CHROMBIO. 5557

Gas chromatographic-mass spectrometric analysis of tar compounds formed during pyrolysis of rice husks

V. A. C. HAANAPPEL

Biomass Technology Group, University of Twente, P.O. Box 217, 7500 AE Enschede (The Netherlands) and

T. W. STEVENS, A. HOVESTAD, V. SKOLNIK and R. VISSER*

Laboratory for Chemical Analysis, University of Twente, P.O. Box 217, 7500 AE Enschede (The Netherlands)

ABSTRACT

Pyrolysis of agricultural waste to produce fuel gas involves formation of tars as noxious by-products. In this paper the qualitative analysis of tars formed during pyrolysis of rice husks is presented, based on identification by gas chromatography-mass spectrometry and interpolation of retention times on a polyaromatic hydrocarbon index scale. The influence of some reaction parameters on product formation is briefly discussed.

INTRODUCTION

Biomass can be converted by gasification into a gaseous fuel (producer gas) [1]. The fuel can be used to operate engines, *e.g.* for the production of electricity. This approach is very useful for third world countries, especially when small production units are used. However, depending on the type of feed and operating conditions, the process can give rise to significant amounts of unpleasant tars. These can contain mutagenic or carcinogenic organic compounds and cause severe pollution of the environment. Reduction of tars can be achieved by adding inorganic additives, or the tars can be catalytically or thermally cracked whilst still in the vapour phase in the raw producer gas.

For the optimization of the process a qualitative and semi-quantitative analysis of the tars is a pre-requisite. It is then possible to examine the amounts formed of different compounds (especially those that are very harmful) under varying conditions.

In the past, formation of tar compounds by gasification of wood has been studied [2,3]; however, there is a tendency to shift to the use of agricultural waste as the feedstock (*e.g.* in Mali, Ecuador and South East Asia). This paper describes the analysis of compounds formed by pyrolysis of rice husks in laboratory experiments, with the emphasis on the qualitative aspects.

EXPERIMENTAL

Pyrolysis

The experiments described are based on pyrolysis of dried rice husks (normally *ca*. 6 g) in a stream of helium gas at 500°C in a Gray-King-type quartz retort. In the first series of experiments husks were used untreated (experiment 1), prepared by dry mixing with 10.7% (w/w) K_2CO_3 (2), 10.5% Na_2CO_3 (3), 9.0% $CaCO_3$ (4) and 1.6% KCl (5), and prepared by impregnating with 5.6% (w/w, dry) K_2CO_3 (6), 3.7% Na_2CO_3 (7), 11.6% KCl (8) and 10.5% NaCl (9) solutions in water. The gases produced were led into a U-shaped cold-trap (0°C) provided with glass-wool plugs at both ends.

In the second series the retort was linked with a second reactor; in this reactor an additional flow of helium was used to vary the residence time of the volatiles. The reactor was connected to the cold-trap. Pyrolysis experiments were carried out with an empty reactor at 600° C/2.4 s residence time (10), 700° C/2.2 s (11) and 0.6 s (12), 900° C/1.8 s (13) and 0.5 s (14), and 100° C/1.7 s (15). Finally the reactor was filled with dolomite as a cracking catalyst (600° C/2 s residence time) (16).

The tars in the trap were extracted with methanol-acetone, the eluents were evaporated, and the "dry" weight was determined. Tars were dissolved in diethylether and analysed by gas chromatography (GC). A sample resulting from experiment 9 was used for qualitative analysis by gas chromatography-mass spectrometry (GC-MS), and a sample from experiment 14 for a separate qualitative analysis based on polyaromatic hydrocarbon retention times.

Gas chromatography-mass spectrometry

GC-MS analysis was performed using a Finnigan MAT 90 double-focusing mass spectrometer (electron impact mode) coupled to a Varian 3400 gas chromatograph.

GC conditions were: column, fused-silica SGE (Scientific Glass Engineering, Ringwood, Australia) BP5 (25 m × 0.22 mm I.D.; film thickness 0.25 μ m); temperature, 1 min at 40°C then 7°C/min to 250°C then 1 min at 250°C; carrier gas, helium at 1.5 ml/min.

Mass spectrometer parameters were: ionization voltage 70 eV; emission current, 1 mA; mass scan, from 40 to 400 dalton; resolution, 1430 (10% valley definition); sampling frequency, 26 500 kHz; cycle time, 1.2 s; samples per peak, 8. About 1250 mass spectra were recorded.

GC analysis was performed on a Varian 3400 gas chromatograph. GC conditions were: column, fused-silica SE 54 (J&W Scientific, Cordova, CA, U.S.A.) (15 m \times 0.31 mm I.D.; film thickness 0.25 μ m); temperature, 1 min at 40°C then 5°/min to 290°C then 10 min at 290°C; carrier gas, helium at 3 ml/min; injection, on column, 50°C at 100°C/min to 300°C; flame ionization detection at 300°C, connected to data system Varian Vista CDS 401.

The mass spectra were identified by an automatic library search (National

Bureau of Standards Library, 55 000 spectra). In those cases where no significant answer was obtained, the spectra were compared with the Eight Peak Index of Mass Spectra [4] or interpreted by the authors.

GC retention times were converted into retention indices by linear interpolation between retention times of a series of *n*-alkanes [5]. A series of compounds were identified independently by injection of a reference sample. For compounds identified by MS and entered in the Sadtler Retention Index Library [6] the retention indices were compared to the reference values. Polyaromatic hydrocarbons (PAHs) were verified by injection of a series of nine reference PAHs (*i.e.* phenol, 1-naphthol, 2-naphthol, naphthalene, phenanthrene, anthracene, fluoranthene, pyrene and chrysene) and interpolation of the other PAHs using the PAH retention index scale [7].

The total weight of material removed from the cold-trap was determined after evaporation of the solvents. The total amount of material (tar) dissolved in diethyl ether was determined by GC, using an average calibration factor to convert peak areas into masses. For two characteristic groups of compounds, *viz*. the 22 most intense hydroxyaromatics and the 20 most intense PAHs, the sum of the peak areas was calculated and converted into absolute amounts, again using an average calibration factor. The same was done for one of the most suspected compounds, *i.e.* benz[a]pyrene.

RESULTS AND DISCUSSION

The reconstructed ion current (RIC) chromatogram of experiment 9 as a function of the mass spectrum number is shown in Fig. 1. The results of the qualitative analysis based on the mass spectra are summarized in Table I. The numbers in the column Sp.No. refer to the mass spectrum numbers. The GC retention times are those obtained from the independent gas chromatogram. This chromatogram is shown in Fig. 2. Since concentrations of higher-boiling compounds were very low, comparison of peaks with retention times above ca. 19 min was not unambiguous; these times have been left out.

The results of the comparison of the separate run of experiment 14 with the set of PAH reference values are presented in Table II. This table contains almost exclusively PAHs. The chromatogram is given in Fig. 3. (Retention times in Table II are the average of two determinations, which explains the slight differences between Table II and Fig. 3). Compounds identified by independent injection of authentic standards are marked with an asterisk in both tables.

In Table III the total mass of material recovered for each experiment is presented, and the absolute amount of tar dissolved in diethyl ether. In the following two columns the total masses of the 22 most important compounds of Table I (mainly aromatic hydroxyl compounds) and of the 20 most important compounds (almost exclusively PAHs) of Table II are given, and in the last column the mass of benz[a]pyrene.

Fig. 1. Reconstructed ion current chromatogram as a function of mass spectrum numbers of pyrolysis products formed after impregnation with NaCl (experiment 9).

F	
ш	
1	
m,	
2	

COMPOUNDS IDENTIFIED BY MASS SPECTRA (GC-MS)

MM	58* 74* 60* 116	130 74 74* 88	88 96 116 116 116 1170 1170 1132 84 84 84 84 84	96
Formula	C3H60 C3H60 C3H602 C2H402 C2H403 C6H1202	C ₇ H ₁ O ₂ C ₃ H ₆ O ₂ C ₃ H ₆ O ₃ C ₃ H ₆ O ₃ C ₃ H ₆ O ₃	С с н с н с с н н с с н н с с н н с с н н с с н н с с н н с с н н с с с н н с с с н н с с с с н н с с с с н н с с с с с н н с с с с с н н с с с с с с с с с с с с с	C ₆ H ₈ O
	d methyl ester d J	nexanoic acid propanol tectic acid methyl ester c acid drofuranol	 propanoic acid one cone inylfuran ihylfuran y-4-methyl-2-pentanone j)-2-methyl-1,2-butanedi /butane /butane /butane /butane /butanedi /butanedi	hylfuran
Name	Acetone Acetic aci Acetic aci Acetic aci 3-Methox	2-Methyll 2,3-Epoxya Hydroxya Propanoid 2-Tetrahy	2-Methyly 3-Hexen-2 2,5-Dihyd 2,5-Dimet 4-Hydrox, 1-(2-Furyl) 1-(1-Methydr 1-(1-Methydr 1-(1-Methydr Tetrahydr Tetrahydr 2-Methyl- 5-Methyl- 5-Methyl-	2,4-Dimet
Sp.No.	49 53 68 77	85 99 136	140 157 195 195 209 244 244 267 315 319	
l _R (min)	0.908	1.057 1.335 1.471 2.053	2.136 2.461 2.673 2.729 2.893 3.028 3.673 3.574 3.554 4.489 4.489 4.639	
No.	- 2 6 4 5	6 8 9	10 11 11 12 13 13 15 11 17 17 17 17 12 12 12 12 12 12 12 12 12 12 12 12 12	

(Continued on p. 536)

TABI	E I (continued)					
Ño.	t _k (min)	Sp.No.	Name	Formula	MM	
"	5 447	344	Phenol	C,H,O	94	ļ
1 ?	1003	350	2-Mathowy-6-mathyl-4/Lowran-4-one		140	
3 2	200.C	350	4. Methovy-6-methyl-11. Avren-2-one		140	
5 %	5.150 6.150	364	Tetrahudro-2-methyl-2-firranol		C41	
26	6.325	16£	2-Hydroxy-3-methyl-2-cyclopenten-1-one	$C_{e}H_{s}O_{2}$	112	
27	6.325	391	3-Methyl-1,2,-cyclopentanedionc	C,H,O,	112	
58	6.558	339	Spirol2,4lheptan-4-one	C,H, O	110	
62	6.558	399	1,3,5-Trimethyl-1 <i>H</i> -pyrazole	C,H ₁₀ N,	110	
30		402	Unknown	1 5 4		
31	6.926	411	3-Methyl-2-(5H)-furanone	$C_5H_6O_2$	98	
			4-Hexen-3-one	$C_{s}H_{1,0}$	66	
32	7.151	421	2-Methviphenol	C,H,O	108*	
8	7.644	445	3-Methylphenol	$C_{H_{s}O}$	108*	
			4-Methylphenol	C,H ₈ O	108*	
34	7.934	454	2-Propyloxetane	$C_6H_{12}O$	100	
35	7.934	454	3,4,5-Trimethyl-2-cyclopenten-1-one	$C_{s}H_{12}O$	124	
36	7.934	454	3,4,4-Trimethyl-2-cyclopcuten-1-one	$C_8H_{12}O$	124	
37	7.934	454	3,5,5-Trimethyl-2-cyclopenten-1-one	$C_{8}H_{12}O$	124	
38	8.467	489	2-Methyl-3-hydroxy-4-pyranone	C ₆ H ₆ O ₃	126	
39	8.794	504	Pentanedioic acid dimethyl ester	$C_{H_{12}O_4}$	160	
40	8.794	504	Pentanedioic acid ethyl methyl ester	$C_{g}H_{14}O_{4}$	174	
41	9.062	510	2-Fthylphenol	$C_{B}H_{10}O$	122*	
42	9.457	520	2,4-Dimethylphenol	$C_8H_{10}O$	122*	
. 4	9.765	536	4-Hydroxybenzeneethanol	$C_8H_{10}O_2$	138	
4	10.018	542	3-Ethylphenol	$C_8H_{10}O$	122*	
45	10.112	549	1,4-Dimethoxybenzene	$C_{8}II_{10}O_{2}$	138	
46	10.152	552	2,3-Dimethylphenol	C ₈ H ₁₀ O	122	
47	10.219	557	2-Methoxy-4-methylphenol	$C_8H_{10}O_2$	138	
48	10.326	565	4,5-Dimethyl-1,3-benzenediol	$C_{B}H_{10}O_{2}$	138	

536

122	172	186	110	110	120	136*	158	136	152	126	140	124	152	132	142	142*		124	150*	154	143*	143	122	138	152	164	164	164	166	220	182	182	182
$C_8H_{10}O$	$C_8H_{12}O_4$	C1,H2,O	C,H,O,	$c_{s}H_{s}O_{2}$	C _s H _s O	C ₀ H ₁ ,0	C _a H _i so,	C,H,2O	C ₉ H ₁₂ O ₂	C,H,O,	C,H ₉ O ₃	$C_{H_{s}O_{s}}$	C,H, O,	C ₀ H ₈ O	C ₈ H ₁₄ O ₂	$C_{11}H_{10}$	2	$C_7H_8O_2$	C ₁₀ H ₁₄ O	C,H,O,	C ₁₀ H ₆ N	C ₁₀ H ₀ N	$C_{H_6O_2}$	$C_8H_{10}O_2$	C,H,O,	$C_{10}H_{12}O_2$	C ₁₀ H ₁ ,0,	$C_{10}H_{12}O_2$	$C_9H_{10}O_3$	$C_{15}H_{24}O$	$C_9H_{10}O_4$	$C_{14}H_{14}$	C ₁₄ H ₁₄
3,4-Dimethylphenoí	2.5-Dihydro-2.5-dimethoxy-2-furyl methyl ketone	2,6-Dimethyl-4-propyl-4-heptanol	1,3-Benzenediol	1,2-Benzenediol	2,3-Dihydrobenzofuran	<i>p</i> -Isopropylphenol	2-Methylpropanoic acid isopentyl ester	p-Isopropylphenol	5-Methoxy-2, 3-dimethylphenol	5-(Hydroxymethyl)-2-furancarboxaldehyde	3-Methoxy-1,2-benzenediol	3-Methyl-1,2-benzenediol	4-Ethyl-2-methoxyphenol	l-Indanone	3-Isopropylpentanedione	2-Methylnaphthalene	Unknown	2-Methyl-1,4-benzenediol	2-(1,1-Dimethylethyl)phenol	3,4-Dimethoxyphenol	5-Mcthylquinoline	6-Methylquinoline	3-IIydroxybenzaldehyde	4-Ethyl-1,3-benzenediol	4-Hydroxy-3-methoxybenzaldehyde	2-Methoxy-6-(1-propenyl)-phenol	2,3,5,6-Tetramethyl-2,5-cyclohexadiene-1,4-dione	2-Methoxy-4-(1-propenyl)phenol	4-Hydroxy-3-methoxy-acetophenone	2,6-Bis(1,1-dimethylethyl)-4-methylphenol	4-Hydroxy-3-methoxybenzoic acid methyl ester	2,2'-Dimethyl-1,1'-biphenyl	2,3'-Dimethyl-1,1'-biphenyl
568	571	571	575	165	599	604	608	613	613	619	640	646	652	658	662	668	671	678	688	727	732	736	749	764	775	778	778	817	854	870	879	885	
10.659	10.905	10.905	11.180	11.320	11.460	11.619	11.780	11.982	11.982	11.999	12.072	12.228	12.554	12.707	12.873	13.121	13.225	13.469	13.720	i4.312	14.465	14.569	14.906	15.329	15.608	15.767	15.767	16.711	17.131	17.672	17.995	18.211	
49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	2	65	99	67	88	69	70	11	72	73	74	75	76	11	78	62	80	81	

GC-MS OF TAR COMPOUNDS

537

(Continued on p. 538)

(pən	
contin	
E 1 (c	

	MM	180	180	194	194 162	168	180	180	196	212	196	182	182	210	196	178		224	210	200	210	270	270	256
	Formula	$C_{12}H_{20}O$	$C_{10}H_{12}O_{3}$	C ₇ H ₁₄ O ₆	с,н,0, С,Л,0,	C.H.O.	Ċ, Ĥ, Ô,	$C_{10}H_{12}O_{3}$	$C_{14}H_{12}O$	$C_{14}H_{12}O_2$	$C_{10}H_{12}O_4$	$C_9H_{10}O_4$	C ₉ H ₁₀ O ₄	$C_{11}H_{14}O_4$	C ₁₀ H ₁₂ O ₄	C ₁₀ H ₁₀ O ₃		$C_{10}H_{12}O_4$	C ₁₁ H ₁₄ O ₄	$C_{13}H_{12}O_2$	$C_{16}H_{18}$	$C_{17}H_{34}O_2$	C ₁₇ H ₃₄ O ₂	$C_{16}H_{32}O_{2}$
	Name	Propyl 2-propylcyclopenten-1-enyl ketone	1-(4-Hydroxy-3-methoxyphenyl)-2-propanone	Methyl-α-p-glucopyranoside	Methyl-β-D-glucopyranoside 2.3-Dihydro-6-methyl-4 <i>H</i> -benzopyran-4-one	4-Hvdroxy-3-methoxybenzoic acid	Acetic acid ethyl- <i>p</i> -hydroxyphenyl ester	Propanoic acid methyl-p-hydroxyphenyl ester	α-Phenylbenzeneacetaldehyde	α -Phenylbenzeneacetic acid	2,4-Dihydroxy-3,6-dimethylbenzoic acid methyl ester	4-Hydroxy-3-methoxybcnzeneacetic acid	4-Hydroxy-3,5-dimethoxybenzaldehyde	2,4-Dimethoxy-6-methylbenzoic acid methyl ester	l-(4-Hydroxy-3,5-dimethoxyphenyl)ethanone	3-(4-hydroxyphenyl)-2-propenoic acid methyl ester	N-Aminocarbonyl-4-hydroxy-3-methoxy	benzeneacetamide	(2,4,6-Trihydroxy-3-methylphenyl)-1-butanone	I-Methoxy-3-phenoxybenzene	2,2'-Diethyl-1,1'-biphenyl	14-Methylpentadecanoic acid methyl ester	13-Methylpentadecanoic acid methyl ester	Hexadecanoic acid
	Sp.No.	893	893	006	927	050	936	5 6	963	963	166	166	1003	1016	1062	1074	1090		1090	1130	1130	1193		1220
E 1 (continued)	t _R (min)	18.472	18.472	18.701																				
TABL	No.	82	83	84	85	86	22	5	88	89	6	16	92	93	94	95	96		76	98	66	100		101

COMPC	UNDS IDENTIFI	ED BY RETENTION TIMES		
No.	l _k (min)	Name	Formula	MM
_	1.658	o-Xylene	C ₈ H ₁₀	106
7	2.481	<i>p</i> -Xylene	C ₈ H ₁₀	106
ę	3.100	Styrene	C ₈ H ₈	104
4	5.026	Benzofuran	C ₈ H ₆ O	118
ŝ	5.448	Phenol	C ₆ H ₆ O	94*
9	6.366	Acetic acid phenyl ester	$C_{s}H_{s}O_{2}$	136
7	6.917	m/p-Cresol	C ₇ H ₈ O	108*
~	7.710	Dihydronaphtalcne	$C_{10}H_{10}$	130 .
6	9.856	Naphthalene	$C_{10}H_{g}$	128*
10	12.242	Tolualdehyde	C _s H _s O	120
11	12.677	2-Methylnaphtalene	C ₁₁ H ₁₀	142*
12	13.085	1-Methylnaphthalene	$C_{11}H_{10}$	142
13	14.837	Biphenyl	$C_{12}H_{10}$	154
14	15.408	2,7-Dimethylnaphthalene	$C_{12}H_{12}$	156
15	15.571	1,7-Dimethylnaphthalene	C ₁₂ H ₁₂	156
16	15.978	Unknown	C ₁₂ H ₈	152
17	16.385	Unknown	$C_{12}H_{10}$	154
18	17.368	Acenaphthylene	$C_{12}H_{g}$	152
19	17.546	Acenaphthene	$C_{12}H_{10}$	154
20	17.940	Dibenzofuran	C ₁₂ H ₈ O	168
21	18.165	I-Naphthol	C ₁₀ H ₈ O	144*
22	18.610	Methylbiphenyl	$C_{13}H_{12}$	168
23	19.014	1-Methylacenaphtylene	C ₁₃ H ₁₀	166
24	19.428	Fluorene	C ₁₃ H ₁₀	166*
25	19.862	Methylacenaphthylene	C ₁₃ H ₁₀	166
26	20.320	Methylacenaphthylene	$C_{13}H_{10}$	166
27	20.583	Xanthene	C ₁₃ H ₁₀ O	182
28	21.920	Dihydrophenanthrene	$C_{14}H_{12}$	180

540

TABLE II

178	180	180	178*	178*	204	192	190	192	204	204	202*	202	202*	216	216	216	216	216	232	226	228	226	228	228*	228	254	252	252	252	252	278	278	278
C,,H,,	$C_{14}H_{12}$	$C_{14}H_{12}$	C ₁₄ H ₁₀	$C_{14}H_{10}$	C ₁₆ H ₁₂	$C_{1s}H_{12}$	С, , Н, ,	$C_{1,H_{1,2}}$	C ₁₆ H ₁₂	C,,,H,,	C ₁₆ H ₁₀	C, , H, ,	$C_{16}H_{10}$	$c_{1,7}H_{1,2}$	$C_{17}H_{12}$	C ₁₇ H ₁₂	С,,Н,,	$C_{1,7}H_{1,2}$	C ₁₈ H ₁₆	$C_{1,\mathbf{k}}H_{1,0}$	$C_{18}H_{12}$	C ₁₈ H ₁₀	$C_{18}H_{12}$	$C_{18}H_{12}$	$C_{18}H_{12}$	C ₂₀ H ₁₄	$C_{20}H_1$	$C_{20}H_{12}$	$C_{20}H_{12}$	$C_{20}H_{12}$	$C_{22}H_{14}$	C ₂₂ H ₁₄	$C_{22}H_{14}$
Unknown	Methylfluorene	Methylfluorcnc	Phenanthrene	Anthracene	1-Phenylnaphthalene	Methylphenanthrene	4 <i>H</i> -Cyclopenta (<i>de</i>))phenanthrene	Methylphenanthrene	2-Phenylnaphthalene	Dihydropyrene	Fluoranthene	Acephenanthrene	Pyrene	Methylfluoranthene	Benzo[<i>a</i>]fluorene	Benzo[b]fluorene	Methylpyrene	Methylpyrene	Ethylmethyl-4H-cyclopentaphenanthrene	Benzo[ghi]ftuoranthene	Benzo[c]phenanthrene	Cyclopenta[cd]pyrene	Benz[<i>a</i>]anthracene	Chrysene	Naphthacene	1-Phenylphenanthrene	$\mathbf{Benzo}[j + b]$ fluoranthene	Benzo $[k]$ fluoranthene	Benzo[b]pyrene	Benzo[a]pyrenc	Dibenzanthracene	Picene	Dibenzochrysene
22.130	22.274	22.909	23.513	23.698	25.226	25.887	26.142	26.597	27.310	28.340	28.772	29.199	29.642	30.422	31.410	31.723	32.121	32.244	32.464	34.300	34.629	35.007	35.183	35.335	35.879	37.592	39.789	40.150	40.745	40.886	44.908	45.641	46.069
29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	4	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62

GC-MS OF TAR COMPOUNDS

541

In general, the product composition of tars from rice husks is in good agreement with the composition of coal tar as described by Novotny *et al.* [8], the main products being hydroxyaromatics and PAHs. However, only a small number of nitrogen-containing compounds were detected.

A striking mass spectrum is scan No. 900 (57-60-137-73-121). A probable fit is methyl- α -D-glucopyranoside or its β -isomer (C₇H₁₄O₆). This seems to be the first time that a sugar-type compound has been identified.

The interpretation of some mass spectra is not unambiguous. Some examples are: MS scan No. 222 (strongest peaks 43-86-116-42-73), 2-propoxybutane or 1-(1-methylethoxy)-2-propanone; MS scan No. 319 (96-67-81-53-95), 3-methyl-2-cyclopenten-1-one or 2,4-dimethylfuran; MS scan No. 445 (108-107-77-71-79); *m*- or *p*-cresol or (most probably) a mixture.

The retention indices of about 20 of the compounds mentioned in Table I were retrieved in the Sadtler Retention Index Library [6]. Since this library contains only values for 2°C and 8°C/min temperature increase the mean of these two values was used as a first approximation. In Fig. 4 these calculated R.I. values are plotted against the neat retention times of the independent gas chromatogram, for twelve compounds listed in Table I. In general the relationship is very good, but some very striking results were obtained. Compound 9 (MS scan 136) was

TABLE III

Exp. No.	Total mass trapped (g)	Tar (mg)	Hydroxyaromatics (mg)	Polyaromatics (mg)	Benz[<i>a</i>]pyrene (mg)
1	1.20	178	68	15	0.23
2	0.84	116	49	9	0.12
3	0.96	188	87	13	0.22
4	1.14	89	42	6	0.09
5	1.20	150	67	12	0.21
6	0.60	157	70	10	0.33
7	0.72	247	78	15	0.38
8	1.08	161	78	11	0.16
9	1.08	252	121	21	0.21
10	0.66	149	83	10	0.18
11	0.36	73	28	8	0.15
12	0.42	111	40	8	0.13
13	0.10	31	4	13	0.32
14	0.12	32	6	14	0.24
15	0.06	50	13	15	0.37
16	0.04	56	26	11	0.12

QUANTITATIVE ANALYSIS OF TAR SAMPLES FROM PYROLYSIS OF RICE HUSKS

Fig. 4. Literature reference values of R.I. plotted as function of neat retention times (experiment 9, gas chromatogram of Fig. 2). The numbers refer to the compound numbers listed in Table I.

originally interpreted as 3-tetrahydrofuranol, reference index 835.40, experimental value *ca.* 785. A probable explanation is that this compound is 2tetrahydrofuranol. For this compound no reference index is available but internal hydrogen bonding might very well lower the index by *ca.* 50 R.I. units. Compounds 46 and 49 (MS scans 552 and 568) were originally interpreted as 2,5dimethylphenol and 3,5-dimethylphenol, reference indices 1149.59 and 1169.05, experimental values *ca.* 1175 and 1190. After reconsideration of the mass spectra, the compounds 2,3-dimethylphenol and 3,4-dimethylphenol, retention indices 1177.58 and 1193.38, appeared a much more probable fit.

These results indicate that the use of retention indices can yield essential additional information to GC-MS interpretation, provided that a sufficiently comprehensive and reliable reference collection is available.

Qualitative analysis of tars and corresponding mixtures is often based on chemical class separation prior to the analysis. Parees and Kamzelski [9] have shown that the analysis of coal-derived liquids can be performed in one run without previous separation by using GC-MS with a fused-silica SE 54 GC column. This work supports this approach despite the fact that the interpretation of some mass spectra is slightly hindered by peak overlap.

From Table III it can be concluded that production of tar is reduced by ca. 50% when rice husks are impregnated with potassium carbonate, by ca. 90% on thermal cracking at higher temperatures and by ca. 97% on catalytic cracking. Formation of hydroxyaromatics is hardly influenced by the addition of catalysts, but thermal cracking reduces the amounts by 80–95%, especially at higher temperatures (experiments 13–15). On catalytic cracking a reduction of 70% is obtained. The influence on polyaromatics is somewhat smaller: addition of potassium carbonate or calcium carbonate and thermal cracking yield ca. 50% reduction and catalytic cracking ca. 30%. Finally, benz[a]pyrene is reduced from 0.23 mg to 0.12 mg (ca. 50%) on catalytic cracking. In experiment 16 the total

amount of material trapped was somewhat lower than the amount of tar determined: this is probably caused by the inaccuracy inherent in the weighing procedure.

REFERENCES

- 1 A. Kaupp and R. J. Goss, Small Scale Gas Producer-Engine Systems, F. Vieweg, Wiesbaden, 1984.
- 2 O. Beaumont and Y. Schwob, Ind. Eng. Chem. Chem. Process Des. Dev., 23 (1984) 637.
- 3 E. G. Baker, L. K. Mudge and D. H. Mitchell, Ind. Eng. Chem. Chem. Process Des. Dev., 23 (1984) 727.
- 4 Eight Peak Index of Mass Spectra, The Mass Spectrometry Data Centre, The Royal Society of Chemistry, Nottingham, 1983.
- 5 H. van den Dool and P. D. Kratz, J. Chromatogr., 11 (1963) 463.
- 6 The Sadtler Standard Gas Chromatography Retention Index Library, Sadtler Research Laboratories, Philadelphia, PA, 1986.
- 7 M. L. Lee, D. L. Vassilaros, C. M. White and M. Novotny, Anal. Chem., 51 (1979) 768.
- 8 M. Novotny, J. W. Strand, S. L. Smith, D. Wiesler and F. J. Schwende, Fuel, 60 (1981) 213.
- 9 D. M. Parees and A. Z. Kamzelski, J. Chromatogr. Sci., 20 (1982) 441.