
Cornpal. Long. Vol. 21, No. I, PP. I-16. 1995 
Convrieht a 1995 Else&r Scrence Ltd 

Printed’& drea~Britain. All rights reserved 
0096-0551 ‘95 $9.50 + 0.00 

Pergamon 
0096-0551(!M)00016-6 

A GRAMMATICAL SPECIFICATION OF 
HUMAN-COMPUTER DIALOGUE 

ALBERT NYMEYER 
University of Twente, Department of Computer Science, P.O. Box 217. 7500 AE Enschede. 

The Netherlands 

(Received 19 May 1994; revision received IO November 1994) 

Abstract-The Seeheim Model of humancomputer interaction partitions an interactive application into 
a user-interface, a dialogue controller and the application itself. One of the formal techniques of 
implementing the dialogue controller is based on context-free grammars and automata. In this work, we 
modify an off-the-shelf compiler generator (YACC) to generate the dialogue controller. The dialogue 
controller is then integrated into the popular X-window system, to create an interactive-application 
generator. The actions of the user drive the automaton, which in turn controls the application. 

compiler generators dialogue models humancomputer interaction formal techniques 

1. INTRODUCTION 

In 1985, a model of the interaction between the user and application was defined at a workshop 
in Seeheim [l]. This model, now popularly called the Seeheim Model, and shown in Fig. 1, 
partitions an interactive application into 3 components; a presentation component, which we will 
refer to as the user-interface, a dialogue controller, and an interface to the application itself. The 
presentation component is, in fact, what the user experiences as the user-interface-it is that part 
of the interactive application that is seen, heard, touched or spoken to. Window technology has 
improved dramatically since 1985, resulting in ever-fancier and more highly featured user- 
interfaces. Application-interface technology, on the other hand, has barely changed in this 
period [2]. It is still quite difficult to separate the application from the user-interface in an elegant 
way. 

The dialogue component is responsible for the sequence of events that constitutes the interaction 
between the user and the application. Although the term “dialogue” is taken from real-world, 
human-human communication, human-human dialogue is essentially different from hu- 
mancomputer dialogue. Human-human dialogue consists of two (symmetric) parties that 
communicate-the output from the one party is the input for the other, and context plays a crucial 
role (the meaning of a word is often highly influenced by its context). While human-computer 
dialogue, in abstract terms, also refers to the conversation between two parties, these parties are 
not symmetric, and context is not important (but may play a role). In human-computer dialogue. 
we usually only specify the input ‘language’ from the user-the response from the computer 
(application) is a side-effect. In this sense it would be more accurate to say that we are dealing with 
a model of humancomputer monologue. To avoid confusion, however, we use the same 
terminology as in the literature. 

A system that provides tools to design and develop the presentation and dialogue components. 
and to integrate these components into an application, is called a User-Interface Management 
System (UIMS). A UIMS, then, is based on a conceptual model that separates the user-interface, 
the dialogue and the application. A UIMS acts like an interactive-application compiler-compiler. 
The UIMS complies a user-interface, dialogue specification and the application into an interactive 
application. In this analogy, the dialogue specification between the user and the application 
constitutes the source program. 

An application that is programmed directly into a user-interface (using a toolkit, for example) 
can lead to complex, difficult to maintain and non-portable code. Control-flow, or dialogue. in such 
an application is achieved by the judicious use and selectivity of widgets. 



Albert Nymeyer 

Fig. 1. The Seeheim model of humanxomputer interaction. 

In this work we use a context-free grammar to specify the dialogue, and the parser generator 
YACC (Yet Another Compiler-Compiler [3])? to compile the dialogue. The X-window system is 
used to specify the user-interface. Together, these components comprise a UIMS. YACC was 
chosen to generate the dialogue controller for the following reasons. 

l YACC is available in source-code form, and is easily modifiable. 
l YACC is extremely popular. 
l YACC parses LALR(1) grammars, which are more descriptive than LL(1) grammars. 
l YACC is implemented in C, as is the X-window system. 

This work shows that it is possible to build a direct no-fuss, and inexpensive implementation 
of a UIMS that clearly separates the user-interface, dialogue and application. It also provides 
insight into the relationship between each of these components. 

In the following section we briefly review various models of UIMSs. In Section 3 we describe 
the compiler-generator system YACC, and we show how YACC can be used to specify the dialogue 
in an application. In Section 4 we describe salient features of the X-window system, and point out 
the shortcomings the system has in specifying dialogue. To build a UIMS, and interface the 
automaton generated by YACC to a user-interface, we need to make certain modifications to 
YACC. These modifications are explained in Section 5. In Section 6, we explain how an application 
can be built using the new tool. Finally, in Section 7 we present our conclusions. 

2. FORMAL TECHNIQUES 

Formal techniques have many advantages. A system that is formally specified can be analysed 
and its properties can be deduced. A system that is implemented from a specification can be readily 
and reliably updated and managed. Rapid prototyping is also enhanced. Problems that formal 
techniques do have include, firstly, real-world system specifications can be large, complex and 
possibly unreadable to all but experts, and secondly, the specification style and model may 
influence, or be influenced by, an implementation technique. Ideally, a specification should be 
independent of a particular implementation technique. 

In a seminal work, Green [4] identified 3 formal categories of UIMSs: those that use a 
context-free grammar to specify the user-interface, those that use a transition network, and those 
that are event-driven. A fourth, currently very popular category, which is not formal, is called 
‘direct manipulation’. Green presents algorithms for converting formal specifications of the above 
forms into executable form. He finds that the event-driven approach has the greatest descriptive 
power, and presents (efficient) algorithms to convert the grammar and transition specification forms 
into event-driven specification forms. However, because each approach has its own particular 
advantage, Green advocates letting the interface builder use whichever approach he considers the 
best, and letting the UIMS translate context-free grammars and transition networks into an 
event-driven internal form. 

Of the 3 formal methods, the transition-network approach has been around the longest. The first 
application of this approach to user-interface design was by Parnas [5]. The first real implemen- 

tActually, a public-domain version of YACC called ‘Berkeley YACC’ was used. 



A grammatical specification of human-computer dialogue 3 

tations came in the mid-1980s however, with work by Jacob [6] and Wasserman [7]. More recently, 
the system SCENARIO0 has been developed [8]. The most usual criticism of this technique is that 
it is too verbose, it lacks abstraction, and networks become unwieldy and complex for realistic 

systems. 
The event-driven approach is often based on an object-oriented model, where abstract data 

structures, and incoming and outgoing messages, are used to handle input and output, and the 
structure of the dialogue is defined by the arrangement of the objects and their protocol. Examples 
of systems that use this technique are SASSAFRAS [9], GWUIMS [lo] and the Smalltalk system. 

The context-free grammar approach, as the name suggests, is based on the formalism of 
context-free grammars, and compiler building. In this approach we consider the dialogue 
component as a form of translator, and specify the dialogue using a context-free grammar. At the 
lexical level we specify the basic events; for example, pressing a key or button, the position of the 
mouse, colour, choice of window, type of window and so on. At the syntactic level, the structure 
of the dialogue is specified; terminals are used to represent the input from the user. and 
nonterminals to determine the structure of the dialogue. Finally, at the semantic level, application 
routines are called. These routines may produce output. The lexical, syntactical, and semantic levels 

can be mapped in a natural way onto the Seeheim Model. 
One of the first systems developed using this approach was by Olsen and Dempsey [l l--13]. This 

system, called SYNGRAPH, is a user-interface generator for interactive system graphics. In this 
system, the tokens that are used to represent graphical devices are parsed according to a 
context-free grammar. The semantics of the grammar is a set of data types (that define the pictures 
to be displayed) and a set of procedures. Olsen and Dempsey address certain problem areas, 
namely, continuous sampling of devices, prompting for user inputs, cancellation and rub-out 
processing. 

In Ref. [14], Olsen developed a system called IPDA (Interactive Push-Down Automaton). As 
with its predecessor, IPDA implements the syntactic component of the user-interface manager, but 
more attention is paid to the interfaces between the lexical and syntactical component, and the 
syntactic and semantic component. IPDA contains extensions that enable an automata to be used 
interactively. Additional kinds of transitions are introduced that increase the semantic control, 
allow the automaton to change state without input, and cater for exceptional conditions. The 
context-free grammar is also transformed before it is interpreted (for example, triggers are 
associated with sampled devices). A further development of this work was carried out in Ref. [15]. 
In this work, an IPDA-based dialogue controller was integrated with a dynamic display model. 
The system (called GRINS) was built to study the interface between the input (sequence of 
commands) and the graphical feedback. The dialogue controller communicated with a logical 
input-device handler and a constraint interpreter. A layout editor that supports the IPDA was also 
built. 

Scott and Yapp [16] also used a context-free grammar to specify the dialogue. They find that 
conventional context-free grammars are unable to specify two important aspects of dialogue, 
namely multi-threading and context. Multi-threading is the arbitrary interleaving of concurrent 
conversations. To specify multi-threading, they introduced parallel operators to the grammar. 
These parallel operators allowed productions to be ‘forked’. A forked production suspends the 
current parser and creates sub-parsers (processes) that continue in parallel on sub-grammars, using 
their own tables. The problem of context was solved using a synthesized attribute. This attribute 
determined which of several running processes should receive a particular token. 

A more elaborate grammatical model that also incorporates event handling was used by van den 
Bos [ 171. This model is based on a hierarchy of interaction modules. each of which uses an input 

expression to specify the input sequence that will trigger a certain user-interface or application task. 
An interaction module is an abstract data structure with local variables and procedures, and (links 
to) tasks. Structure is obtained by locally including definitions of lower-level modules. Modules at 
the lowest level define the coupling to physical devices. The system provides multi-thread and 
multi-device user interaction, as well as context-dependent prompting, echoing. feedback, error 
correction, and expertise levels. 

The grammatical formalism of van den Bos is more powerful and more complex than 
context-free. Olsen et al. and Scott and Yap, use extended LL( 1) grammars to specify the dialogue. 



4 Albert Nymeyer 

The advantages of using a (top-down) LL(1) approach is that it is simple, and intuitive. The 
top-down approach lends itself well to the ‘action’ followed by ‘arguments’ style of most 
user-interface commands. During parsing, the action will determine the unique production that 
must be applied. 

The class of (extended) LL grammars is contained in the class of LR grammars. LR-based parsers 
work very differently than LL-based parsers. An LR-based parser works with states, which 
represent the progress made in a number of productions (concurrently). (If we let this number be 
1, then we have an LL grammar.) If we use an LR grammar, we may still choose the LL-style of 
specification (i.e. action before arguments), but we can also do a lot more. LL is an artificial 
restriction: a larger class of languages can be specified using an LR grammar. This is an important 
point because it means that the user-interface designer that uses LR has more ‘power’ to specify 
dialogue. For example, we can specify cancellation and application-directed dialogue quite easily 
in an LR grammar, but not in an LL grammar. 

In general, the advantage of the grammatical approach is that the lexical, syntactic, and semantic 
levels naturally model the three tiers in the Seeheim Model, and that the formalism is abstract and 
concise. The major disadvantages of the approach are: 

l The sequence of user actions in a dialogue is not explicitly reflected in a context-free 
grammar. The context-free grammar must often be artificially structured (made more 
complex) to reflect the structure of the dialogue. The approach is too awkward and rigid. 

l The semantics of the application is only implicitly specified by application routine calls, and 
is static, requiring recompilation each time a change is made. This problem receives 
particular attention in the CHIMERA system [18]. 

l Continuous devices cannot easily be handled. The parser cannot know when to check 
(sample) a device to see if the setting has changed. 

l User-unfriendliness-Olsen [19] reports that (student) user-interface designers had difficulty 
applying a formal-language technique to specify a dialogue. 

The direct-manipulation approach [20], unlike the above approaches, is not ‘formal’. This 
approach, sometimes referred to as ‘interaction by example’, is the most user-friendly technique 
of building a user-interface-no specification language needs to be learnt; the user-interface 
designer simply builds a user-interface using the interaction devices and controls placed at his 
disposal. 

In general, direct manipulation interfaces cannot be made to conform to the Seeheim Model [21]. 
The problem arises because direct manipulation requires that the semantics (i.e. the application) 
be brought closer to the user-interface, and this works against a clean separation [22]. The greater 
the separation, the more responsibility the user-interface must assume. The problems encountered 
in fitting a direct-manipulation UIMS to the Seeheim Model, and possible solutions, can be found 
in Ref. [21]. Jacob in Ref. [23] introduces an object-based specification language for direct- 
manipulation interfaces. 

3. YACC, AND DIALOGUE SPECIFICATION 

Given a context-free grammar (specification) of some language, YACC is a tool that generates 
a parser for that language. YACC is an LALR(l)-based parser generator. The generated parser 
can be used to translate input sentences of the language into some other representation. This 
translation is specified in the grammar. The parser (or translator) generated by YACC requires a 
scanner to read the (character) input and convert this input into tokens. A token is a representation 
of a symbol or construct in the input language. A token may have other information attributed 
(associated) to it. The parser calls the scanner for each new token. Within the parser, this is referred 
to as a ‘shift’ operation. Other operations are ‘reduce’, ‘accept the input’ and ‘error detected’. In 
Fig. 2 we show the role of YACC schematically. 

The parser contains a push-down automaton, a set of tables, and the semantic actions of the 
grammar. The tables and actions are created from the specification. The push-down automaton 
uses the tables and an input token to change to a new state. In the process of changing state, a 
semantic action can be carried out. An action usually involves emitting a piece of translation code. 



A grammatical specification of human-computer dialogue 

yacc 7 
Fig. 2. The YACC compiler model. 

The specification that YACC reads is a context-free grammar, with ancillary C-code (the 
semantic actions). It is quite straightforward to specify the dialogue between the user and an 
application using a context-free grammar. Note that, in so doing, we are actually specifying the 
syntax of an application. The semantics of the application, also referred to as the functionality, is 
then contained in the ancillary C-code. In Fig. 3, we show the structure of a system that uses an 
automaton generated by YACC to control dialogue. 

Consider, for example, the game of hangman. In this game, the computer chooses a random 
word, and tells the user how many letters are in the word. The user must determine what the word 
is by guessing letters in the word, or by making a stab at the word itself. After each letter guess, 
the computer tells the user whether the letter is in the word or not, and if so, where it appears in 
the word. The aim of the user is to determine the word using as few letter or word guesses as 
possible. 

In Fig. 4 we show the syntax of this game in ‘YACC-grammar’ form. In this specification, 
nonterminals begin with an upper-case letter, and tokens are underlined. The rules in the grammar 
consist of a nonterminal symbol on the left-hand side, and terminal and nonterminal symbols on 
the right-hand side. The left and right-hand sides are separated by a colon, and a rule is terminated 
by a semi-colon. Different rules that share the same left-hand side nonterminal are indicated by 
a vertical bar. We differ slightly from standard YACC notation and denote an ‘empty’ rule by t. 

In essence, the dialogue in hangman consists of zero or more letter and word guesses 
(corresponding to tokens letter and word), optionally terminated by the token giveup. To complete __ __ 
the specification of the game, we must add to the dialogue specification application code in the 
form of semantic actions. For example, when the user guesses a letter, we must first check whether 

ascii terminal 

Fig. 3. Using YACC to control dialogue. 



Albert Nymeyer 

Hang : List 

Fini; 

Fini : e 

1 giveup ; 

List : e 

1 List Lxx-W; 

Fig. 4. A part of a dialogue specification of the game hangman. 

that letter has been tried before, and if not, whether the word contains it. If the word contains the 
given letter, then we must check whether the word will be complete when we fill the letter in. Code 
to carry out these and other semantic actions can be added to the grammar. 

4. THE X-WINDOW SYSTEM 

The X-window system has in recent years become an important standard-platform window 
system for graphical applications. The system is not only hardware and operating system 
independent, it is also network transparent. In the X-window system, an application cannot interact 
directly with windows on the screen. The user communicates with the application by generating 
events. Pushing a button on the screen, pressing a key, or moving the mouse, for example, all trigger 
an event. These events can be linked to parts of the application code. When an event is triggered, 
the corresponding application code is executed, after which control returns to the interface. This 
is called a callback. 

The user-interface ‘screen’ is constructed out of widgets. A widget has characteristics that 
determine the look andfeel of the interface. Not all types of widgets are visible on the screen. Those 
that are visible are generally referred to as windows, and the others act as container widgets for 
other types of widgets. The user interacts with an application via the widgets in the user-interface, 
and the keyboard and mouse of course. The semantics (functionality) of the application is largely 
determined by the arrangement of callbacks and widgets. 

Note that since an X-window application is event-driven, and in principle, events can occur at 
any time, it is up to the application programmer to enable and disable widgets that correspond 
to parts of the application that may or may not be executed at any given time. Note also that the 
user is in control-if some event results in the application being called, then after the application 
has finished, the control is given back to the user. 

Widgets can be configured by the application programmer by changing global variables 
associated with the widgets. These variables are called resources. Resources can be set in application 
start-up files called resource speczjications, at widget creation time, or at run-time. Resource 
specifications can also be used to set the hierarchical structure of the widgets. 

An X-window application (see Fig. 5) loops continually waiting for the next event. If an event 
occurs, then the callback (if any) associated with that event is executed. There is no explicit 
flow-of-control in the resource specification, only implicit. The hierarchy of widgets, and their 
creation and deletion, determine the nature of the interaction between the user and application. 

Consider, for example, the following user-interface. We define a widget called *test that consists 
of a sub-widget containing the string “old message”, and another sub-widget containing the string 
“Quit”. The widget *test is shown in Fig. 6(a). To build this user-interface we simply need to 
construct a resource specification. 

Now let us add the following ‘application’ to this user-interface. If we click the left-mouse button 



A grammatical specification of human-computer dialogue 

user-interface 

Fig. 5. A schematic of an X-window application. 

on the first sub-widget, we want the string to change from “old message” to “new message”, and 
if we click on the second sub-widget, we want the application to terminate (i.e. the widgets should 
disappear). Actually, the sub-widgets are called (screen) buttons, and the strings are labels. To build 
such an application we simply attach callbacks (which are also resources) to the respective buttons. 
To the first button, for example, we attach a callback routine that writes the label “new message” 
to the calling widget, and to the second, a routine that terminates the application. The result after 
clicking the first button is shown in Fig. 6(b). 

It is not control flow, therefore, but events generated by the user that drive an X-window 
application. Applications that require frequent interaction with the user are therefore most suited 
to the X-window system. However, the dialogue between the user and the application is largely 
unspecified. What is specified is the relationship between the widgets and the callbacks, but by 
default, the user can perform any action at any time. Some dialogue control can be imposed on 
an X-window application at the user-interface level, or they can be imposed in the application itself. 
This is done in the following way. 

l In the user-interface, the application programmer can control the execution of callbacks by 
ensuring that not all buttons (on the screen) are available to the user. Those widgets that 
correspond to callbacks that may not be executed at a given time must be ‘switched off’. 
The X-window system provides 2 mechanisms to exercise dialogue control. The first is the 
selective disabling of callbacks, and the second is the general shielding of events outside a 
particular widget. Selective disabling involves setting a boolean resource. Only if this resource 
is true will the widget concerned respond to an action from the user. The problem with this 
is that it is toojne-grained-the application programmer must explicitly desensitize those 
widgets that correspond to callbacks that may not be executed at a given time. The second 
mechanism, general shielding, effectively desensitizes all but one widget. This mechanism is 
too coarse-grained. Dialogue control in the X-window system, then, is generally ad hoc. and 
inadequate. 

l Dialogue control can also be programmed into the application. This is achieved by adding 
“guards” to callbacks, where a guard is a condition that must be true before the 
corresponding callback can be executed. The value of a guard is determined by the state of 
the application. This mechanism is related to the traditional technique of using flags to 
provide control-flow. It overloads the application, and mixes application code and dialogue 
control. 

Both methods of dialogue control are therefore inadequate. 

Fig. 6. The user-interface before and after the message is changed. 



8 Albert Nymeyer 

5. XYACC 

As we saw in Section 3, an application ‘generated’ by YACC consists of an automaton, which 
controls the dialogue, and application routines. The automaton waits for input from the user, and 
calls application routines as directed by the rules of the grammar. 

If we now want to use YACC to generate an automaton that interfaces to an X-window-based 
user-interface, then we must modify YACC. The modifications necessary are to the module in 
YACC responsible for generating the automaton, and to the module responsible for parsing the 
grammar. The modifications are the following. 

l The automaton must be a co-routine of the user-interface. 
l An error in the automaton must not be fatal. 
l The user should be able to cancel a part of the dialogue. 
l The application must also be able to direct the automaton. 
l The user-interface should indicate to the user those widgets that are ‘active’. 

These modifications of YACC are discussed below. The modified version of YACC is called 
XYACC. 

5.1. Co-routine 

The first modification is to the generated automaton. In the traditional model (see Fig. 2) the 
automaton requests a token from the scanner every time it is ready to ‘shift’. The scanner is a ‘slave’ 
of the automaton. 

In contrast, an automaton that converses with a user-interface needs no scanner. The role of the 
scanner (namely, converting user actions into tokens) is assumed by the user-interface itself. 
Further, the user, via the user-interface, is in control-the automaton must wait for each token 
from the user-interface. 

We implement this scheme by making the automaton a co-routine of the user-interface, with the 
token (representing the user action) as formal parameter. The automaton ‘shifts’ this token and 
carries out any reductions that it can. If it can do no more, then the automaton goes into a ‘waiting’ 
state. It remains in this state until the automaton is again called. Only when the user terminates 
the application does the automaton ‘accept’ the input (and the automaton dies). 

5.2. Error handling 

YACC is designed to act as a syntax-analysis tool, not as a dialogue generator. A consequence 
of this is that the error-handling in (an automaton generated by) YACC is inappropriate. In a 
dialogue, making an incorrect action should not, of course, result in the whole dialogue being 
rejected. There can be no fatal errors in the automaton. 

To keep the dialogue specification manageable, the automaton should either be ‘shielded’ from 
invalid actions (tokens) by the user-interface, or, if the user does make an invalid action, then it 
should be caught and handled by the automaton. In either case, the existing error-handling scheme 
in YACC can be removed. The concept of valid tokens is discussed in more detail in Section 5.5. 

5.3. Cancellation 

Cancellation is stopping a process that had been started at a certain point, returning to an earlier 
stage in the process, and continuing from there. In the case of dialogue, the process is the parsing 
of a rule. During dialogue design, we try to predict where a user may wish to cancel a part of the 
dialogue. In the automaton, a part of the dialogue is represented by a nonterminal, so if the user 
wishes to cancel this part of the dialogue, we must be able to reinstate the state of the automaton 
to just before the nonterminal was parsed. 

Consider, for example, the following grammar S, . 

s, : A 
I B; 

A : a; 
B : j3; 



A grammatical specification of human-computer dialogue ‘) 

The symbols a and /i denote some right-hand side consisting of terminals and nonterminals. A valid 
sentence in the language specified by this grammar must match either nonterminal A or B. If we 

assume that the sentences that match A and B do not share a common prefix, then once the first 
character of a sentence has been entered, there is no turning back. In a dialogue this amounts to 
the user being forced to carry out a certain sequence of actions. This is often unacceptable. To allow 
the user to abort or cancel a part of a dialogue, we provide a cancellation facility in the grammar. 
To cancel the input means to ‘throw away’ the input that has been received to date from some 
starting point. This facility allows, for example, multiple attempts at matching a particular 
nonterminal to be made. If the strings w,, for i = 1, m, match the nonterminal A or B above. then 
we require that the string w,@wz@. . .w,_ , Ow, be accepted by a grammar modified to provide 
cancellation. Here w, , w2, w3, . . . , w,_ I each represent a series of actions (tokens) that the user 
has subsequently cancelled. The act of cancellation is represented by the token 0. The string )t‘,,, 
was not cancelled, and is used to continue the dialogue. 

If we now wish to modify S, to explicitly allow for cancellation of A or B, then we could use 
the following grammar. 

S, : N 

I NO%; 
N: A 

I R 
A : a; 
B : /?; 

Here the first 2 productions allow nonterminal N to be ‘cancelled’ any number of times. This 
technique of specifying cancellation can become non-transparent and clumsy in complex dialogue. 
Instead, we modify the YACC grammar to explicitly indicate where cancellation may occur, and 
where the subsequent dialogue must restart. We can rewrite the original grammar S, using this 
explicit technique in the following way. 

S, ! AX 

I BX 
A : a; 
B : /I; 
x: c 

I oe,>; 

The first rule in this grammar is called a store rule, this being indicated by the exclamation mark. 
The last rule is the reinstate rule, indicated by the nonterminal enclosed between angular brackets. 
In the generated automaton, the store rule causes the state of the automaton to be stored (before 
parsing of the corresponding rule commences). The reinstate rule does the reverse-it forces the 
automaton to continue parsing with the named (and previously stored) state as its starting state. 

AS a realistic example of the use of cancellation, consider the situation where a user can carry 
out 2 tasks, one of which is inputing a name. A grammar that represents this dialogue is the 
following. 

Session ! Task1 
/ Task2; 

Task1 : . . . 
Task2 : Getname 

/ Task2 Getname; 
Getname : readtok 

1 canceltok(Session); 

Let’s assume that the user wishes to enter a name, which is Task2 in the dialogue. Because the 
Session rule is a store rule, before we begin parsing, the state of the automaton is stored. When 
the user activates the appropriate widget, and types in a name, the user-interface generates a token 
readtok. This corresponds to a single read of a name. In Task2, the user can enter a name any 
number of times, until the application is satisfied. If, however, the user is unable to remember the 



10 Albert Nymeyer 

name, then the user must be able to cancel (abort) this part of the dialogue, and possibly go on 
with Tusk 1. This is achieved by the reinstate rule that is parsed as a result of receiving the token 
canceltok. Note that if the application wishes that the user cancels the dialogue (e.g. restrict the 
number of guesses a user may have at the name) it is also possible for the application to generate 
this token. We discuss this in the next section. 

The store and reinstate rules that are added to the grammar must satisfy the following conditions. 

l A reinstate should be the last item of a rule. This should be intuitively obvious-everything 
after the reinstate will never be executed. 

l We can only reinstate a rule that derives the current rule. 
l The nonterminal specified in a reinstate is unique because each nonterminal can only appear 

once on the left-hand side of a rule. 
l A reinstate can only be to a stored rule. 

In practice, XYACC inserts an extra rule into the grammar when it encounters a store rule. This 
extra rule has as semantic action a call to a routine that stores the current state. For example, the 
rule “A ! LX;” becomes 

A : {store(A);}B; 
B : cr; 

The function store@) stores the state of the automaton in a structure indexed by its argument (in 
this case A ). When a reinstate rule is encountered, a call to a routine that reinstates the stack is 
inserted in the semantic action of that rule. Of course, while dialogue can be cancelled, semantic 
actions that are executed during the dialogue cannot be undone. This is the responsibility of the 
application programmer. 

5.4. Application-directed dialogue 

We have assumed until now that the tokens that the dialogue receives come only from the 
user-interface. This need not, however, be the case. By changing the interface to the automaton 
slightly, we can allow the application to also generate tokens. We do this by defining a global 
variable nexttoken than can be set by the application, and by adding a routine that after having 
called the automaton, checks to see if a token has been placed in the variable (by the application, 
during the call). If so, then it re-calls the automaton with this token as parameter, otherwise it 
simply returns. The new interface loops on the variable nexttoken until the application places no 
more new tokens in this variable. 

To illustrate the role the application can play in a dialogue consider the following grammar. 

s : L (if (init( )) nexttoken = abort;} 

I AR 
A : L 

I u; 
B : t 

1 abort {printf(“unable to init\n”);}; 

Here we show for the first time semantic actions in the form of simple C-code. In this dialogue, 
the function init ( ) is first called to initialize the application. If it is not able to do so, then the token 
abort is placed into nexttoken. The effect of this is to make the automaton take another step (and 
process the token abort): the nonterminal A will match the empty string, B will match the terminal 
abort, an error message is generated, and the dialogue is finished. If, however, the application was 
initialized successfully, then the nonterminal A will match ~1, and B will match the empty string. 

5.5. Highlighting active widgets 

In standard X-windows, a widget that has a callback will be highlighted whenever the mouse 
is positioned on it. But not all widgets, of course, correspond to tokens that are valid (to the 
automaton). Because we have separated the user-interface and the dialogue, the user-interface, and 
hence the user, cannot know which widgets are active (correspond to valid tokens), and which are 



A grammatical specification of humanxomputer dialogue II 

inactive. This is information that only the dialogue has at its disposal. If all widgets that have a 

callback are highlighted, then this will mislead the user. 
It is true, of course, that if the user activates an invalid callback, then the corresponding token 

will be ignored by the automaton, but this behaviour does not support the user in any way--- his 
time has been wasted, and he cannot actually be sure that the application did nothing, it just 
appeared to do nothing. We could remedy this problem by including ‘error’ rules in the 
corresponding context-free grammar. These rules ‘catch’ invalid tokens. and generate error 
messages. This, however, is a messy and error-prone process, and makes the specification less 
readable and manageable. 

During parsing, the tokens that are valid to the automaton are referred to as the looX_ -uhrad set. 
Normally speaking, the look-ahead set is not available to the user. The look-ahead set can be 
extracted from the automaton and used to indicate which widgets are active. This can be presented 
to the user in 2 ways. 

l If the mouse is positioned on a valid widget, then it is bolded. 
l After every user action, invalid widgets (buttons) are automatically shaded out. so the usei 

knows (independent of the position of the mouse) that they are inactive. 

The former solution is clearly unacceptable. It requires the user to ‘wander’ around the screen to 
determine which (command) widgets are active. The latter solution results in the user-interface 
refreshing itself after each user action. The user-interface automatically sensitises those widgets that 
become members of the look-ahead set, and desensitizing those that leave. 

The implementation of a scheme to highlight active widgets is a twofold problem. 

l First the look-ahead set needs to be extracted. This can be done statically (while the 
automaton is being generated), or dynamically (during interaction between the user and 
application). The former solution is the most efficient, but it does have the disadvantage that 
the look-ahead information must be stored for later use. For this reason, and reasons of 
transparency. it was decided to extract the look-ahead set dynamically. This involved adding 
a routine to the generated automaton that simulates all possible parses. That is. the 
automaton, before returning control to the user after a ‘shift’ (and possibly some number 
of reductions), calls a ‘dummy’ parser for each token. Those tokens that could be successfully 
parsed by the dummy parser are valid, and are placed in the look-ahead set. Doing this 
computation for every token generated by the user-interface could be expected to degrade 
the performance of the system. This was not the case, however. There was no noticeable 
performance degradation. 

l The second problem is making use of the look-ahead set. While the automaton knows what 
the lookahead-set is, it does not know the names of the widgets corresponding to each of 
the tokens in the set. To overcome this problem, the user-interface initializes. at start-up time. 
an array that couples token names and widget names. The call to the initialization routine 
is simply a callback associated with the root widget. 

Given the look-ahead set, and the array coupling tokens to widgets, the automaton can 
quite simply sensitize/desensitize each widget by setting/unsetting the appropriate resource. 

4s an example. consider the following grammar. 

s AorB T; 
7 

;; 
CorD U; 
EorF V; 

V GorH S; 
AorB atok/ btok; 
CorD ctok / dtok; 
EorF etok 1 ftok; 

GorH gtokl htok; 

In the dialogue specified here, the user must click on, in succession, an a or b button, then a 
c or d, an e or f, and finally a g or h. Clicking on an a button generates the token utok, clicking 
on a b button generates the token btok, and so on. The dialogue cycles endlessly. The appearance 



12 Albert Nymeyer 

Fig. 7. The user-interfaces resulting from a sequence of user actions. 

of the user-interface at each step in the process is shown in Fig. 7. Notice in this figure that only 
those buttons that are active are highlighted (bolded) at each step, and the others are shaded out. 

6. XYACC,AND DIALOGUE SPECIFICATION 

XYACC is now able to generate an automaton, which we call a dialogue controller, for an 
X-window application. In such an application, the user-interface plays the role of a scanner by 
generating tokens that represent the actions of the user. As these tokens are processed, the dialogue 
controller calls application routines. A schematic showing the relationship between the user- 
interface, dialogue controller, and application is shown in Fig. 8. 
To demonstrate how this scheme works in practice let us add a dialogue controller to the simple 

user-interface described in Section 4. To recap: in this user-interface the user can replace the label 
“old message” by the label “new message” in a button by clicking on that button, and he can 
terminate the application by clicking on the “Quit” button. 

We must first modify the user-interface. Instead of calling the application, the user-interface must 
now call the dialogue controller for each user action. Each call has a token to represent the action 
as parameter. This is a minor change to the resource specification of the user-interface. 

We now need to define the dialogue. Because the user can do very little, the dialogue specification 
is also near-trivial. There are, however, some design decisions that need to be made. Should the 
user, for example, be allowed to click on the first message only once, in which case the dialogue 
could be specified using the rule 

S : reptok; 

or should we explicitly cater for clicking on this widget ad nauseum, by using a recursive rule like 
S : reptok 

1 S reptok; 

The latter rule contains much redundancy because second and subsequent clicks on this widget not 
only do nothing in the application (although one could argue that the user should nevertheless be 

xyacc 9 
user-interface J 

dialogue call 
controller 

screen update 

Fig. 8. A schematic of an X-window application with dialogue. 



A grammatical specification of human<omputer dialogue 13 

nmg 

good guem 

QiVO-UP Quit 
b Jl 

Fig. 9. A snapshot of the user-interface of xhangman 

given the freedom to do this), the extraneous tokens that are generated are also ignored by the 
automaton. We choose the former rule. 

To complete the specification we must add calls to the ‘application’. This consists of a simple 
routine write2widgrt( ), which takes 2 parameters: the name of an activated widget, and a (new) 
string. The effect of this routine (the details are not shown) is to replace the label in the given widget 
by the string. The full dialogue specification is as follows. 

S : reptok{ write2widget($l, “new message”);); 

In this grammar, the attribute associated with reptok, referred to by $1, is the name of the activated 
widget. 

The above example is too trivial to show off the virtue of a dialogue specification. Let’s consider 
a more realistic example, namely the game hangman. We considered this game in Section 3, where 
we specified this game using a context-free grammar. This grammar, in fact, can be used to form 
the basis of a dialogue specification. Before presenting this, however, let’s consider a user-interface 
to the game, as it appears on the screen. An example of a game in progress is shown in Fig. 9. 
We will refer to hangman with this interface as xhangman. The user-interface consists of 8 widgets. 
From top to bottom, left to right, these are: a message widget (in this case containing the message 
“good guess”), an incomplete-word widget, a count widget, a button labelled “New game”. a 
widget that consists of buttons for each letter in the alphabet, a dialogue widget (containing an 
empty widget and a button labelled “Ok”), and 2 buttons labelled “Give-up” and “Quit”. At this 
stage in the game the user has made 5 guesses (the vowels), of which 2 were incorrect (namely ‘a’ 
and ‘u’). At any time the user can guess a letter, guess the word, give-up (the word will then be 
revealed), quit, or start a new game. If the user makes a good guess, then a corresponding message 
appears in the message widget, otherwise the message “bad guess” appears, and the count (widget) 
is incremented.? 

The resource specification of the user-interface to this game defines the layout and presentation 
of widgets, and associates callbacks to certain widgets (buttons). These callbacks send tokens to 
the dialogue controller. The labels on the buttons, and the associated tokens, are shown in Table. 

Table I 

Button Token 

New Game “WgWlle 
Ok word 

Give-up giveup 

q letq 

w letw 

m km 

Actually, various types of widgets are used in this user-interface. For example, the buttons 
representing the alphabet are called toggle widgets. They are called toggle widgets because they will 

tThe word, by the way, is heterocyclic. 



14 

HW 

Fini 

List 

LorW 

Cancel 

Letter 

! 

List 

Albert Nymeyer 

Cancel 
Fini 
Cancel ; 

: r 

1 List 
LorW ; 

: Letter { 

1 
: c 

newgame 

<Hang> ; 
: leta { 

. . . 

{ initia.Lise( cannot ); 
writeZwidget( *message, “Your word has %d letters”, strlen(temp)); 
writeawidget( *count, “%d”, count); 
writeawidget( *word, “%s”, temp); 

) 

writeawidget( *message, “Unable to init”); } 
writeawidget( $1, “The word is %s”, word); ) ; 

if (letcmp($l, word)) { 
setcmp($l, word, temp); 
if (strcmp(word, temp)) 

write2widget( *message, “Good guess” ); 
else 

writeawidget( *message, “CORRECT!“); 
writeawidget( *word, “%s”, temp); 

1 
else { 

write2widget( *message, “Bad guess”); 
write2widget( *count, “%d”, ++count); 

) 

(!strcmp( getword( $1 ), word)) { 
writeawidget( *message, “CORRECT!“); 
writeewidget( *word, “%s” , word); 

else { 
write2widget( *message, “Bad guess”); 
write2widget( *count, “%d”, ++count); 

$3 = ‘a’; toggle( $1 ); } 

Fig. 10. A dialogue specification of xhangman. 

permanently change from white to black when they are activated. (In the game, this tells the user 
that he has already guessed that letter.) Building a certain amount of ‘intelligence’ in the 
user-interface reduces the amount of work that the application and dialogue must do. The cost of 
this convenience, however, is that the system becomes less portable. (For example, if we only want 
to replace the user-interface, then we must choose an ‘equally intelligent’ one.) 

The tokens in the above table are used to control the dialogue. The corresponding dialogue 
specification of this game is shown in Fig. 10. Notice in the specification that explicit cancellation 
is used, and that the application can direct the dialogue during initialization. If the routine 



A grammatical specification of humanxomputer dialogue 

initialise() cannot fetch a random word, then the next token nexttoken is set to cannot. 
A description of the rest of the semantics is shown in the Appendix. 

7. CONCLUSIONS 

In this work, we have used a language model and a parser generator to build a UIMS. The 
user-interface dialogue, and application are separated in a clean, uniform way. The user-interface 
is specified using the X-window system, the dialogue controller is specified using a context-free 
grammar, and the application consists of a library of routines. The protocol between the 
user-interface and the dialogue controller consists of tokens, and between the dialogue controller 
and application, calls to application routines. The resulting UIMS is integrated, and requires a 
minimum of programming. 

The LALR parser generator used in this research, YACC, was able to handle a wide variety of 
dialogue-specification problems. It is a more powerful generator than the more popular ELL parser 
generators that have been used by other researchers (for references, see Section 2). In our case, this 
extra power was necessary because we concentrated on solving dialogue-specification problems 
syntactically. 

The modifications that have been made to YACC have been described. A step-by-step 
explanation of each modification is given, showing not only how each modification was made, but 
also why. Because of the simplicity of the system, it was possible to describe the operation of the 
system in some detail. 

The separation between the components in the system does come at some cost. There are 
times, for example, that the application needs to know to which window to send data. This 
information must come from the user-interface via the dialogue. Unfortunately, this communi- 
cation channel is sometimes clumsy and inconvenient. Attributes must be used, but these are 
limited. As a consequence, much data must be made global, but this blurs the boundaries, 
and results in dependencies between the components in the system. Unattractive ‘fixes’ like the 
initialization routine (described in Section 5.5) that couples widget names and token names 
are necessary. Although the problem of separate or shared data models for the user-interface 
and application faces all implementations of the Seeheim Model, this problem is not often 
addressed in the literature. Exceptions are the recent work of Neelamkavil and Mullarney [24]. 
who built a UIMS called PAPILLON, and Wood and Gray [18], who built CHIMERA. 
Neelamkavil and Mullarney do not resolve the problem, but Wood and Gray do by adding 
a special interface, called a linkage component, between the dialogue and application layers 
of the Seeheim Model. 

While the division of labour between the 3 components at an abstract level is clear, an interface 
builder is often confronted in practice with the problem of whether to place (input/output) facilities 
in the user-interface, or in the dialogue. This is often a clean design versus convenience issue, which 
can be greatly influenced by the available resources (the widget set, for example), but it is also a 
matter of style. A ‘clever’ presentation component, for example, can significantly reduce the amount 
of work that the dialogue and application components must do. However, a ‘clever’ presentation 
component requires application-specific information, which is inconsistent with the Seeheim 
Model, and blurs the boundary between the user-interface and the application [25]. There is 
unfortunately little reference to this issue in the literature. The exception here is Wiecha et ul. [Xi]. 
who. as well as defining a dialogue component, split the user-interface into a layer that contains 
a set of screen primitives and a layer that consists of style rules. This style layer defines the 
presentation and behaviour of a family of interaction techniques. 

The major improvement to this work would be the addition of a dynamic application interface. 
It is simply not good enough to define the semantics as calls to routines. As well, a clearer 
separation of concerns and a better data model are necessary. Multi-threading, error handling, a 
help facility, and a mechanism to handle the continuous sampling of events are also needed. 

AcknoM,[rdRrmenr~Many thanks to Rick Mud who built an early prototype of the system and first specified the dialogue 
of hcmgmnn. 



16 Albert Nymeyer 

REFERENCES 

1. Green, M. Report on Dialogue Specification Tools. In Proceedings of the Workshop on User Interface Management 
Systems (Edited by Pfaff, G. E.), pp. 9-20. Seeheim: Springer-Verlag; 1983. 

2. Morse, A. and Reynolds, G. Overcoming current growth limits in UI development. Commun. ACM 36: (April) 73-81; 
1993. 

3. Johnson, S. C. YACC-Yet Another Compiler-Compiler. Murray Hill, NJ: Bell Laboratories, CSTR 32; 1975. 
4. Green, M. A survey of three dialogue models. ACM Trans. Graphics 5: (July) 244-275; 1986. 
5. Pamas, D. L. On the use of transition diagrams in the design of a user interface for an interactive computer system. 

Proc. 24th Nat. ACM Conf. (1969). 
6. Jacob, R. J. K. Using formal specifications in the design of a human-computer interface. ACM Trans. Graphics 26: 

(April) 259-264; 1983. 
7. Wasserman, A. I. Extending state transition diagrams for the specification of human-computer interaction. IEEE Trans. 

Softw. Engng 11: 699-713; 1985. 
8. Roudaud, B., Lavigne, V., Lagneau, 0. and Minor, E. SCENARIOO: a new generation UIMS. In Human-Computer 

Interaction-INTERACT ‘90 (Edited by Diaper, D. et al.), pp. 607-612. North Holland: Elsevier Science; 1990. 
9. Hill, R. D. Supporting concurrency, communication and synchronization in humanxomputer interaction-the 

Sassafras UIMS. ACM Trans. Graphics 5: (July) 179-210; 1986. 
10. Sibert, J. L., Hurley, W. D. & Bleser, T. W. Aduances in Human-Computer Interaction 2. Norwood, NJ: Ablex; 1987. 
Il. Olsen, D. R. Automatic generation of interactive systems. Computer Graphics 17: 53-57; 1983. 
12. Olsen, D. R. & Dempsey, E. P. Syntax directed graphical interaction. ACM SIGPLAN Notices Symp. Progr. Lung. 

Issues Softw. Syst. 18: 112-117; 1983. 
13. Olsen, D. R. and Dempsey, E. P. SYNGRAPH: a graphical user interface generator. Computer Graphics 17: 43-50; 

1983. 
14. Olsen, D. R. Pushdown automaton for user interface management. ACM Trans. Graphics 3: 177-203; 1984. 
15. Olsen, D. R., Dempsey, E. P. and Rogge, R. Input/output linkage in a user-interface management system. Computer 

Graphics 19: 191-197; 1985. 
16. Scott, M. I. and Yap, S.-K. A grammar-based approach to the automatic generation of user-interface dialogues. Proc. 

CHI’88 Co& 1988. 
17. van den Bos, J. Abstract interaction tool: a language for user-interface management systems. ACM Trans. Progr. Lung. 

Syst. lo: 215-247; 1988. 
18. Wood, C. A. and Gray, P. D. User interface-application communication in the Chimera UIMS. Software-Practice 

Exp. 22: 63-84; 1992. 
19. Olsen, D. R. MIKE: the menu interaction kontrol environment. ACM Trans. Graphics 5: 318-344; 1986. 
20. Shneiderman, B. Direct manipulation: a step beyond programming languages. IEEE Computer 16: 57-69; 1983. 
21. Edmonds, E. and Hagiwara, N. An experiment in interactive architectures. In Human-Computer Interaction-INTER- 

ACT ‘90 (Edited by Diaper, D. et al.), pp. 601-606. North Holland: Elsevier Science Publishers; 1990. 
22. Hartson, H. R. User-interface management control and communication. IEEE Software 6: 62-70; 1989. 
23. Jacob, R. J. K. A specification language for direct-manipulation user-interfaces. Commun. ACM 5: 283-317; 1986. 
24. Neelamkavil, F. and Mullarney, 0. Separating graphics from application in the design of user interfaces. Computer 

.I. 33: 437-443; 1990. 
25. Hurley, W. D. and Sibert, J. L. Modeling user interface-application interactions. IEEE Software 6: 71-77; 1989. 
26. Wiecha, C., Bennett, W., Boies, S., Gould, J. and Greene, S. ITS: a tool for rapidly developing interactive applications. 

ACM Trans. Inform. Syst. 8: 204-236; 1990. 

APPENDIX 

initiulise( ) Places a random word in a string word, a series of dots in the string temp, and initialises an array used to 
store the letters that have already been guessed. Return success or failure of these activities. 

letcmp() Check to see if the first parameter, a letter, is in the second parameter, word. Return success or failure. 
setcmp( ) The first parameter is a letter. For each instance of this letter in the second parameter, word, copy the letter 

to the corresponding position in the third parameter, temp. 
strcmp( ) If the two string parameters are equal, return success, otherwise return failure. 

About the Author-ALBERT NYMEYER received his Bachelor of Mathematics degree in 1974 and 
Diploma in Computer Science in 1975, both at the University of Newcastle, Australia. After working for 
a period as a research assistant, he began his Ph.D. studies at the same university in the field of theoretical 
physics. This research involved computer simulations and series analysis of the critical behaviour of various 
lattice models. He received his Ph.D. in 1985. In 1987 he took up a lecturing position in computer science 
at the University of Twente, The Netherlands. He is currently a member of the Tele-Informatics and Open 
Systems group, and is involved in research into compiler design, software tools supporting the development 
of formal-specification languages, and user-interface management systems. In 1995 a book of compiler 
generation will be published in which he is co-author. 


