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We study the effect of polydispersity on the macroscopic physical properties of granular packings
in two and three dimensions. A mean-field approach is developed to approximate the macro-scale
quantities as functions of the microscopic ones. We show that the trace of the fabric and stress
tensors are proportional to the mean packing properties (e.g. packing fraction, average coordination
number and average normal force) and dimensionless correction factors, which depend only on the
moments of the particle size distribution. Similar results are obtained for the elements of the stiffness
tensor of isotropic packings in the linear affine response regime. Our theoretical predictions are in
good agreement with the simulation results.
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I. INTRODUCTION

The physics of granular media has received a lot of at-
tention because of its scientific challenges and industrial
relevance. The structural and dynamical properties of
granular materials differ from those of ordinary solids,
liquids, or gases due to nonlinearity and disorder [1–3].
On the microscopic level, a static assembly of grains con-
sists of particles which interact with their neighbors in
order to prevent interpenetration. In spite of the uni-
form density of granular packings, the resulting contact
and force networks between particles are highly inho-
mogeneous [4–6], leading to many intriguing phenomena
in these systems. Describing the behavior via micro-
mechanical approaches, in which the discrete nature of
the system is taken into account, is thus commonly pre-
ferred to continuum-mechanical approaches where some
heuristic assumptions have to be made in order to con-
struct the constitutive equations for macroscopic fields.
One can then express the macro physical quantities in
terms of the micro-scale ones. For example, thermal and
electrical conductivities are related to the trace of the
fabric tensor, a micro geometrical probability of the ori-
entations of contacts. While the relationship between
macroscopic and microscopic properties of granular me-
dia has been studied widely [1, 3, 7], the question remains
to what extend the macro-scale quantities are sensitive to
the micro-scale details, and how large is the error intro-
duced in the calculation of the “observable quantities” by
taking into account only the average packing properties.

Granular materials in nature and industry consist of
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particles with the common property of polydispersity.
It is known that size polydispersity affects the mechan-
ical behavior of granular systems (e.g. shear strength)
[8, 9] as well as their space-filling properties (e.g. pack-
ing fraction) [10, 11], which are crucial in many chemical
processes like absorption, filtering, etc. Polydispersity
in most studies, so far, has been restricted to narrow
size distributions mainly to prevent long-range structural
order; however, there are a few studies where broader
ranges of particle size distribution are investigated [9, 11–
13]. In this paper, we address the question of how devi-
ation from the monodisperse case influences the macro-
scopic properties of granular assemblies.

We consider a special case of spherical particles (or
disks in two dimensions) allowing for analytical calcula-
tions. The main goal is to develop a mean-field approach
to calculate the desired microscopic quantities such as the
trace of the fabric and stress tensors, and the elements
of the stiffness tensor in two and three dimensional poly-
disperse granular systems. These quantities are directly
connected to macroscopic quantities such as thermal and
electrical conductivities, isotropic pressure, and bulk and
shear moduli. A similar analytical approach has been al-
ready used in Ref. [14] to calculate the trace of the fab-
ric tensor in 2D packings, where it turned out that the
trace of fabric is factorized into three contributions: (i)
the volume fraction, (ii) the mean coordination number,
and (iii) a dimensionless correction factor which only de-
pends on the particle size distribution. Using a similar
approach, here we investigate also the stress and stiffness
tensors and extend the method to 3D cases. In order
to compare the analytical results with numerical simu-
lations, we first construct static packings of grains using
contact dynamics simulations [15–17]. The initial dilute
systems of rigid particles are compressed by imposing a
confining pressure to get the final static homogeneous
packings [18]. Comparisons have then been made be-
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tween the results of our mean-field model and the exact
values obtained from the numerical simulations.

This work is organized in the following manner: The
fabric tensor of a polydisperse assembly of spherical par-
ticles is investigated in Sec. II, and a mean-field approach
is introduced to calculate the trace of fabric. We present
the analytical results for the calculation of the stress ten-
sor in Sec. III, and the same approach is used in Sec. IV
to investigate the stiffness tensor elements in frictionless
isotropic packings. In Sec. V, the analytical calculations
are compared to numerical simulations of corresponding
packings of polydisperse particles. Finally, we discuss
and conclude the results in Sec. VI. Detailed calcula-
tions for two-dimensional packings of disks are presented
in the Appendix.

II. FABRIC TENSOR

A. Single-particle case

Various definitions of the fabric tensor have been used
in the literature to describe the spatial arrangement of
the particles in a granular assembly [19–21]. The fabric
tensor of second order for one particle is defined as [14,
22, 23]

h
p

αβ
=

Cp∑

c=1

l
pc

α

|~lpc |
l
pc

β

|~lpc |
, (1)

where Cp is the number of contacts of particle p, and l
pc

α

is the α component of the branch vector ~l
pc

, connect-
ing the center of particle p to its contact c. In the case

of spherical particles, the unit branch vector ~l
pc

/|~l pc |
and the unit normal vector n̂

pc

at contact c are identi-
cal. The trace of the single-particle fabric tensor in a
D-dimensional system is

h
p

αα
=

Cp∑

c=1

D∑

α=1

l
pc

α

|~lpc |
l
pc

α

|~lpc |
= Cp, (2)

i.e. the number of contacts of particle p.

B. Many-particle case

The average fabric tensor 〈h
αβ
〉

V
enables us to describe

the global contact network in a given volume V . Assum-
ing that the contribution of particle p (lying inside V )
to the average fabric tensor is proportional to its volume
Vp, we obtain

〈h
αβ
〉

V
=

1

V

N∑

p=1

Vph
p

αβ
, (3)

where the sum runs over all particles lying inside V ,
and 〈· · ·〉

V
denotes the volume weighted average. Us-

ing Eq. (2) to calculate the trace of the average fabric

FIG. 1: Schematic picture showing a typical particle with
radius a surrounded by identical particles of average radius
〈a〉 in a 3D packing of spheres.

tensor, we get

〈h
αα

〉
V

=
1

V

N∑

p=1

VpCp, (4)

which can be interpreted as the contact number den-
sity. Alternative possibilities, e.g. using the volume of
the polygon that contains the particle (obtained e.g. via
Voronoi tessellation), or introducing constant prefactors
or slightly different volume contributions are not dis-
cussed here (see Refs. [19, 20, 24, 25] for more details).
In a monodisperse packing, Eq. (4) for identical particles
is reduced to 〈h

αα
〉

V
=φz, where φ is the packing fraction

(φ =
∑

p Vp/V ), and z is the average coordination num-

ber (z =
∑

p Cp/N). We note that only “real” contacts
contribute to the calculation of z, and geometrical neigh-
bors without a permanent physical contact, which do not
contribute in the fabric and force carrying structures, are
not considered here.

C. Polydispersity

For an accurate evaluation of the trace of the aver-
age fabric tensor in a polydisperse granular packing, one
should take into account the contributions from all par-
ticles. However, if the distribution function of particle
radii is known, 〈h

αα
〉

V
can be approximated as a func-

tion of the moments of the size distribution. We assume
a polydisperse distribution of particle radii with proba-
bility f(a)da to find the radius between a and a+da, and
with

∫∞
0 f(a)da = 1. The continuum limit of Eq. (4) is

then given by

〈h
αα

〉
V

=
N

V

∫ ∞

0

V (a)C(a)f(a)da. (5)

Here, C(a) is the average coordination number of parti-
cles with radius a. We evaluate C(a) using a mean-field
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approach similar to the one proposed in [26] and used
already in [14] to study the trace of the fabric tensor.
In the following, we concentrate on the case of spheri-
cal particles in three dimensional systems (see the de-
tailed calculations for two dimensional packings of disks
in the Appendix). Let us suppose that each particle in
the polydisperse granular medium is surrounded by iden-
tical particles of average radius 〈a〉 (see Fig. 1), where

〈a〉 =
∫∞

0

af(a)da. The surface of a reference particle of

radius a is then shielded by its C(a) neighboring particles
of radius 〈a〉. The space angle covered by a neighboring
particle on the reference particle in a three dimensional
packing of spheres is

Ω(a) = 2π

(
1 −

√
(a + 〈a〉)2 − 〈a〉2

a + 〈a〉

)
. (6)

The total fraction of shielded surface, also called linear
compacity, is obtained as

cs(a) =
1

4πa2

C(a)∑

i=1

Ω(a)a2 = Ω(a)C(a)/4π. (7)

Now, another basic assumption is that the total fraction
of shielded surface cs is independent of the particle radius
a. As a result, the expected mean coordination number
becomes

z =

∫ ∞

0

C(a)f(a)da = 4πcsq0
, (8)

with q
0
=
∫∞

0

f(a)/Ω(a)da. Using Eqs. (7) and (8) one
finds

C(a) =
z

q
0
Ω(a)

. (9)

The trace of the fabric tensor for a polydisperse packing
is then obtained by substitution of Eq. (9) in Eq. (5),

〈h
αα

〉
V

= φzg
1
, (10)

where the correction factor g
1

is defined as

g
1

=

∫ ∞

0

V (a)
f(a)

Ω(a)
da

q
0

∫ ∞

0

V (a)f(a)da

=
〈a3〉

g

〈a3〉 (11)

Here, 〈ak〉 and 〈ak〉
g

denote the k-th moments of the
size distribution f(a) and the modified distribution
f(a)/Ω(a) normalized by q

0
, respectively. We note that

g
1

depends only on the size distribution function f(a).

D. Narrow size distributions

By introducing ǫ(a)=a/〈a〉−1, which ranges between
−1 and ∞ depending on the choice of a, Eq. (6) can be
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FIG. 2: 1/Ω(a) as a function of ǫ. The exact value (solid line)
is compared with the first order (dashed line) and second order
(dash-dot line) approximations. The inset shows more clearly
the deviation of the approximations from the exact value.

written as

Ω(a) = 2π

(
1 −

√
ǫ2 + 4ǫ + 3

2 + ǫ

)
. (12)

Indeed, ǫ(a) quantifies the deviation from the mean par-
ticle size 〈a〉 (e.g. ǫ(a) equals zero in the monodisperse
case). Hence, for narrow size distributions we approx-
imate 1/Ω(a) by Taylor expansion around ǫ=0 (corre-
sponding to Taylor expansion around a=〈a〉). By Taylor
expansion to second order in ǫ one obtains

1

Ω(a)
≃ A

1
+ B

1
ǫ + C

1
ǫ2, (13)

with A
1

= 1
(2−

√
3)π

, B
1

= 1
2
√

3(2−
√

3)2π
and C

1
=

1
3(3+

√
3)(2−

√
3)2π

. The first order approximation deviates

significantly from the exact value (see Fig. 2). However,
the second order expansion provides a good approxima-
tion with less than 1% error in the range −0.5< ǫ < 7.5
(or 0.5〈a〉<a<8.5〈a〉).

Therefore, the correction factor [Eq. (11)] for narrow
size distributions becomes

g
1
≃

(A
1
−B

1
+C

1
)+(B

1
−2C

1
)

〈
a4
〉

〈
a
〉〈

a3
〉+C

1

〈
a5
〉

〈
a
〉2〈

a3
〉

(A
1
−C

1
)+C

1

〈
a2
〉

〈
a
〉2

.

(14)
Equation (14) should account for arbitrarily shaped size
distributions f(a) as long as they are not too wide. Note
the different nomenclature in Ref. [35], where the above
equation is introcued with different abbreviations and co-
efficients.
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FIG. 3: (a) A typical contact c between the reference particle
p and its neighboring particle. (b) The contact unit vectors
n̂pc, t̂pc

1
, and t̂pc

2
. (c) The normal (F pc

n ) and tangential (F pc

t )

components of the contact force ~F
pc

.

III. STRESS TENSOR

A. Single-particle case

The micro mechanical expressions for the components
of the stress tensor σp

αβ of a single particle in a static

granular assembly are [23, 27]

σ
p

αβ
=

1

Vp

Cp∑

c=1

l
pc

α F
pc

β , (15)

where ~F
pc

is the force exerted on particle p by its neigh-
boring particle at contact c.

One could assume in a crude approximation that the
force at contact c is equal to F̄ p

n n̂pc + F̄ p
t1

t̂pc
1

+ F̄ p
t2

t̂pc
2

in

a three dimensional system, where F̄ p
n , F̄ p

t1
and F̄ p

t2
are

the average normal and tangential contact forces around
the particle p, and n̂pc, t̂pc

1
and t̂pc

2
are the normal and

tangential unit vectors at contact c, respectively. Then
the force-averaged stress tensor becomes

σ̃
p

αβ
=

ap

Vp

(
F̄ p

n

Cp∑

c=1

n
pc

α n
pc

β +F̄ p
t1

Cp∑

c=1

n
pc

α t
pc

1β+F̄ p
t2

Cp∑

c=1

n
pc

α t
pc

2β

)
.

(16)

For a spherical grain, we project the contact unit vec-
tors (n̂

pc

, t̂
pc

1
, t̂

pc

2
) onto an arbitrary Cartesian coordinate

system [Fig. 3(a,b)], and write the force-averaged stress
tensor of a single particle as

σ̃
p

=
ap

Vp

Cp∑

c=1

[
F̄ p

n




W2002 W2011 W1101

W2011 W2020 W1110

W1101 W1110 W0200




+F̄ p
t1




W1102 W1111 −W2001

W1111 W1120 −W2010

W0201 W0210 −W1100




+F̄ p
t2



−W1011 W1002 0
−W1020 W1011 0
−W0110 W0101 0



]
, (17)

where the Wmnkl function is defined as

Wmnkl = sinm(θc) cosn(θc) sink(ϕc) cosl(ϕc), (18)

with 06θc<π and 06ϕc<2π. Using Eq. (16), the trace
of the stress tensor becomes

σ̃
p

αα
=

ap

Vp

Cp∑

c=1

3∑

α=1

(
F̄ p

nn
pc

α n
pc

α +F̄ p
t1

n
pc

α t
pc

1α+F̄ p
t2

n
pc

α t
pc

2α

)

=
ap

Vp

Cp∑

c=1

(
F̄ p

n |n̂
pc|2+F̄ p

t1
n̂

pc· t̂pc

1 +F̄ p
t2

n̂
pc· t̂pc

2

)
=

ap

Vp

F̄ p
nCp.

(19)

Equation (19) remains valid also in the 2D case (see Ap-
pendix). As expected for isotropic packings, the trace of
the stress tensor and therefore the isotropic pressure P
(=σαα/3) do not depend on the tangential forces.

B. Many-particle case

In the many-particle case, the average stress tensor in
a given volume V is defined as [23]

〈σ
αβ
〉

V
=

1

V

N∑

p=1

Vpσ
p

αβ =
1

V

N∑

p=1

Cp∑

c=1

l
pc

α F
pc

β , (20)

where the sum runs over all particles lying inside V . Us-
ing Eq. (19) to calculate the trace of the average stress
tensor, we get

〈σ̃
αα

〉
V

=
1

V

N∑

p=1

Vpσ̃
p

αα =
1

V

N∑

p=1

apF̄
p

nCp. (21)

C. Polydispersity

Now we assume a polydisperse distribution of particle
radii with probability f(a)da to find the radius between

a and a + da, and with
∫∞

0

f(a)da = 1. Assuming that
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the average contact force exerted on a particle depends
only on its radius a, the continuous limit of Eq. (21) in
a mean-field approximation is given by

〈σ̃αα〉V
=

N

V

∫ ∞

0

aF̄n(a)C(a)f(a)da. (22)

In Eq. (22) it is supposed that all particles of size a have
a certain mean coordination number C(a) and a certain
mean normal force F̄n(a). Indeed, particles of the same
size may have different coordination number and normal
contact forces, however, the main goal here is to pro-
pose a method to calculate macroscopic quantities with-
out taking into account all the microscopic details of the
system. We use the mean-field approach introduced in
Sec. II C to evaluate C(a). By substitution of Eq. (9) in
Eq. (22) we get

〈σ̃
αα

〉
V

=
N

V
z

∫∞
0 aF̄n(a) f(a)

Ω(a)da

q
0

= φz

∫ ∞

0

aF̄n(a)
f(a)

Ω(a)
da

q
0

∫ ∞

0

V (a)f(a)da

. (23)

According to the mean-field approach used in Sec. II C,
C(a) increases with increasing radius a. Now, let us as-
sume that the average normal force F̄n(a) also increases
with a, so that the ratio F̄n(a)/C(a) remains roughly con-
stant [28]. We calculate this ratio for the average-sized
particles in the following

F̄n(a)

C(a)
=

F̄n(a)
z

q
0
Ω(a)

≃ F̄n(〈a〉)
z

q
0
Ω(〈a〉)

=
q
0
F̄n(〈a〉)Ω(〈a〉)

z
, (24)

therefore

F̄n(a) =
Ω(〈a〉)F̄n(〈a〉)

Ω(a)
. (25)

By substitution of Eq. (25) in Eq. (23) we obtain

〈σ̃
αα

〉
V

=
3φz F̄n(〈a〉) g

2

4π
〈
a2
〉 (26)

with

g
2

=

(2−
√

3)π 〈a2〉
∫ ∞

0

a
f(a)

Ω2(a)
da

q
0
〈a3〉 (27)

D. Narrow size distributions

In the limit of narrow size distributions, we approxi-
mate 1/Ω2(a) by Taylor expansion around ǫ = 0 (similar
to Sec. II D):

1

Ω2(a)
≃ A

2
+ B

2
ǫ + C

2
ǫ2, (28)

with A
2
= A

2

1
= 1

(2−
√

3)2π2
, B

2
= 1√

3(2−
√

3)3π2
and C

2
=

1
4(2−

√
3)4π2

− 5
√

3
18(2−

√
3)3π2

. By substitution of Eq. (28) in

Eq. (27) we obtain the correction factor g
2

for arbitrary
narrow distributions:

g
2
≃

(A
2
−B

2
+C

2
)

〈
a
〉〈

a2
〉

〈
a3
〉 +(B

2
−2C

2
)

〈
a2
〉2

〈
a
〉〈

a3
〉+C

2

〈
a2
〉

〈
a
〉2

(A
2
−A

1
C

1
)+A

1
C

1

〈
a2
〉

〈
a
〉2

.

(29)

IV. STIFFNESS TENSOR

The linear response of a material to “weak” external
perturbations is described by a 4th rank tensor, which is
called the elastic or stiffness tensor [7, 29]. This tensor
has 81 and 16 elements in three- and two-dimensional
systems, respectively, but they are not all independent.
Symmetry considerations reduce the number of indepen-
dent elements. For example, the elastic behavior of
isotropic materials can be described by only two inde-
pendent parameters, usually represented by Lamé coef-
ficients λ and µ. In this section, the stiffness tensor of
a homogeneous and isotropic assembly of polydisperse
particles is investigated (for the case of an anisotropic
monodisperse system see e.g. [30, 31]).

The stiffness tensor for a spherical particle, where
affine deformation is assumed, is defined as [7, 32]

Cp
α,β,γ,η=

2a2
p

Vp

Cp∑

c=1

(knnpc
α npc

β npc
γ npc

η + ktn
pc
α tpc

β npc
γ tpc

η ),

(30)
where t̂pc is the unit vector parallel to the tangential

component of the contact force ~F pc [see Fig. 3(c)]. The
volume weighted average of C is then given by

〈Cα,β,γ,η〉V
=

1

V

N∑

p=1

VpCp
α,β,γ,η=

1

V

N∑

p=1

2a2
p

Cp∑

c=1

(knnpc
α npc

β npc
γ npc

η +ktn
pc
α tpc

β npc
γ tpc

η ). (31)

Note that the stiffness tensor is basically determined by
the packing geometry. For ease of calculation, we con-
sider only frictionless packings, i.e. kt is set to zero here-
after. Using the microscopic information of the contact
orientations, one can accurately calculate the elements of
C via Eq. (31). Next, the Lamé constants µ and λ can
be deduced from the stiffness tensor, e.g. as λ=〈C

1122
〉

V

and λ+2µ=〈C
1111

〉
V

or, more generally, as λ=〈C
iijj

〉
V

and

λ+2µ=〈C
iiii

〉
V

where

〈C
iijj

〉
V
=

1

D(D−1)

D∑

i6=j

〈C
iijj

〉
V

, 〈C
iiii

〉
V
=

1

D

D∑

i

〈C
iiii

〉
V
,

(32)



6

and D is the dimension of the system. The macroscopic
physical quantities of interest are the bulk modulus K
and the shear modulus G which can be deduced from the
Lamé coefficients in isotropic materials as

G/kn=µ/kn=
〈C

iiii
〉

V
−〈C

iijj
〉

V

2 kn

, (33)

and

K/kn=(λ+
2

D
µ)/kn=

〈C
iiii

〉
V
+(D−1)〈C

iijj
〉

V

D kn

. (34)

Now, assuming a polydisperse probability distribution
of particle radii f(a), Eq. (31) for kt=0 can be written
as

〈Cα,β,γ,η〉V
=

Nkn

V

∫ ∞

0

2a2

(C(a)∑

c=1

nc
αnc

βnc
γnc

η

)
f(a)da.

(35)
Since the packings are supposed to be isotropic and ho-
mogeneous, we assume that grains are scattered homo-
geneously around the reference particle. Therefore, the
summation over neighbors can be approximated by the
following integration in three dimensions (for the 2D case
see Appendix)

C(a)∑

c=1

Q(θc, ϕc) =
C(a)

4π

∫ π

0

dθ sin(θ)

∫ 2π

0

dϕ Q(θ, ϕ). (36)

We present the reduced form of the 4th rank tensor by
mapping αβ(γη) → i(j), i.e. 11 → 1, 22 → 2, 33 → 3,
12 → 4, 13 → 5 and 23 → 6. Using Eqs. (9), (35) and
(36), one obtains

〈C〉
V
=

Nknz

2πV q
0

∫ ∞

0

da
a2

Ω(a)
f(a)×

∫ π

0

dθ sin(θ)

∫ 2π

0

dϕ
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,

(37)

where W
ijkl

elements were defined in Eq. (18). After
integration on θ and ϕ, the volume weighted average of
the stiffness tensor for an isotropic polydisperse packing
becomes

〈C〉
V

=
φzkng

3

10π〈a〉




3 1 1 0 0 0
3 1 0 0 0

3 0 0 0
1 0 0

1 0
1




. (38)

The correction factor g
3

is defined as

g
3

=
〈a〉〈a2〉

g

〈a3〉 , (39)

and for narrow size distributions one obtains

g
3
≃

(
A

1
−B

1
+C

1

)〈a
〉〈

a2
〉

〈
a3
〉 +

(
B

1
−2C

1

)
+C

1

〈
a4
〉

〈
a
〉〈

a3
〉

(
A

1
−C

1

)
+C

1

〈
a2
〉

〈
a
〉2

,

(40)
with the same coefficients as defined after Eqs. (13) and
(28). To summarize this section, the Lamé constants for
frictionless isotropic packings are

µ = λ = (knφzg
3
) / (10π〈a〉), (41)

and the shear and bulk moduli are

G/kn = (φzg
3
) / (10π〈a〉), (42)

and

K/kn = (φzg
3
) / (6π〈a〉). (43)

Notably, K/G=5/3 in three dimensional frictionless
isotropic packings, independent of their size distribution
and average packing properties.

V. SIMULATION RESULTS

To verify the theoretical predictions of the previous
sections, we carry out numerical simulations with the
help of the contact dynamics (CD) algorithm [15–17]. We
first construct 2D and 3D static homogeneous packings
in zero gravity by compressing the initial dilute configu-
ration of particles [Fig. 4(left)]. Periodic boundary con-
ditions are imposed in all directions to avoid side effects
of lateral walls. The compaction is achieved by impos-
ing a constant external pressure Pext and letting the size
of the system evolve in time [34]. As the volume of the
system decreases, after a while particles touch each other
and build an inner pressure Pinn which resists and even-
tually compensates Pext, so that finally Pinn equals Pext.

FIG. 4: Schematic of a 2D granular system subjected to a
constant external pressure: (left) the initial dilute gas, and
(right) the final homogeneous packing. Periodic boundaries
are marked with dashed lines.
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TABLE I: Properties of three different types of polydisperse
packings generated with uniform size distributions. w denotes
the width of each distribution (w = amax−a

min
).

type symbol a
min

amax amax/a
min

w/2〈a〉 〈a2〉/〈a〉2

SMP1 • 0.67 1.34 2 0.34 1.04

SMP2 � 0.40 1.60 4 0.60 1.12

SMP3 N 0.22 1.76 8 0.77 1.19

Particles prevent further compaction, and a static ho-
mogeneous configuration is reached [Fig. 4(right)]. The
full description of the packing generation method can be
found in [18]. In order to illustrate the validity range
of our assumptions we generate three types of polydis-
perse packings with uniform particle size distributions
but with different widths (see Table I). We denote the
samples SMP1, SMP2 and SMP3, respectively, by full
circles, open squares and full triangles throughout this
section. To investigate the effect of friction, we construct
a new packing for each value of the particle-particle fric-
tion coefficient µ

f
. Especially, the results corresponding

to µ
f
=0, 0.1 and 1.0 are hereafter denoted by green, blue

and red colors. The number of grains contained by pack-
ings are 3000 and 10000 in 2D and 3D cases, respectively.

For comparison with the theory, we first test the va-
lidity of assumptions made in Sec. II C. The linear com-
pacity cs is displayed in Fig. 5 for the static configura-
tions of particles obtained from the isotropic compres-
sion simulations. For each particle p, the surface angle
Ω

p

c covered by its neighboring particle at contact c is

0.4

0.6

0.8

1.0

c s

0.2

0.4

0.6

0.8

0.2 0.6 1.0 1.4 1.8

c s

a / <a>

SMP1  SMP2  SMP3
µf=0.0 ●            ❏           ▲

µf=0.1 ●            ❏           ▲

µf=1.0 ●            ❏           ▲

FIG. 5: (color online) Linear compacity cs as a function
of particle radius a for (top) two- and (bottom) three-
dimensional packings constructed with different size distri-
bution widths and different friction coefficients µ

f
.

 2
 3
 4
 5
 6

C
(a

)

SMP1

 2
 3
 4
 5
 6

C
(a

)

SMP2

 2
 3
 4
 5
 6

0.2 0.6 1.0 1.4 1.8

C
(a

)

a / <a>

SMP3

FIG. 6: (color online) Contact number C(a) as a function
of particle radius a for two dimensional packings. The lines
correspond to the mean-field approximation of C(a) according
to Eq. (9).

calculated, and the linear compacity of particle p is ob-

tained as c
p

s=
∑Cp

c=1 Ω
p

c/2π or c
p

s=
∑Cp

c=1 Ω
p

c/4π for two-
or three-dimensional packings, respectively. Next, we di-
vide the range of possible values of the particle radius a
into 25 bins. Each data point in Fig. 5 corresponds to the
mean value of cs, averaged over all particles in the same
bin. The contribution of the rattler particles, that trans-
mit no force, is excluded. For moderate widths of size
distributions (SMP1), cs is approximately constant in a
for a given packing (we note that the fluctuations of cs

around its mean value in a given packing originate from

 2

 4

 6

 8

C
(a

)

SMP1

 2

 4

 6

 8

C
(a

)

SMP2

 2

 4

 6

 8

0.2 0.6 1.0 1.4 1.8

C
(a

)

a / <a>

SMP3

FIG. 7: (color online) The same plots as in Fig. 6 but for
three dimensional packings.
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1) 
/ <

h α
α
>

V

<hαα>
V 2.0

2.5

3.0

3.5

4.0

4.5

2.0 2.5 3.0 3.5 4.0 4.5

φz
g 1

<hαα>
V

(b)

0.96

0.98

1.00

1.02

1.04

1.06

2.0 2.5 3.0 3.5 4.0 4.5

(φ
zg

1) 
/ <

h α
α
>

V

<hαα>
V

FIG. 8: The estimated value of the trace of the average fabric tensor φzg
1

versus the exact value 〈hαα 〉V
obtained from the

simulations, for several (a) two- and (b) three-dimensional samples. The dashed lines indicate the identity. The insets show
more precisely that the deviations increase with w, but remain less than 5% in all cases. The symbols are chosen the same as
in Table I.

the finite size of the samples). However, cs is remarkably
above the average value for small particle sizes in wider
distributions (SMP2 and SMP3). This is a common prop-
erty of our highly polydisperse packings (with uniform
size distribution) that the fraction of shielded surface is
larger than the average for small particles if rattlers are
excluded (see [13] for uniform volume distributions). A
similar behavior has been observed in discrete element
method simulations of soft particles [35]. There, it is
also shown that if rattlers are included in the statistics,
the small particles on average are less covered than the
larger ones. However, the deviation of small particles
from the average cs decreases as the volume fraction of
the packing increases by incremental compression.

Another point is that cs depends strongly on the di-
mension of the system and the friction coefficient. In-
creasing the friction µ

f
stabilizes the system in a less

dense state and decreases the connectivity of the contact
network [36, 37]. Therefore, we expect lower values of cs

and C(a) when increasing µ
f
, as confirmed by the data.

In Figs. 6 and 7, the coordination number C(a) is
shown as a function of a for the same set of systems
as in Fig. 5. For comparison, we also plot C(a) from
Eq. (9). Here, the average coordination number z of the
packing is taken from the simulation results, Ω(a) is pro-
vided by Eq. (6) or (A1), and the size distribution of each
packing after the compaction process is used to calculate
q
0
. The mean-field approach of Sec. II C qualitatively

fits well to the data, however, the slopes of the curves
are slightly greater than the corresponding slopes of the
best-fit curves over the data points (not shown). Con-
sequently, one expects that the mean-field approach to
calculate the trace of the fabric tensor 〈h

αα
〉

V
leads to

somewhat overestimated values. For each packing, we
calculate the exact value of 〈h

αα
〉

V
via Eq. (4) and com-

pare it with the mean-field approximation [Eq. (10)]. Fig-

ure 8 reveals that Eq. (10) slightly overestimates 〈h
αα

〉
V

in both two- and three-dimensional systems. The devi-
ation increases with the width of the size distribution,
but remains less than 5% in all cases. For comparison,
note that g

1
can reach up to 1.19 and 1.45 in 2D and 3D

uniform samples, respectively (see Table II); Therefore,
ignoring the correction factor would cause up to 19% and
45% error, respectively.

Next, we investigate the average properties of the con-
tact force network. In Sec. III C we applied the mean-
field approach of Sec. II C to estimate the isotropic pres-
sure in a given polydisperse granular sample. However,
due to the presence of the normal component of the con-
tact force F̄n(a) in Eq. (23), one needs to make one fur-
ther assumption about the particle-size dependence of
F̄n(a) to be able to calculate the integral and obtain
〈σ̃αα〉V

from the average quantities.
The simulation results [Fig. 9(a)] reveal that the aver-

age normal force exerted on the particle is an increasing
function of the particle radius for 2D and 3D (The con-
tribution of rattlers is again excluded). With increasing
friction coefficient and w the average normal force in-

TABLE II: Correction factors in two and three dimensions
for uniform size distributions SMP1, SMP2, and SMP3 intro-
duced in Table I.

sample g
1

g
2

g
3

SMP1-2D 1.04 1.01 1.04

SMP2-2D 1.12 1.04 1.12

SMP3-2D 1.19 1.07 1.19

SMP1-3D 1.11 1.06 1.005

SMP2-3D 1.30 1.18 1.010

SMP3-3D 1.45 1.30 1.011
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FIG. 9: (color online) (a) Normal component of the contact force F̄n(a), averaged over all particle radii in the same bin, in
terms of the particle radius a for (top) two- and (bottom) three-dimensional packings constructed with different size distribution
widths and different friction coefficients µ

f
. (b) F̄n(a) scaled by the contact number C(a) for the same set of samples as in (a).

creases. This is reminiscent of the behavior of C(a) as a
function of a (Figs. 6 and 7). Interestingly, the increasing
rates are similar in both figures. Therefore, it is reason-
able to assume that the ratio F̄n(a)/C(a) is independent
of a, as already observed in 2D [28]. Figure 9(b) confirms
the validity of this assumption. We note that the fluctua-
tions in Fig. 9(b) are reduced as the system size increases.
In Fig. 10 we compare the exact value of 〈σαα〉V

with the
corresponding value from Eq. (26) [or Eq. (A10)] which
is obtained based on the above assumption. The results
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FIG. 10: The estimated value of the trace of the stress ten-
sor using (top) Eq. (A10), and (bottom) Eq. (26) divided by
〈σαα〉V

obtained directly from the simulations. Each data
point corresponds to a different (top) 2D or (bottom) 3D
packing using symbols as in Table I.

are in reasonable agreement with theory for both two and
three dimensional packings, with a standard deviation of
2% to 6% for increasing w.

Finally, we turn to the calculation of the stiffness ten-
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FIG. 11: (color online) The estimated values of the bulk K
(left) and shear G (right) moduli according to Eqs. (42) and
(43) in 3D [Eqs. (A18) and (A19) in 2D] versus the values
obtained from the simulation results. Each data point corre-
sponds to one frictionless sample and the dashed lines indicate
the identity. The results are separately shown for (a) 2D and
(b) 3D samples. The same symbols as in Table I are used.
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sor elements for isotropic materials. We note that to
evaluate the true elastic moduli one should apply an in-
cremental strain and measure the resulting change of the
stress tensor. Alternatively, one can read the moduli
from the elements of the stiffness tensor, assuming the
affine motion of the particles, which cannot be taken for
granted however, which is subject of future studies. Here,
using the packing configuration obtained from the sim-
ulation, we calculate the elements of the average stiff-
ness tensor via Eq. (31). Next, the elastic moduli of the
packing are calculated using Eqs. (32), (33) and (34).
The results are then compared to the estimated values of
the bulk and shear moduli calculated via Eqs. (42) and
(43) [or Eqs. (A18) and (A19)]. Figure 11 displays the
results for several two- and three-dimensional packings;
The agreement is satisfactory within 5% error (also in
the case of frictional packings which is not shown here).

According to our analytical results, the ratio between
the bulk and shear moduli K/G is 5/3 for isotropic pack-
ings independent of z, φ, and even the size distribution.
This suggests that, in isotropic packings, the ratio be-

tween the P-wave velocity Vp=
√

(K + 4
3G)/ρ and the

S-wave velocity Vs=
√

G/ρ is always
√

3. An experi-
mental test shows that Vp/Vs for a compressed polydis-
perse packing of glass beads remains around 1.7 over a
wide range of pressures from 1 MPa to 7 MPa [38] (see
also [39]). Note, however, that anisotropic regular lattice
structures do not necessarily show the same ratio [31].

VI. DISCUSSION AND CONCLUSION

In conclusion, a mean-field approach is developed to
isolate the influence of size polydispersity on the physical
properties of granular assemblies. We are interested in
how the micro-scale quantities are linked to the macro-
scale ones.

We find that the trace of fabric and stress tensors fac-
torize into the mean packing properties (for example av-
erage coordination number, packing fraction and aver-
age normal contact force) and dimensionless correction
factors, which depend on the moments of the particle
size distribution (and approach unity for monodisperse
packings). The method is extended to estimate the ele-
ments C

ijkl
of the stiffness tensor. This tensor describes

the linear affine response of the packing to weak exter-
nal perturbations, when practically the contact network
between the particles remains unchanged. The elements
C

ijkl
are also proportional to the average quantities and

a dimensionless correction factor which is a function of
the size distribution.

Numerical simulations illustrate the validity range of
our analytical predictions and of the assumptions on
which the mean-field method is based. We note that the
deviation of the macroscopic quantities of interest from
the average packing properties increases with increasing
the width w of the particle size distribution. Figure 12
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(b)
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FIG. 12: The dimensionless correction factors g
i

in terms
of the width w of the uniform size distribution in (a) two,
and (b) three dimensions. w/2〈a〉 = 0 corresponds to the
monodisperse case.

shows the summarized correction factors g
i
as a function

of the width w of a uniform size distribution, with the av-
erage particle size 〈a〉. Neglecting the correction factors
would cause remarkable errors, especially for wide dis-
tributions. Interestingly, g

3
is insensitive to the width of

the size distribution in the 3D case. Therefore, according
to Eqs. (42) and (43), we expect that the elastic moduli
of a polydisperse packing of spheres is only moderately
affected by the choice of w. The results of MD simu-
lations of soft frictionless spheres imply, see Eq. (12) in
[35], that the bulk modulus does not depend on the width
of the size distribution, in agreement with our analytical
results.

The predictive value of this mean field method should
be examined also by comparing the theoretical predic-
tions with experimental data. For a direct comparison
one needs to measure the average packing properties,
e.g. z and φ, which are not easily accessible in exper-
iments (even though micro-computed tomography (Mi-
croCT) scan determines the geometry with micrometer
accuracy nowadays [40]). Alternatively, by elimination
of φz between our analytical results, one obtains linear
relationships between the macroscopic physical proper-
ties via some coefficients which depend on the moments
of the size distribution. Such linear relations between
macroscopic quantities have been investigated in the lit-
erature, e.g. between the elastic moduli and conductivity
[41] or isotropic pressure [42], and can be verified exper-
imentally. Future studies will closer examine the non-
affinity of deformations of isotropic as well as anisotropic
packings of frictional and possibly even cohesive parti-
cles.
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Appendix A: Analytical results in two dimensions

Fabric tensor – In a two dimensional packing of disks
[Fig. 13(a)], the surface angle covered by a neighboring
particle on the reference particle is

Ω(a) = 2 arcsin

(
〈a〉

a + 〈a〉

)
, (A1)

and the total fraction of shielded surface is given by

cs(a) =
1

2πa

C(a)∑

i=1

Ω(a)a = Ω(a)C(a)/2π. (A2)

Assuming that cs is independent of a, one can write the
mean coordination number z as

z =

∫ ∞

0

C(a)f(a)da = 2πcsq0
. (A3)

Equations (A2) and (A3) lead again to Eqs. (9) and (10)
for C(a) and 〈h

αα
〉

V
with the correction factor:

g
1

=

∫ ∞

0

V (a)
f(a)

Ω(a)
da

q
0

∫ ∞

0

V (a)f(a)da

=
〈a2〉

g

〈a2〉 . (A4)

By introducing ǫ=a/〈a〉−1, we rewrite Eq. (A1) as

Ω(a) = 2 arcsin

(
1

2 + ǫ

)
, (A5)

and approximate 1/Ω(a) to first order in ǫ for narrow size
distributions:

1

Ω(a)
≃ A′

1
+ B′

1
ǫ, (A6)

where A′
1
= 3

π
and B′

1
= 3

√
3

π2 . Figure 13(b) reveals that
the approximation has less than 1% error in the range
−0.5 < ǫ < 1.3 (or 0.5〈a〉 < a < 2.3〈a〉). Hence, g

1
for

narrow size distributions becomes

g
1
≃ 1 +

B′
1

A′
1

( 〈
a3
〉

〈
a
〉〈

a2
〉 − 1

)
. (A7)
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FIG. 13: (a) A typical particle with radius a surrounded by
identical particles of average radius 〈a〉 in a 2D packing of
disks. The thick solid arcs show the shielded surface of the
central particle. (b) 1/Ω(a) as a function of ǫ in two dimen-
sions.

Stress tensor – For a two dimensional disk, by disre-
garding the z-direction, i.e., in the x−y plane (by requir-
ing θ= π

2 and F̄ p
t1

=0 in Fig. 3(b)) one obtains

σ̃p =
ap

Vp

[
F̄ p

n

Cp∑

c=1

(
cos2(ϕ) sin(ϕ) cos(ϕ)

sin(ϕ) cos(ϕ) sin2(ϕ)

)

+F̄ p
t2

Cp∑

c=1

(
− sin(ϕ) cos(ϕ) cos2(ϕ)

− sin2(ϕ) sin(ϕ) cos(ϕ)

)]
, (A8)

and its trace

σ̃
p

αα
=

ap

Vp

Cp∑

c=1

D∑

α=1

(
F̄ p

n n
pc

α n
pc

α + F̄ p
t2

n
pc

α t
pc

2α

)

=
ap

Vp

Cp∑

c=1

(
F̄ p

n |n̂
pc|2+F̄ p

t2
n̂

pc· t̂pc

2

)
=

ap

Vp

F̄ p
nCp. (A9)

Using Eqs. (23) and (25), the average stress tensor in 2D
becomes

〈σ̃
αα

〉
V

=
φz F̄n(〈a〉) g

2

π
〈
a
〉 , (A10)
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with

g
2

=

π〈a〉
∫ ∞

0

a
f(a)

Ω2(a)
da

3q
0
〈a2〉 . (A11)

By Taylor expansion around ǫ = 0, we approximate
1/Ω2(a) as

1

Ω2(a)
≃ A′

2
+ B′

2
ǫ, (A12)

with A′
2
=A′2

1
=

9

π2
and B′

2
=

18
√

3

π3
. Therefore, g

2
can be

approximated by

g
2
≃ B′

2

A′
2

+
(
1−B′

2

A′
2

)
〈
a
〉2

〈
a2
〉 . (A13)

Stiffness tensor – Similarly to the three dimen-
sional analysis presented in Sec. IV, we approxi-
mate the summation over neighbors in Eq. (35) by
C(a)
2π

∫ 2π

0

nαnβnγnηdθ which leads to the following re-

duced stiffness tensor (by mapping 11 → 1, 22 → 2 and
12 → 3):

〈C〉
V

=
φzkng

3

4π




3 1 0

3 0

1


 , (A14)

with

g
3
(= g

1
) = 〈a2〉

g
/〈a2〉, (A15)

which for narrow size distributions is approximated as

g
3
≃ 1 +

B′
1

A′
1

( 〈
a3
〉

〈
a
〉〈

a2
〉 − 1

)
. (A16)

In two dimensions, one finds that the Lamé constants for
frictionless isotropic packings are

µ = λ = (knφzg
3
) / (4π), (A17)

and, hence, the shear and bulk moduli are

G/kn = (φzg
3
) / (4π), (A18)

and

K/kn = (φzg
3
) / (2π). (A19)
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