig. 7. First-order configurations of IK,). 

++ 0 0 0 0 

, , 0 * oB”d x. 

00 0s 0 

Fig. 8. First-order configurations of IKz). 
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containing the appropriate zeroth-order two-hole configurations. In column 
seven the appropriate first-order configurations were included as well. 

l With * is meant that the optimal H,,,-phases, which are taken as starting 
point, are unstable. I.e. the minimilization of the energy renders some of the 
coefficients LY negative, whereas the optimal H,,,-phases correspond with 
positive a-values. 

l With * * is meant that the optimal H3 i-phases, starting point for the 
bound state, are stable. 

l With * * * is meant that the coefficients (Y are rendered with such values 
that all configurations have optimal H,,,-phases. 

l The other energies correspond to optimal H,,,-phases. 

5.1. Comments on the results 

51.1. Zeroth-order states 
l The energy (H, + H3,0) is the same for ]l)-]K,), because they are linear 

combinations of {ei, i = l-4}, which is the fourfold degenerate (HZ + H,,,)-GS. 

l The equality (((O,O)]H, + H3,i](0,0))) = (((O,O)]H, + H&0,0))) holds, 
because all H,,,-matrix elements for the zeroth-order state ](O,O)) are zero. 

l The states IK,) and 1~~) transform according to the 2D irreducible 
representation E of C,, and are orthogonal. All their energy-expectation 
values are exactly the same (in zeroth and first order), because C,, is also the 
symmetry group of Hi, Hz, H3,0 and H3,1, separately. 

l For the zeroth-order states we have 

with j one of the set {1,2&i ,K2}. 
Note that 12) in ((2]H, + H3,i]2)) is an extension of ](O,O)) in (((O,O)IH, + 
H3,11(0,0))), because in 12) the holes can also be at Manhattan distance three 
or five. 

l The line with label 12) shows that for the zeroth-order state 12) frustration 
in an elementary triangle results in a preference of H,,,-phases above H3,1- 
phases: in ((2]H, + H,]2)) all two-hole configurations have optimal H,,,-phases. 
The underlying idea is explained in section 2 of [5]. There it is shown that 
H,,,-phases lead to frustration in first order, whereas H,,,-phases lead to 
frustration in second order. 
The energy ((2]H, + H,/2)) is lower than (((O,O)[H, + H31(0,0))). So, if one 
only considers H, + H3, there is a preference for H3 ,-phases. 
There is an additional cause for the system to irefer H,,,-phases above 
H,,,-phases as shown by (H,+H,) for ]l)-IK,). The coefficients (Y suggest 
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two tendencies: holes prefer to sit on the edge of the 4 X 4 lattice with many 
optimal H,,,-couplings and holes prefer to sit on the edge of the 8 squares. 
The disturbance by holes on the edge of the open-ended lattice of the 
resonance of short singlet bonds is smaller than by holes in the interior of the 
lattice. That is why the position on the edge benefits the Hz-energy. 
In the 2 X 2 squares denoted by 8, the two-hole configurations with the holes 
on Manhattan distance one are optimally coupled via H3,1. In Cl3 the H3,1- 
couplings are non-optimal. 
In the 2 x 2 squares of IK, ) and I&) - both do not have Cl3 or 0 squares - 
there are as many optimal as non-optimal H3,1- couplings. In 11) there are four 
8 squares versus five CB squares and in 12) there are five 9 squares versus four 
@ squares. 
With these arguments, one can understand the order of (Hz + H,) for II)- 
IK,). State 11) has 8 squares lying more in the interior of the lattice, causing a 
mixture of H3,0_ and H,,,-phases. States IK,) and I&) do not have the 
restriction of 8 and Cl3 squares. State 12) has the advantages of both 
tendencies. 

5.1.2. First-order states 

The influence of H, is visible in the column of table II with label (H,_, ) . As 
mentioned earlier, the optimal first-order two-hole configurations represent an 
interaction between the holes. In 8 squares there are four optimal first-order 
configurations. In @ squares the first-order configurations are not optimal and 
thus not added to the linear combination approximating the GS. The co- 
efficients cy and (HH_*) for Il)+,) make clear that the state is more 
favourable if it has more 8 squares which are optimally coupled by H3,0. The 
state I(O,O)) has nine 8 squares, which are optimally coupled by H3,1. From 
table II we conclude that the overall GS for the 4 x 4 lattice in this approxi- 
mation is the bound state I(O,O)). 

It is an open question whether the bound state is still the GS if one includes 
more first-order states. Namely those with the SE not neighbouring both holes 
or even one of the holes (via H2 an SE can move over its sublattice). 
Furthermore, the calculations show the following tendencies: 

0 An SE prefers to have as little as possible nearest- and next-nearest- 
neighbour spins. This is due to the Hz-expectation value. 

l For the states Il)-I&) the absolute values of the coefficients of the 
two-hole configurations become smaller if the distance between the holes 
increases. See fig. 9. 

The last tendency is due to two effects. The optimal Hi-couplings stimulate 
the holes to be neighbours. Note that the amplitude of H,(t) is larger than the 
amplitude of H3 (t’/U). The optimal H3,0 -couplings to the configurations with 
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. . . . 
a, 

12>: a,=3cx,=21a10 II>: a, =3a, =26a,,, 

Fig. 9. Coefficients of some two-hole configurations. 

two neighbouring holes explains the order of the coefficients CQ and (y10 in 12) 
and cy6 and (Ye,, in 11). See fig. 9. The question is how far the decrease of the 
coefficients goes for macroscopical systems. If lim,,,la 1 = c with c > 0, then 
the best approximation of the GS based on optimal H,,,-phases has a large 
entropy advantage in comparison with the bound state I(O,O)). If c = 0, then 
the two holes are bound too, but not as drastically as in I(O,O)). 

In view of the size of the calculations, it is necessary to use a different 
calculation method for larger systems. An alternative may be to derive an 
effective Hamiltonian, describing the holes and the SE as quasi-particles. Such 
a Hamiltonian can possibly cope with a larger number of holes and SE. 
Furthermore, it can be more manageable than the H-A Hamiltonian. 
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