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Abstract 

This paper deals with the theory of an ax-gap capacitor used as a mlcromechamcal resonator Both static and 
dynamic aspects are dlscussed A single-element approach for the electrostatic exntatlon and capacitive detectton of 
the vibrational motion of the resonators IS described The non-hnear character of the electrostatic force IS accounted 
for m the static analysis The behavlour of the iur-gap capacitor IS modelled as a lumped sprmg-mass system and 
its hmltatlons are dlscussed Also an equivalent electrical one-port network IS denved, which can be used m a clrcmt 
simulation to account for the mechamcal behavlour of the resonator The results obtained from the sprmg-mass 
system are compared wtth the results obtamed from a more elaborate numerical analysis of the air-gap capacitor 
The lumped spnng-mass system IS adequate for modellmg the air-gap capacitor 

Introduction 

The an--gap capacttor cons& of two electrodes 
separated by a gap The gap can be air (or any 
other gas) or vacuum The structure forms a 
(rmcro)mechamcal resonator, which can be used 
as the sensing element m mechanical sensors [ 1,2] 
In this paper only flexurally vibrating elements are 
discussed One electrode 1s formed by the vlbratmg 
element, e g , a beam, and the other electrode by a 
stationary surface m close proxmuty to the vlbrat- 
mg element A schematic cross section of the 
structure 1s shown m Fig 1 

The structure 1s excited by means of the electro- 
static force between the capacitor plates The VP 
bratlonal motion 1s detected as a change of the 
capacitance caused by the fluctuating gap spacing 
Electrostatic excitatlon/capacltlve detection was 
first described by Nathanson et al m 1967 [3] and 

has been used by several authors since then [4-61 
Here, a two-terminal device 1s described, where a 
single element 1s used for both the excltatlon and 
detection of the vibration [5,7,8] The structure 
can be modelled as an electrical one-port network 
This 1s m contrast to the two-port approach, 
where separate elements are used for the excttatlon 
and detection of the motion [4,6] 

In this paper, the effect of the static deflection 
caused by the d c polarlzatlon voltage 1s mcluded 
m the analysis of the behavlour of a clamped- 
clamped pnsmatlc beam The pull-m voltage and 
the resonance frequency of the air-gap capacitor 
and the modal capacitance of the equivalent elec- 
tncal network are computed using numerical 
methods Guldehnes are given to derive a lumped 
sprmg-mass system for a gven air-gap capacitor 

Principle of operation 
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Fig 1 Sketch of an electrostatically excited and capacltwely detected 
beam (air-gap capacitor), driven by means of a smgle element 

The air-gap capacitor typically consists of a 
clamped-clamped beam with a top dnve electrode 
extendmg from x = xl to x = x2, see Fig 1 The 
bottom electrode 1s formed by a stationary sur- 
face The a c dnve voltage u(t) 1s superunposed 
onto a d c polarlzatlon voltage VP to avoid exclta- 
tlon at twice the drive frequency [3] The vlbra- 
tlonal motion will change the gap spacmg and 
therefore also the capacitance Because of the 
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changing capacitance, an a c current will flow 
through the air-gap capacitor The a c current IS a 
measure of the amplitude of the vibration The 
polarlzatlon voltage VP across both electrodes ~111 
cause an electrostatic force between the top elec- 
trode and the bottom electrode which IS mversely 
proportional to the square of the gap spacing Due 
to the non-linear behavlour of the electrostatic 
force, there IS a posslblhty of mstablhty, I e , col- 
lapse of the structure An axial strain apphed to 
the beam will change the resonance frequency, and 
m this way the an--gap capacitor can be used as a 
strain-sensing element [ 21 Typical dimensions of a 
mlcromechamcal au--gap resonator are gap spac- 
mg = l-2 pm, length = 100-500 pm, width = lo- 
100 pm and thickness = l-3 pm 

Theoretical model 

The differential equation of motion governing 
the deflection W(x, t) of a prismatic beam with a 
rectangular cross section, subjected to an axial 
tensile load N and a transverse electrostatic drive 
load q(x, I) can be expressed as 

E,IB4W(x, 0 _ Na2wx, 0 
ax4 ax* 

a*w(x, t) 
+ebh at2 

+cawx,o 
at = 4(x, 0 (1) 

where E’, I, Q and c are the effective Young’s 
modulus, second moment of Inertia, specific mass 
and the VISCOUS drag parameter, respectively, and 
b, h, x and t are the urldth and thickness of the 
beam, posltlon along the beam length and time, 
respectively For wide beams (b > 5h) the effective 
Young’s modulus equals E/( 1 - v*) [9], where E 
and v are Young’s modulus and Poisson’s ratio, 
respectively The air-gap capacitor 1s excited by 
applying an a c dnve voltage u(t) superimposed 
on a d c polarlzatlon voltage V, [ 3-5,7] The 
polanzatlon voltage V, causes a static deflection 
rstat(x) of the beam The overall deflectlon W(x, t) 
can be written as a superposltlon of the static de- 
flection Y&X) and the dynamic deflection w(x, t) 
W(x, t) = ystat(x) + w(x, t) Assuming the direction 
of the electric field vector to be perpendicular to 
the x-axis along the en&e beam length (Fig 1) 
and for w(x, t) -$ d -y&x) and u(t)* 4 VP*, the 
electrostatic load can be expressed as a superposl- 

tion of a static load qd C (x) and a dynamic load 
qa C (4 

1 Eo &,b[ VP + 4012 
q(x’ t, = 2 [d - y,,,(x) - w(x, t)]’ 

1 +z,bVp2 w,Wf)~~ 

= j [d - ~stat WI * + id - ~statW1~ 
=qdc(X)+qa.kt) (2) 

where E,,, E, and d are the dielectric constant of 
vacuum, the relative dlelectnc constant of the gap 
medium and the zero-voltage gap spacing, respec- 
tively 

Static behavlour 
The attractive electrostatic force qd c (x) caused 

by the polanzatlon voltage VP IS inversely propor- 
tional to the square of the gap spacmg d -y&x) 
(eqn (2)) An increase of the deflection of the 
beam results m a decrease of the gap spacing and 
thus m an increase of the electrostatic force If V, 
exceeds the so-called pull-m voltage Vpl, the 
deflection does not reach an eqtuhbrmm posltlon 
and will continue to increase until physical contact 
1s made with the stationary bottom electrode The 
system 1s mechanically unstable [3] For polanz- 
atlon voltages smaller than Vpl, the deflection 
yStat(x) will reach an equlhbnum posltlon and the 
electrostatic force balances the restormg force 
caused by the stiffness of the beam The static 
deflection v,,,(x) can be found by solving the 
non-linear dtierentlal eqn (l), thereby setting the 
time derivatives equal to zero An analytlcal 
closed-form solution of the deflection curve yStat(x) 
cannot be found, instead an iterative numerlcal 
procedure can be used The iterative solution pro- 
cess can be expressed as 

E,I d4yh) 1 wrb VP* 
7=- 2 Id -yn-,(x)1’ 

+Nd2y.-d4 
dx= 

n = 2,3,4, 

YlW = 0 (3) 

dZylcO 
dx* 

where m(x) 1s the n th lteratlon of the static deflec- 
tion, satlsfymg the boundary condltlons of the 
beam For the numerical computations, the beam 
1s divided into a fimte number of length intervals 
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The fourth to the first derivatives and the dlsplace- 
ment at every pomt m the mterval are computed 
using the backward Euler method [lo] For polar- 
lzatlon voltages VP smaller than the pull-m voltage 
VPlpT, the algorithm of eqn (3) will converge to the 
equlhbrlum static deflection of the beam For po- 
lanzatlon voltages exceeding the pull-m voltage, 
the static deflection will continue to increase and 
finally equals the gap distance d For small axial 
loads N the algonthm described by eqn (3) works 
properly For moderate axial loads, however, only 
a fraction of the change m yn and yn@) between two 
iterations should be used to ensure convergence 
For large axial loads, the clamped-clamped beam 
can be modelled as a stnng, 1 e , lgnormg the term 
with the fourth derivative m eqn (1) The al- 
gorlthm described m eqn (3) can now be wntten as 

N d2yn(x) 1 &o&,bVp2 
-= -Z[d_y,_I(x)]2 n =273,47 dx’ 

(4) 
Y,(X) =o \ 

The numerical solution methods described 
above can be used for polanzatlon voltages close 
to VP, In normal operation of the air-gap capaa- 
tor applied as a resonator, the polanzatlon voltage 
will be much smaller than the pull-m voltage, 
resulting m a deflection of the beam that 1s small 
compared to the gap spacing In this case, the load 
given by eqn (2) can be hneanzed, and a set of 
first-order differential equations 1s obtained, which 
can be solved numencally with known algorithms 
[lo] Other methods based on mmlmum-energy 
prmaples, where an approximate shape function 
for the deflection of the beam 1s assumed, can also 
be used [ 1 l] 

Dynamzc behavlour 
The steady-state solution of eqn (l), for a beam 

with length 1, driven by a harmonic dnvmg load 
qa c (x, t) = qa C (x) expbot) can be obtained using 
a modal analysis [ 8, 12, 131 

w(x, 0 
x2 

where 

Ad,, = ebb 
s 

&(x)‘dx (generalized mass) 

0 

and 4,,(x) and o, are the mode shape function 
and the natural frequency of the nth mode, respec- 
tively, which can be found by solving the elgen- 
value problem associated with eqn (1) [ 141, and 
Qn 1s the quality factor of the n th mode Optl- 
ma1 excitation of a particular mode 1s achieved 
when the integral m the numerator 1s maximal 
On the other hand, suppression of a certain 
mode 1s achieved by making the integral very 
small or, better, zero This can be done by a 
proper choice of the electrode configuration To 
excite the fundamental mode (n = l), one can take 
a symmetric electrode configuration with respect 
to the centre of the beam In this way all the 
asymmetnc modes will be suppressed Theoretl- 
tally, It 1s possible to excite the fundamental sym- 
metric mode with a lower efficiency compared to 
the optimal excitation of the fundamental mode, 
meanwhile suppressmg the second mode (asym- 
metric), the third mode (symmetric), the fourth 
mode (asymmetric) and all higher-order asymmet- 
ric modes This 1s achieved by designing a symmet- 
ric electrode configuration with respect to the 
centre of the beam m such a way that the integral 
m the numerator of eqn (5) equals zero for the 
third mode 

To denve an electrical one-port network of the 
air-gap capacitor of Fig 1, the admittance seen at 
the electrical terminals 1s denved [8] The small 
signal detection current l(t) flowing mto the port 1s 
gven by (for u(t) Q VP) 

where C, 1s the static capacitance, gven by 

x2 

Co = t+,b 
s 

dx 
d - ~stat 6) 

(6) 

(7) 

and C(t) 1s the momentary capacitance For vlbra- 
tlonal amplitudes that are small compared to the 
gap spacing, the time derivative of the momentary 
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capacitance IS given by 

x2 

WO d 
- = cO&,b - 

dx 
dt dt d -Y,,,,(X) - w(x, 0 

x2 s WC-4 dx 
zJLoEoErb [d -ys,,,(x)]* (8) 

where w(x) 1s the amphtude of the vibration, 
w(x, t) = w(x) exp(Jot) The approxlmahon m 
eqn (8) applies for w(x) 4 d - ystat(x) Combm- 
mg eqns (2), (5), (6), (7) and (8) yields an ex- 
pression for the admittance Y(Jo) of the air-gap 
capacitor 

Y(JW) E ; = ‘WC, 

-9 

X [S Mx) dx * 
Id - ~,,a, WI * 1 

XI 

(9) 

The expression for the admittance of the an--gap 
capacitor given by eqn (9) can be represented by 
the one-port network shown m Fig 2 [ 8, 131 This 
equivalent electrical network can subsequently be 
used m a circuit slmulatlon, e g , SPICE, as a 
convenient way to account for the mechanical 
behavlour of the resonator The static capacitance 

Ftg 2 Equxvalent electrd one-port network of the ;ur-gap capacl- 
tot shown I” Frg I 

Co IS given by eqn (7) The dynamic component 
values of the electrical network are gven by 

= (%ErbVp)Z x2 [S b,(x) dx 
1 

’ c 
n %*M” [d - ~statW1~ 

1 
L” =- 

Q&*c, 

and 

(10) 

(11) 

(12) 

Mechamcal mstablhty, caused by polarlzatlon 
voltages exceeding V,,, has already been dls- 
cussed m the previous Sectlon Another effect 
of the polanzatlon voltage 1s the lowermg of 
the natural frequency of the an--gap capacitor 
due to the gradient m the transverse electro- 
static force, which varies with the polarlzatlon 
voltage [3] A good approxlmatlon for the reso- 
nance frequency can be found from an anal- 
ys~s based on Rayleigh’s energy method [ 121 
Besides the contrlbutlon to the potential en- 
ergy due to bending and axial deformation of the 
beam, an additional term Elaad( V,), representing 
the change m energy of the electnc field m the gap 
due to the vlbratlon, must be included Using a 
first-order approxlmatlon, this term can be ex- 
pressed as 

x w(x) dw(x) dx 

1 x2 %&5 0 =-- 
2 s I wx, 0 w(x, I) =o 

G*(x) dx 

x2 

1 E -- 
s 

EoGVp2 
2 [d - ~,,a, WI 3 

I,’ dx (13) 

where G(x) 1s the assumed shape of the particular 
mode and q(x, r) IS gven by eqn (2) The last 
approximation m eqn ( 13) applies for u(t) << VP 
and w(x) 4 d -ystat(x) The angular resonance fre- 
quency w,(N, VP) of mode n as a function of the 
axial load N and the polarization voltage VP can 
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The first two terms m the numerator represent the 
potential energy due to bending and axial defor- 
matlon of the beam, respectively The last term of 
the numerator represents the change m potential 
energy due to work done by the electrostatic force 
This term makes the resonance frequency depen- 
dent on the polanzatlon voltage VP At the pull-m 
voltage, the fundamental frequency (n = 1) equals 
zero This behavlour 1s snmlar to the buckling 
phenomenon [ 141 The resonance frequency of the 
higher-order modes will not equal zero at the 
pull-m voltage 

To Indicate the dependence of the angular reso- 
nance frequency of the fundamental mode (n = 1) 
o, on the applied axial strain E = N/(Ebh) and on 
the polanzatlon voltage VP, the angular resonance 
frequency of the fundamental mode can conve- 
niently be wntten as 

W12(&, VP) = 0,2(E) + &Dad ( VP1 ) 
I (1% 

; ebb G*(x) dx 
I 
0 

where 

w,*(E) = fqo* 1 + 0 295&( I - v’) 
1 * 01 7; (16) 

and olo 1s the angular resonance frequency of the 
fundamental mode for zero applied strain The 
expression above (eqn ( 16)) IS found from an 
analysis based on Rayleigh’s energy method, 
where the mode shape for zero applied axial load 
1s taken as the approximate shape function [2] 

Sprang-mass model 
Because of the complexity of the model of the 

air-gap capacitor, which makes It unsuitable for 
qmck design calculations, it would be attractive to 
have a simple model to predict the static and 
dynamic behavlour of the resonator with sticlent 

(14) 

accuracy A lumped sprmg-mass system, see Fig 
3, provides such a model [3], but the accuracy of 
the model has never been venfied The lumped 
spring-mass system 1s dimensioned m such a way 
that the static and dynamic behavlours of the 
spring-mass system resemble the static and dy- 
namic behavlours of the air-gap capacitor m a 
narrow frequency regune around the fundamental 
mode Also, the sprmg-mass system has to be 
dlmensloned mthout the necessity for difficult cal- 
culations The zero-voltage gap spacing d and the 
electrode area A = (x2 - x,)b are chosen to be the 
same for both systems An appropnate choice for 
the spring constant K. of the spring-mass system 
would be the static sprmg constant seen at the 
centre of the beam for zero apphed axial load For 
a dnve electrode urlth a uniform width, the sprmg 
constant K. could be defined as the sprmg con- 
stant of a beam subjected to umform load q. 

x2 
r 

J qo dx 

“=%iT (17) 

Ystat - 
\ II 2 90 

For a clamped-clamped beam wth the dnve elec- 
trode extendmg along the entire beam length, I&, 1s 
gven by & = 384E’I/i3 An additional term K, 
gven by eqn (20) 1s added to include the effect of 
the axial stram The overall sprmg constant K 1s 
gven by K = & + K,, see also Fig 3 

The mass of the spring-mass system 1s chosen m 
such a way that its resonance frequency equals the 
fundamental resonance frequency of the an-gap 
capacitor wth zero applied polanzatlon voltage, 
as gven by eqn ( 16) For the lumped sprmg-mass 
system the angular resonance frequency o;~(E), 
with zero applied polanzatlon voltage, 1s given by 

(18) 
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Vp+uM 

Fig 3 Sketch of the equwalent spring-mass system that IS used as a 
model for the ax-gap capacitor and can be used for qmck design 
calculations K,, 1s the static spring constant seen at the centre of the 
beam for zero apphed axial load An additional spnng constant K, is 
added to m&de the et&t of the axial stram 

Combmmg eqns ( 16) and ( 18) for E = 0 yields the 
mass of the spring-mass system 

M = Ko/olo2 (19) 

The sprmg constant K, 1s found by combmmg 
eqns (16), (18) and (19) 

K, = K,O 295&( 1 - v’) (20) 

The angular resonance frequency of the sprmg- 
mass system oS;n@, VP) as a function of the axial 
strain (apphed to the air-gap capacitor) and the 
polaIlzatlon voltage can be expressed as [3] 

w;~(E, VP) = o;~(E) 3 - 2 d 
l/2 

d - YO(VP) 
(21) 

where yO(VP) IS the static displacement of the 
sprmg-mass system caused by the polarlzatlon 
voltage VP yO(VP) can be found by solvmg the 
followmg cubic equation resultmg from force eqm- 
hbrunn [3] 

(22) 

The viscous drag parameter c of the spring-mass 
system can be calculated from the quality factor 
Q, of the au--gap capacitor by 

c = MNrn(&, VP) 
QI 

(23) 

An expression for the pull-m voltage VbT of the 
sprmg-mass system can easily be derived by setting 
the denvatlve of the net force acting on the sprmg- 

mass system equal to zero [3] Combmmg this 
result with the spring constant K = & + K, of a 
clamped-clamped beam with the drive electrode 
extending along the entire beam length gives an 
approximate expresslon for the pull-m voltage of 
the beam 

8 Kd3 VP?= -- 
( ) 

1’2 

27 E,,E,A w 
1 +0295~(1 -v’) 

(24) 

The admittance seen at the electrical terminals of 
the spring-mass system can be derived m a slmllar 
way as for the air-gap capacitor The static capac- 
itance Ctm and modal capacitance C;” of the 
spring-mass system are gven by 

cs$n = &O&J 
d -YO(~P) 

and 

(25) 

(26) 

Results 

To have some Idea about the accuracy of the 
results obtained from the spring-mass system, a 
few examples are presented The equivalent sprmg- 
mass system 1s dimensioned with the guidelines 
given m the last paragraph First the pull-m 
voltage obtained from the model of the air-gap 
capacitor IS compared with the pull-m voltage 
obtained from the sprmg-mass model 

The pull-m voltage VP1 of the air-gap capacitor 
1s computed with the algonthm described by eqns 
(3) and (4) The pull-m voltage VP? of the eqmva- 
lent spring-mass system 1s computed from eqn 
(24) The results of the computation of the pull-m 
voltages for tierent beam &menslons are given m 
Table 1 It turns out that the estnnated pull-m 
voltage V$T 1s roughly 10% lower than the actual 
pull-m voltage VP, computed for an air-gap capac- 
itor with the electrode extendmg along the entire 
beam length and for small axial strains It can be 
shown that for higher strain levels and/or an elec- 
trode not extending along the entire beam length, 
the estimation will be more accurate 
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TABLE 1 Pull-m voltage and resonance frequency of the an-gap 
capacitor and the eqmvalent spring-mass model for various dmxn- 
smns and axial strams (E = 175 GPa, e = 2330 kg m-3, Y = 0 3 and 
er= 1) 

Length Width Thickness Gap Stram VP1 VK 
(pm) (Pm) (pm) (pm) (v) (V) 

beam lumped 

500 100 15 10 00 38 34 
500 100 15 50 00 42 38 
100 100 15 10 00 94 85 
500 100 15 10 10-5 43 39 
500 100 15 10 lo-* 58 61 
500 100 60 10 00 30 27 

The modal capacitance C, and the angular reso- 
nance frequency ~H~(E, VP) of the fundamental 
mode as a function of the applied axial strain and 
the polaIlzation voltage are computed for the ar- 
gap capacitor and compared w&h the modal ca- 
pacitance C;” and the angular resonance 
frequency ~IJ;~(E, VP) obtained from the sprmg- 
mass system To calculate the modal capacitance 
Cl and the resonance frequency ml@, VP), first the 
static deflection Y&X) 1s computed from eqns (3) 
or (4) An eighth-order polynonual of the static 
deflection curve of the beam 1s generated for a 
gven polatlzatlon voltage The polynomial fit of 
the static deflection IS used m eqns ( 10) and (13) 
to obtain the modal capacitance C1 and &,,(V,), 
respectively For 4,(x) and G(x), the mode shape 
of a clamped-clamped beam with an axial strain 
1s used m eqns ( 10) and ( 13) [2] For large axial 
strains (E = 10P2), a sme function 1s used as the 
approximated mode-shape function The angular 
resonance frequency is computed numerically from 
eqn (15) To calculate the modal capacitance Cim 
and the angular resonance frequency w~“‘(E, VP), 
the static deflection J+,( VP) of the spring-mass sys- 
tem has to be calculated A closed-form expression 
of the static deflection can be found by using a 
first-order Taylor series expansion for the solution 
of eqn (22), which results m 

(27) 

For polarlzatlon voltages up to 0 8 V$’ the error m 
the static displacement IS less than 5% For a 
polarlzatlon voltage of 0 9e the error 1s 10% In 
practical sltuatlons, where the polamatlon voltage 
is much smaller than the pull-m voltage, eqn (27) 

0 02 0'4 0'6 0‘2 ; 
VP/ v 

PI 

0 

Rg 4 The normalued modal capacitance (Cyd/b/, Cim*d/,4) and 
the normalued angular resonance frequency (w~(E, V,)/o, (E, 0), 
o;‘“(s, V,,)/O;~(~, 0)) vs the normahzed polanzatlon voltage (V,/ 
V,,, V,/V$‘) of the ax-gap capacitor wth various &menslons and of 
the eqmvalent spring-mass system The curves of the rur-gap capacl- 
tors with zero or small apphed axial strams all more or less comclde 

~11 provide a good approximation of the static 
displacement of the spring-mass system Because 
the static deflection yo( VP) given by eqn (27) 1s 
not accurate for polarlzatlon voltages close to the 
pull-m voltage VP?, eqn (22) 1s solved numen- 
tally 

Figure 4 shows the normahzed modal capaa- 
tance of the air-gap capacitor (CTd/bl) and the 
normalized angular resonance frequency of the 
air-gap capacitor (wl (E, VP)/wl (8, 0)) as a function 
of the normahzed polarlzatlon voltage for beams 
of vanous dlmenslons and different applied axial 
strains (see also Table 1) The angular resonance 
frequency 1s normalized to the angular resonance 
frequency with zero applied polarlzatlon voltage 
The curves of the beams with zero and small 
applied strains all comclde Figure 4 also shows 
the normalized modal capacitance (CP*d/A) and 
the normalized angular resonance frequency 
(~S”‘(E, Vp)/~~m(&, 0)) calculated from the eqmva- 
lent sprmg-mass model The modal capacitance 
Cf”’ found with the help of the spring-mass system 
1s roughly a factor 1 5 larger than the modal 
capacitor C, of the air-gap capacitor The reso- 
nance frequencies as a function of the polanzatlon 
voltage of the air-gap capacitor and the sprmg- 
mass system are approximately equal The modal 
capacitance C;” found from the spring-mass 
model can be used, after correction with a factor 
1 5, m the electrical equivalent clrcult of the one- 
port resonator 
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Conclusions 

A model of the electrostatically dnven and capac- 
itively detected resonator based on a smgle- 
element approach 1s presented, thereby mcludmg m 
the static behavlour the non-linear effects of the 
electrostatic force Gmdehnes are gven to dlmen- 
slon a lumped spring-mass system for a given air-gap 
capacitor, wlthout the need for tedious calculations 
For engmeermg purposes, the electrostatically 
dnven resonator can be described sufficiently accu- 
rately by a lumped spring-mass system The pull-m 
voltage computed from the spring-mass system 1s 
roughly 10% lower than the value computed for the 
air-gap capacitor The dependence of the resonance 
frequency on the normalized polarlzatlon voltage 1s 
approximately the same for both the spring-mass 
system and for the air-gap capacitor The equivalent 
electrical network can be used m cu-cult simulations 
to account for the resonator behavlour m a narrow 
frequency range around the fundamental frequency 
The electrical network can be dimensioned rapldly 
with the help of this lumped spring-mass system 
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