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Static and dynamic aspects of an air-gap capacitor
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Abstract

This paper deals with the theory of an awr-gap capacitor used as a micromechanical resonator Both static and
dynamic aspects are discussed A single-element approach for the electrostatic excitation and capacitive detection of
the vibrational motion of the resonators 1s described The non-lmear character of the electrostatic force 1s accounted
for m the static analys;s The behaviour of the air-gap capacitor 1s modelled as a lumped spring-mass system and
1ts limitations are discussed Also an equivalent electrical one-port network 1s derived, which can be used i a circuit
simulation to account for the mechanical behaviour of the resonator The results obtained from the spring-mass
system are compared with the results obtamned from a more elaborate numernical analysis of the air-gap capacitor
The lumped spring-mass system 1s adequate for modelling the air-gap capacitor

Introduction

The air-gap capacitor consists of two electrodes
separated by a gap The gap can be air (or any
other gas) or vacuum The structure forms a
(mucro)mechanical resonator, which can be used
as the sensing element 1n mechanical sensors [1, 2]
In this paper only flexurally vibrating elements are
discussed One electrode 1s formed by the vibrating
element, e g, a beam, and the other electrode by a
stationary surface n close proximity to the vibrat-
mg element A schematic cross section of the
structure 1s shown 1 Fig 1

The structure 1s excited by means of the electro-
static force between the capacitor plates The vi-
brational motion 1s detected as a change of the
capacitance caused by the fluctuating gap spacing
Electrostatic excitation/capacitive detection was
first described by Nathanson er a/ 1 1967 [3] and
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Fig 1 Sketch of an clectrostatically excited and capacitively detected
beam (air-gap capacitor), driven by means of a single element
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has been used by several authors since then [4-6]
Here, a two-terminal device 1s described, where a
single element 1s used for both the excitation and
detection of the wvibration [5, 7, 8] The structure
can be modelled as an electrical one-port network
This 1s 1n contrast to the two-port approach,
where separate elements are used for the excitation
and detection of the motion [4, €]

In this paper, the effect of the static deflection
caused by the d ¢ polarization voltage 1s included
i the analysis of the behaviour of a clamped-
clamped prismatic beam The pull-in voltage and
the resonance frequency of the air-gap capacitor
and the modal capacitance of the equivalent elec-
trical network are computed using numerical
methods Guidelnes are given to dertve a lumped
spring-mass system for a given air-gap capacitor

Principle of operation

The air-gap capacitor typically consists of a
clamped—-clamped beam with a top drive electrode
extending from x =x; to x = x,, see Fig 1 The
bottom electrode 1s formed by a stationary sur-
face The ac drive voltage u(f) 1s superimposed
onto a d ¢ polarization voltage V; to avoid excita-
tion at twice the drive frequency [3] The vibra-
tional motion will change the gap spacing and
therefore also the capacitance Because of the
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changing capacitance, an ac current will flow
through the air-gap capacitor The ac current 1s a
measure of the amplitude of the wibration The
polanzation voltage V5 across both electrodes will
cause an electrostatic force between the top elec-
trode and the bottom electrode which 1s inversely
proportional to the square of the gap spacing Due
to the non-linear behaviour of the electrostatic
force, there 1s a possibility of instability, 1 e, col-
lapse of the structure An axial stramn appled to
the beam will change the resonance frequency, and
m this way the air-gap capacitor can be used as a
stramn-sensing element {2] Typical dimensions of a
mucromechanical air-gap resonator are gap spac-
mg = 1-2 um, length = 100-500 pm, width = 10—
100 pm and thickness = 1-3 pm

Theoretical model

The differential equation of motion governing
the deflection W(x, f) of a prismatic beam with a
rectangular cross section, subjected to an axial
tensile load N and a transverse electrostatic drive
load g(x, ¢) can be expressed as

O (x, 1) 0*W(x, 1)

ET ox* N ox?
O*W(x, t OW(x, t

+obh 5t(2 )—+- c ‘gt ) =q(x, 1) (1)
where E', I, ¢ and c¢ are the effective Young’s
modulus, second moment of nertia, specific mass
and the viscous drag parameter, respectively, and
b, h, x and t are the width and thickness of the
beam, position along the beam length and time,
respectively For wide beams (b > 5h) the effective
Young’s modulus equals E/(1 —v?) [9], where E
and v are Young’s modulus and Poisson’s ratio,
respectively The air-gap capacitor 1s excited by
applying an ac dnive voitage u(f) superimposed
on a dc polarization voltage V3 [3-5,7] The
polanzation voltage Vp causes a static deflection
Vs (x) of the beam The overall deflection W(x, 1)
can be written as a superposition of the static de-
flection y,,(x) and the dynamic deflection w(x, ©)
W(x, £) = Pya:(x) + w(x, £) Assuming the direction
of the electric field vector to be perpendicular to
the x-axis along the entire beam length (Fig 1)
and for w(x, ) €d — Vua(x) and w(£)? < V32, the
electrostatic load can be expressed as a superposi-

tion of a static load g4.(x) and a dynamic load
Gac (X)
1 aeblVe+u®)’
2[d — yau(®) — wlx, O]
L e bV g0 bu(H)Vp

T 2[d P [ yuaOP?

=qac(X) +ac (1) (2
where ¢, ¢ and d are the dielectric constant of
vacuum, the relative dielectric constant of the gap

medmum and the zero-voltage gap spacing, respec-
tively

q(x, ) =

Static behaviour

The attractive electrostatic force g, (x) caused
by the polarization voltage V5 1s inversely propor-
tional to the square of the gap spacing d — yy..(x)
(egn (2)) An increase of the deflection of the
beam results in a decrease of the gap spacing and
thus 1 an ncrease of the electrostatic force If Vp
exceeds the so-called pull-in voltage Vp, the
deflection does not reach an equilibrrum position
and will continue to increase until physical contact
1s made with the stationary bottom electrode The
system 1s mechamically unstable {3] For polariz-
ation voltages smaller than Vp, the deflection
Yeaat(x) will reach an equilibrium position and the
electrostatic force balances the restoring force
caused by the stiffness of the beam The static
deflection yg..(x) can be found by solving the
non-linear differential eqn (1), thereby setting the
time derivatives equal to zero An analytical
closed-form solution of the deflection curve yy,.(x)
cannot be found, instead an iterative numerical
procedure can be used The 1terative solution pro-
cess can be expressed as

gy 1 aebVy’
dx*  2[d — ya_ (O
dzyn~1(x) _
+NT n-2,3,4,
yi(x) =0 (3)
Eyi(x)
dx? =0

where y,(x) 1s the nth tteration of the static deflec-
tion, satisfymng the boundary conditions of the
beam For the numerical computations, the beam
1s divided nto a fimte number of length intervals



The fourth to the first derivatives and the displace-
ment at every point mn the mterval are computed
using the backward Euler method [10] For polar-
1zation voltages Vp smaller than the pull-in voltage
Vpr, the algorithm of eqn (3) will converge to the
equibbrium static deflection of the beam For po-
lanzation voltages exceeding the pull-in voltage,
the static deflection will continue to increase and
finally equals the gap distance d For small axial
loads N the algorithm described by eqn (3) works
properly For moderate axial loads, however, only
a fraction of the change 1n y, and y,® between two
iterations should be used to ensure convergence
For large axial loads, the clamped—clamped beam
can be modelled as a string, 1 e, 1gnoring the term
with the fourth derivative in eqn (1) The al-
gorithm described in eqn (3) can now be written as

Ay, (x) 1 ee bV’

—_—r = =234
N T e T “
yi(x) =0

The numerical solution methods described

above can be used for polarization voltages close
to Vp; In normal operation of the air-gap capaci-
tor apphed as a resonator, the polarization voltage
will be much smaller than the pullin voltage,
resulting 1n a deflecion of the beam that 1s small
compared to the gap spacing In this case, the load
given by eqn (2) can be linearized, and a set of
first-order differential equations 1s obtained, which
can be solved numerically with known algorithms
[10] Other methods based on minimum-energy
principles, where an approximate shape function
for the deflection of the beam 1s assumed, can also
be used [11]

Dynamic behaviour

The steady-state solution of eqn (1), for a beam
with length /, driven by a harmomc driving load
gac (x, 1) = ¢, (X) exp(Jwt) can be obtained using
a modal analysis [8, 12, 13]

w(x, 1)

$a(x) J Dn(X)qac (x) dx

x1

= i - exp(jwt)
n=1 CU,.ZMn[l +_1_ (-19)_{_ (E)Z:I
Q. \w, o,
(5
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where

!

M, = obh f¢,,(x)2 dx (generalized mass)

0

and ¢,(x) and w, are the mode shape function
and the natural frequency of the nth mode, respec-
tively, which can be found by solving the eigen-
value problem associated with eqn (1) [14], and
0, 1s the quality factor of the nth mode Opti-
mal excitation of a particular mode 1s achieved
when the imtegral in the numerator 1s maximal
On the other hand, suppression of a certain
mode 1s achieved by making the integral very
small or, better, zero This can be done by a
proper choice of the electrode configuration To
excite the fundamental mode (n = 1), one can take
a symmetric electrode configuration with respect
to the centre of the beam In this way all the
asymmetric modes will be suppressed Theoret:-
cally, 1t 1s possible to excite the fundamental sym-
metric mode with a lower efficiency compared to
the optimal excitation of the fundamental mode,
meanwhile suppressing the second mode (asym-
metric), the third mode (symmetric), the fourth
mode (asymmetric) and all higher-order asymmet-
ric modes This 1s achieved by designing a symmet-
ric electrode configuration with respect to the
centre of the beam in such a way that the integral
in the numerator of eqn (5) equals zero for the
third mode

To derive an electrical one-port network of the
air-gap capacitor of Fig 1, the admittance seen at
the electrical terminals 1s denived [8] The small
signal detection current 1(¢) flowing into the port 1s
given by (for u(s) < V3)

du(r)
dt

dc()

1(f) = C, ar (6)

+ Ve

where C; 1s the static capacitance, given by

X2

Cy = goe.b J

X1

dx

d— YVsiar (x) (7)

and C(7) 1s the momentary capacitance For vibra-
tional amplitudes that are small compared to the
gap spacing, the time derivative of the momentary
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capacitance 1s given by

X2

e _  ,d dx
di T dr ) d = ygax) — wix, 1)
x|
X2
R Jweee b wx) dx (®)

[d — Vstat (x)] 2

X

where w(x) 1s the amplhitude of the wibration,
w(x, f) = w(x) exp(Qwt) The approximation 1n
eqn (8) applies for w(x) € d — ygu(x) Combin-
ing eqns (2), (5), (6), (7) and (8) yields an ex-
pression for the admittance Y(yjw) of the air-gap
capacitor

Y(o) == =0,
it (803rbVP)2
+ Y jo >
SN )
Qn wn wn
T hdx T
x “ [d—ystat(x)P] ®)

X1

The expression for the admittance of the air-gap
capacitor given by eqn (9) can be represented by
the one-port network shown i Fig 2 [8, 13] This
equivalent electrical network can subsequently be
used 1 a circuit simulation, e g, SPICE, as a
convenient way to account for the mechamical
behaviour of the resonator The static capacitance

¢L -

R

5
E

Fig 2 Equivalent electrical one-port network of the air-gap capaci-
tor shown i Fig 1

Co 15 given by eqn (7) The dynamic component
values of the electrical network are given by

X2

_ (80&:bV5)? Pa(x) dx P
“ =", [ [d—ysm(x)lz} (10)
1
Li="5F (11)
and
1 (L, \"?
(%)

Mechanical mstability, caused by polarization
voltages exceeding Vp;, has already been dis-
cussed 1n the previous Section Another effect
of the polanzation voltage is the lowening of
the natural frequency of the air-gap capacitor
due to the gradient in the transverse electro-
static force, which varies with the polarization
voltage [3] A good approximation for the reso-
nance frequency can be found from an anal-
ysis based on Rayleigh’s energy method [12]
Besides the contribution to the potential en-
ergy due to bending and axial deformation of the
beam, an additional term E,..4(¥p), representing
the change n energy of the electric field in the gap
due to the vibration, must be included Using a
first-order approxmmation, this term can be ex-
pressed as

xy W(x)

a b
Eload(Vp) ~ —J‘ f b_‘%(z'i_tt))

wix, ) =0
x; O

X w(x) dw(x) dx

X2

1 J‘ dq(x, 1)

2 ow(x, t)

3 Wwi(x) dx

w(x, )=0

X1

X2

<! f __GoecbVe®
e 2 [d - ystat (X)] 3

X1

Wi(x) dx (13)

where W(x) 1s the assumed shape of the particular
mode and g¢(x, f) 1s given by eqn (2) The last
approximation i eqn (13) apples for u(r) < Vp
and w(x) € d — Yy (x) The angular resonance fre-
quency w,(N, Vp) of mode n as a function of the
axial load N and the polarization voltage Vp can
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T

[ (dR(x)\ dvv(x))z B J
E’J( de)d”NK ax ) st g o

]

(Dnz(N, VP) =

*i

(14

!

obh f Wi(x) dx

0

The first two terms 1n the numerator represent the
potential energy due to bending and axial defor-
matton of the beam, respectively The last term of
the numerator represents the change in potential
energy due to work done by the electrostatic force
This term makes the resonance frequency depen-
dent on the polarization voltage Vp At the pull-in
voltage, the fundamental frequency (n = 1) equals
zero This behaviour 1s sumilar to the buckling
phenomenon [14] The resonance frequency of the
higher-order modes will not equal zero at the
pull-in voltage

To mndicate the dependence of the angular reso-
nance frequency of the fundamental mode (n = 1)
w, on the apphed axial strain ¢ = N/(Ebh) and on
the polarization voltage V5, the angular resonance
frequency of the fundamental mode can conve-
niently be written as

wte, V)=o) +—2am)__ ()
% obh jﬁz(x) dx
0
where
2 2 2 1 >
. (8) = wyg |:1+02958(1—v )(h-)] (16)

and w,, 18 the angular resonance frequency of the
fundamental mode for zero apphed stramm The
expression above (eqn (16)) 1s found from an
analysis based on Rayleigh’s energy method,
where the mode shape for zero applied axial load
18 taken as the approximate shape function [2]

Spring-mass model

Because of the complexity of the model of the
air-gap capacttor, which makes 1t unsutable for
quick design calculations, 1t would be attractive to
have a simple model to predict the static and
dynamic behaviour of the resonator with sufficient

accuracy A lumped spring-mass system, see Fig
3, provides such a model [3], but the accuracy of
the model has never been verified The lumped
spring-mass system 1s dimensioned n such a way
that the static and dynamic behaviours of the
spring-mass system resemble the static and dy-
namic behaviours of the air-gap capacitor in a
narrow frequency regime around the fundamental
mode Also, the spring-mass system has to be
dimensioned without the necessity for difficult cal-
culations The zero-voltage gap spacing 4 and the
electrode area A = (x, — x;)b are chosen to be the
same for both systems An appropnate choice for
the spring constant K of the spring-mass system
would be the static spring constant seen at the
centre of the beam for zero apphed axial load For
a dnve electrode with a uniform width, the spring
constant K, could be defined as the spring con-
stant of a beam subjected to umiform load ¢,

x2

jqo dx

X1

b=
ystat 2 o

For a clamped—clamped beam with the drive elec-
trode extending along the entire beam length, X 1s
given by K,=384E'I/? An additional term K,
given by eqn (20) 1s added to include the effect of
the axial strain The overall spring constant X 1s
given by K = K, + K, see also Fig 3

The mass of the spring-mass system 1s chosen m
such a way that 1ts resonance frequency equals the
fundamental resonance frequency of the air-gap
capacitor with zero appled polanzation voltage,
as given by eqn (16) For the lumped spring-mass
system the angular resonance frequency wi™(g),
with zero apphed polarization voltage, 1s given by

12 1/2
wro~(5)"- (53

(17)

(18)
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Fig 3 Sketch of the equivalent spring-mass system that is used as a
model for the air-gap capacitor and can be used for quick design
calculations K, 1s the static spring constant seen at the centre of the
beam for zero applied axial load An additional spring constant K, 1s
added to include the effect of the axial strain

Combining eqns (16) and (18) for & =0 yields the
mass of the spring-mass system

M =K0/0)102 (19)

The spring constant K, 1s found by combining
eqns (16), (18) and (19)

2
K, = K,0 295¢(1 — v?) <£) (20)
The angular resonance frequency of the spring-
mass system wi™(e, Vp) as a function of the axial

stramn (applied to the air-gap capacitor) and the
polanization voltage can be expressed as [3]

d 1/2
2d~yo(Vp)) 2D

where y,(Vp) 15 the static displacement of the
spring-mass system caused by the polarization
voltage Vp yo(Vp) can be found by solving the
following cubic equation resulting from force equi-
hibrium [3]

0" (e, Vp) = 0 (e) (3 -

1 895, AV

5[—3—_;315 = Yo =yo(Vp)
The viscous drag parameter ¢ of the spring-mass
system can be calculated from the quality factor

0, of the air-gap capacitor by
c= Moi™(e, Ve)
o

An expression for the pull-in voltage Vi of the
spring-mass system can easily be derived by setting
the derivative of the net force acting on the spring-

Ky, = (22)

(23)

mass system equal to zero [3] Combiming this
result with the spring constant K =K, + K, of a
clamped—clamped beam with the drive electrode
extending along the entire beam length gives an
approximate expression for the pull-in voltage of
the beam

8§ Kd*\'*
= ()

27 gp6, A
E'Td AN
(24)

The admittance seen at the electrical terminals of
the spring-mass system can be derived in a similar
way as for the air-gap capacitor The static capac-
itance C3™ and modal capacitance Ci™ of the
Spring-mass system are given by

EoﬁrA
CPr=—-— 25
° d — yo(Vp) (25)
and
2 smy 2
o () 26)

VT Mot™(E, Vo) d — yo(Ve))?

Results

To have some 1dea about the accuracy of the
results obtained from the spring-mass system, a
few examples are presented The equivalent spring-
mass system 1s dimensioned with the guidelines
given 1 the last paragraph First the pull-in
voltage obtained from the model of the air-gap
capacitor 1s compared with the pull-in voltage
obtamned from the spring-mass model

The pull-in voltage Vp; of the air-gap capacitor
1s computed with the algonthm described by eqns
(3) and (4) The pull-in voltage Vi of the equiva-
lent spring-mass system 1s computed from egn
(24) The results of the computation of the pull-in
voltages for different beam dimensions are given in
Table 1 It turns out that the estimated pull-in
voltage V3T 1s roughly 10% lower than the actual
pull-in voltage V5, computed for an air-gap capac-
itor with the electrode extending along the entire
beam length and for small axial stramns It can be
shown that for higher strain levels and/or an elec-
trode not extending along the entire beam length,
the estimation will be more accurate



TABLE 1 Pull-n voltage and resonance frequency of the air-gap
capacitor and the equivalent spring-mass model for vanous dimen-
sions and axial strains (E =175 GPa, ¢ =2330kgm~3, v=03 and

e=1)

Length Width Thickness Gap Stram Vi, Vit
(pm) (um) (pm) (pm) V) v)
beam  lumped
500 100 15 10 00 38 34
500 100 15 50 00 42 38
100 100 15 10 00 94 85
500 100 15 10 10-3 43 39
500 100 15 10 102 58 61
500 100 60 10 00 30 27

The modal capacitance C, and the angular reso-
nance frequency (e, Vp) of the fundamental
mode as a function of the applied axial stramn and
the polarization voltage are computed for the air-
gap capacitor and compared with the modal ca-
pacitance Ci" and the angular resonance
frequency wi™(¢, Vp) obtamned from the spring-
mass system To calculate the modal capacitance
C, and the resonance frequency w, (¢, Vp), first the
static deflection yg,,(x) 1s computed from eqns (3)
or (4) An eighth-order polynomial of the static
deflection curve of the beam 1s generated for a
given polarization voltage The polynomial fit of
the static deflection 1s used 1n eqns (10) and (13)
to obtain the modal capacitance C; and E,4(V5p),
respectively For ¢,(x) and w(x), the mode shape
of a clamped-clamped beam with an axial strain
1s used m eqns (10) and (13) [2] For large axial
strains (¢ = 1072), a sine function 1s used as the
approximated mode-shape function The angular
resonance frequency 1s computed numerically from
eqn (15) To calculate the modal capacitance C{™
and the angular resonance frequency wi"(e, Vp),
the static deflection yo(V5) of the spring-mass sys-
tem has to be calculated A closed-form expression
of the static deflection can be found by using a
first-order Taylor series expansion for the solution
of eqn (22), which results 1n

1 &p BrA sz d

Ve 3 KE — o AV

@7
For polanzation voltages up to 0 8V} the error in
the static displacement 1s less than 5% For a
polarnzation voltage of 0 9V3T the error 1s 10% In
practical situations, where the polarization voltage
1s much smaller than the pull-in voltage, eqn (27)
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Fig 4 The normalized modal capacitance (Ctd/bl, Ci™*d[A) and
the normalized angular resonance frequency (w,(s, Vp)/o,(s,0),
@3™(s, V)™, 0)) vs the normalized polarization voltage (Vp/
Ve, Vel V) of the air-gap capacitor with various dimensions and of
the equivalent spring-mass system The curves of the air-gap capaci-
tors with zero or small apphed axial strains all more or less comncide

will provide a good approximation of the static
displacement of the spring-mass system Because
the static deflection yo(¥p) given by eqn (27) 1s
not accurate for polarization voltages close to the
pull-in voltage V37, eqn (22) 1s solved numen-
cally

Figure 4 shows the normalized modal capaci-
tance of the awr-gap capacitor (C¥d/bl) and the
normalized angular resonance frequency of the
air-gap capacitor (@, (g, Vp)/w, (g, 0)) as a function
of the normahized polarization voltage for beams
of various dimensions and different apphed axial
strains (see also Table 1) The angular resonance
frequency 1s normalized to the angular resonance
frequency with zero apphed polanization voltage
The curves of the beams with zero and small
appled stramns all comcide Figure 4 also shows
the normahzed modal capacitance (Ci™*d/A4) and
the normalized angular resonance frequency
(0™ (e, Ve)/owi™(s, 0)) calculated from the equiva-
lent spring-mass model The modal capacitance
Ci™ found with the help of the spring-mass system
15 roughly a factor 15 larger than the modal
capacitor C, of the air-gap capacitor The reso-
nance frequencies as a function of the polarnization
voltage of the awr-gap capacitor and the spring-
mass system are approximately equal The modal
capacitance Ci™ found from the spring-mass
model can be used, after correction with a factor
1 5, m the electrical equivalent circuit of the one-
port resonator
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Conclusions

A model of the electrostatically driven and capac-
ttively detected resonator based on a single-
element approach 1s presented, thereby including in
the static behaviour the non-linear effects of the
electrostatic force Gwdehnes are given to dimen-
sion a lumped spring-mass system for a given air-gap
capacitor, without the need for tedious calculations
For engineering purposes, the electrostatically
driven resonator can be described sufficiently accu-
rately by a lumped spring-mass system The pull-in
voltage computed from the spring-mass system 1s
roughly 10% lower than the value computed for the
air-gap capacitor The dependence of the resonance
frequency on the normalized polarization voltage 1s
approximately the same for both the spring-mass
system and for the air-gap capacitor The equivalent
electrical network can be used 1a circuit simulations
to account for the resonator behaviour 1n a narrow
frequency range around the fundamental frequency
The electrical network can be dimensioned rapidly
with the help of this lumped spring-mass system
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