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Abstract—In recent years the protection of biometric data
has gained increased interest from the scientific community.
Methods such as the helper data system, fuzzy extractors,
fuzzy vault and cancellable biometrics have been proposed
for protecting biometric data. Most of these methods use
cryptographic primitives and require a binary representation
from the real-valued biometric data. Hence, the similarity
of biometric samples is measured in terms of the Hamming
distance between the binary vector obtained at the enrolment
and verification phase. The number of errors depends on the
expected error probability P. of each bit between two biometric
samples of the same subject. In this paper we introduce a
framework for analytically estimating P. under the assumption
that the within- and between-class distribution can be modeled
by a Gaussian distribution. We present the analytic expression
of P. as a function of the number of samples used at the
enrolment (N.) and verification (/N,) phases. The analytic
expressions are validated using the FRGC v2 and FVC2000
biometric databases.

I. INTRODUCTION

With the increased popularity of biometrics and its ap-
plication in society, privacy concerns are being raised by
privacy protection watchdogs. This has stimulated research
into methods for protecting the biometric data in order to
mitigate these privacy concerns. Numerous methods such
as the helper data system [9], [10], [11], fuzzy extractors
[21, [5], fuzzy vault [8] and cancellable biometrics [15] have
been proposed for transforming the biometric data in such a
way that the privacy is safeguarded. Several of these privacy
or template protection techniques use some cryptographic
primitives (e.g. hash functions) and error correcting codes
(ECC) and require a binary representation of the biometric
sample, referred to as the binary vector.

Fig. 1 shows a high level overview of a biometric system
that extracts a binary vector from a biometric sample, e.g. a
fingerprint image. In the enrolment phase, where the subject
presents itself to the biometric system, a biometric sample
is obtained and sent to the feature extraction module. The
biometric sample is preprocessed (enhancement, alignment,
etc.) and a real-valued feature vector f, € RNF s extracted,
where Ny is the number of feature components. In the
verification phase, another biometric sample is taken from
which its feature vector f is extracted. In a classical
biometric system, the matcher would base its decision on the
similarity between the feature vectors fj; and fj;. Because
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of the binary vector requirement, the real-valued feature
vectors are quantized, i.e. bits are extracted from each
feature component, obtaining the binary vectors f5 and ff.
The quantization process turns into a binarization process
when only a single bit is extracted from each real-valued
component of the biometric sample. In the literature, various
quantization and binarization schemes have been presented
[31, [4], [9], [10]. In this paper we focus on the binarization
scheme based on thresholding, which is used in the helper
data system schemes [9], [10]. When multiple samples are
taken, a feature vector is extracted from each sample and
sent to the quantization block, which quantizes the average
feature vector.

The transition from a real-valued to a binary representation
of the biometric sample according to [9], [10] implies that the
similarity between two biometric samples can be measured
in terms of the Hamming distance, i.e. the number of
bit errors between the binary vectors. The number of bit
errors depends on the probability of each bit to change
between two biometric samples of the same subject. Each
subject will have a different error probability and we are
interested in the average error probability seen over the whole
population, referred to as the expected error probability P..
Because the classification performance of a biometric system
depends on the P, of each component, the performance
could be estimated if we can estimate P.. In this paper we
introduce a framework for analytically estimating the P, of
each bit in the threshold-based binarization scheme under
the assumption that the real-valued features are distributed
according to Gaussian models characterized by the within-
class variance 02, and the between-class variance o. The
Gaussian assumption is used as the basis of our analytic
framework, because due to the central limit theorem we can
assume that the real-valued features will tend to approximate
a Gaussian distribution when they are obtained by a linear
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Fig. 1. A high level overview of a biometric system where binary vectors

are extracted.
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combinations of many components, e.g. feature extraction
techniques based on the principle component analysis {PCA}
or linear discriminant analysis (LDA}). This assumption is
motivated and made plausible in Section IV. Secondly, the
Gaussian assumption makes it possible te obtain an analytical
closed-form expression for .. PCA or LDA techniques are
often being used to perform dimension reduction in order
to prevent overfitting or to simplify the classifier [7]. In the
field of template protection, PCA is alsc used to uncorrelated
the features to guarantee uniformly distributed keys extracted
from the biometric sample [2]. Our objective is fo obtain an
analytical closed-form expression for Py as a function of the
number of enrolment N, and verification N, samples given
the ratio oy, /oy.

This paper is organized as follows, we first present the
real-valued Gaussian model assumption of the biometric
distribution and the binarization method in Section II. Using
this model, we formulate the analytic expression of P in
Section III for three cases, namely (i} the known-reference-
template case, (i) the single sample case for both the en-
rolment and verification phase, and (iii} the multiple sample
case. In Section [V we validate these analytic expressions
with twe different real biometric databases consisting of
FRGC v2 3D face images [13] and the FVC2000 fingerprint
images [12]. We finalize with the conclusions in Section V.

II. DISTRIBUTION MODEL ASSUMPTION AND
BINARIZATION METHOD

We assume that over the whole populaticn each component
of the real-valued biometric sample frp has a Gaussian
distribution N{ju, o2) with mean u; and variance o where
t stands for total distribution, see Fig. 2. The total distri-
bution is a combination of the within- and between-class
distributions, which we assume to be Gaussians N (pte,, 02}
and N (pn, o), respectively. The within-class distribution
characterizes the variability of multiple biometric samples
of subject i, whose mean is i, with variance a&,i. The
between-class distribution is the prebability density function
(pdf} of the means p, of all subjects. For simplicity but
without loss of generality we consider py = pp = 0. We
further assume that the within-class variance is the same for
each subject, i.e. oy, = ow. Henceforth, the subject sub-
indices (i} are omitted for notation convenience unless stated
otherwise.

To binarize the compenents of i, we use the threshelding
method [9], [10], in which the threshold J is equal to the
mean of the between-class distribution py,. If the value of
a component of fg is smaller than § then it is set to “07”
otherwise it is set to “1”, see Fig. 2.

[I1. ANALYTIC EXPRESSION FOR THE ERROR
PROBABILITY

Using the distribution model defined in Section II the
expected error probability P, over the whole population is
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Distribution model of a single component of the real-valued

defined by
Fe = E[Fe(pw)],
7 (1)
= [ oolpw) Pl ) dits,
where Felity | is the error probability given py, and py, is the
pdf of the between-class distribution. With the binarization

thresheld § = g, = 0, this problem becomes symmetric with
respect to 8. Consequently, (1) becomes

Fe ZQ_f pu(y)FPe(y) dy,

e (7)) ay, (2)

0
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0

- % 7{0 e—()\y)zpe(y) dy,

where A = 2+'b In subsequent subsections, the integral is
solved by defining P.{y} for three different cases:

i Known reference template with a single verification
sample,
ii Single enrolment and verificaticn sample,
iii Multiple enrolment and verification samples.

These cases are related to each other as will be explained
in Section II[-C. The known reference template case has
a simple intuitive solution and serves as a framework for
solving the other two cases. The second case is an extension
of the first one when a single sample is used at the enrcolment
and verification phase. In the third case, the final analytic
expression of Py is obtained by extending the single sample
case to the multiple sample case.

A. Known Reference Templaie

In this case, the reference template obtained in the en-
rolment phase is assumed to be known and therefore iy
is known. Hence, the individual error probability for the
known-reference-template case P is the probability that the
sample, in the verification phase, is on the other side of the
threshold 8 compared to pig . This probability is depicted by
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Fig. 3. The error probability P (y) given by Pa(y).

the shadowed area in Fig. 3 and referred to as P,, where

PIy) =P f A T @

The easiest way to solve (2} is to write F,(y) in terms of
the error function

arf(z} = %Ie (4)

By defining n = \/-g , Pa(y} can be rewritten as

=% T e lnte—)? qp
0

(5}

f(—ny)].

By using PX{y) = P,(y) and substituting {(5) into {2) vields

0

[ e Oy? =
== /e ~O0* (1 — ert(ny)] dy,
oo oo (6)
{f e O feCwiars (ny)} dy,

0 1]
BTF —f e’\zyzerf(ny)} dy,
1]

erf (—ny)] dy,

Sk sk

where we used the known result fooo Ao~ O dy = VT The
second term with the erf function can be rewritten using the
general sclution of erf integrals given as [14]

. arctan (+>
I efmzerf(aw)erf(ba:) dx = ‘j}gi:“zﬂ) .0

a

Using {(7) and by sefling p = A%, & =1, and b = o0, {6) can

be simplified to

A arctan (% }
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B. Single Enrolment and Verification Sample

The previcus case is now extended by taking into account
that the sample obtained in the enrclment phase could alse
be on the other binarization side of .. We restrict this
problem to the single sample case for both the enrclment and
verification phase, i.e. No = N, = 1. Hence, the individual
error probability for the single sample case P2 becomes

Piy) = (1 — Pa(y)) Paly) + Pa(p)(1 — Paly)), (D

where the first term on the right side is the probability of
the sample to be on the same binarization side as g in
the enrolment phase multiplied by the probability of being
on the other side in the verification phase. The second term
is the probability for the sample to be on the other side in
the enrolment phase multiplied by the prebability to be on
the same side in the verification phase. Since both terms are
equal, {2} becomes

P ff “O R)(1 - P ()] dy. (0
Substituting (5} into (10) vields
0
Py =2 [ e 1 —ert?(—ny)] dy,
= 2 me*()\y) 1 — erf?(ny)| dy, {11)
! ) [ (nv)]
— 1A [N g2 ny ) dyy,
-] ()

where the integration of the erf? function can be solved
using (7) with p = X2, and @ = b = n. The analytic
expression of PS becomes

2
arctan | ——e———
5 /32 (2 124 22)

ps = 1_ A
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C. Multiple Enrolment (Ng) and Verification (N, ) Samples

In this section, the analytic expression in {12} is further
extended by considering N, samples in the enrolment and
N, in the verification phase. The effect of taking the average
of multiple samples is that the variance of the within-class
oy decreases according to

2

2 W
Tw,N = 77 = Ow N =

= . (13)
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The definition of the individual error probability is analegous
to the single sample case by taking N, and N, into account
Pén(% N, NV) = (1 - Pa(y; Ne))Pa(y; Nv)

+ Pa(y; Ne)(l o Pa(!/; NV))J

where the error probability given by the area in Fig. 3 now
depends on the number of samples as

(14)

oo Ty )2
Palyi Ny = | e = (1)
b w
= % [1 — erf(fmny)] .
Hence, {14} can be expanded into
P&y Ney Ny)= ¢ [(1 + erf(—n.y) (1 — erf(—n.y))
+ (1 —erf(—ney))(1 4 erf{—nvy))], (16}

3 [1 — erf{—ney)ert(—n ),

where 1. = +/Nen and %, = +/Nyn. The total error
probability for multiple samples is obtained by substituting
(16) into {2) as

PR(N., N,)= e[| — ext(—muy)ert(—n.y)] dy,

Sl

_ 2
e M1 — ert(ney)ertiny)] dy,
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which can be solved with the use of (7) with p = A2, & = n,,
and b =mn, as
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The relationship between the three cases is now evident. For
Ne — oc and N, = 1, the sclution of the multiple sample
case {18) converges to the solution of the known-reference-
template case (8). Indeed, since N, — o0, the position of iy
with respect to the binarization threshold is precisely known.
Note that the same convergence occurs when Ng = 1 and
Ny — oc. In addition, for N = N, = 1 the multiple sample
case {18} becomes the single sample case {12},

IV. EXPERIMENTAL VALIDATION

In this section, the analytic expressions and the effect of
the assumption of Gaussian distributicns are validated using
two real biometric databases. The first one {dbl)} consists of
3D face images from the FRGC v2 database [13], where we
used the shape-based 3D face recognizer of [6] to extract
feature vectors of dimension Ngp = 696. Subjects with
at least 8 samples are selected resulting into 230 subjects
with a total of 3147 samples. The second database (db2}
consists of fingerprint images from Database 2 of FVC2000

[12], and uses the feature extraction algorithm based on
Gabor filters and directional fields [1] where Ng = 1536.
There are 110 subjects with § samples each. We applied the
PCA dimensicn reduction technique on each database. We
computed the PCA transformation matrix by using all the
samples of the database, and we reduced the dimension of
the feature vectors until the eptimum performance in terms of
the equal error rate (EER} was obtained. The EER is defined
at the point where the false acceptance rate (FAR) equals
the false rejection rate (FRR). For dbl, the optimal reduced
dimension is at 88 components while 83 for db2.

As described in Section II, the analytic framework is based
on the Gaussian model assumption. Fig. 4(a)c} show the
nermal probability plot of each compenent of the feature
vectors of dbl and db2 respectively, before PCA has been
applied. The normal probability plot is a graphical technique
for assessing whether or not a data set is approximately
Gaussian distributed. Prior to comparing, we normalized
each compenent to a unit variance and subtracted its mean
to make it zero-mean. For both databases it is evident that
the distributions are not Gaussian, because they significantly
deviate from the dashed-dotted line that depicts a perfect
Gaussian distributicn. Fig. 4 {(b){d} depict the normal prob-
ability plot of the compenents of dbl and db2 respectively,
after applying PCA. For both databases the figures show that
after applying PCA the features fend fo behave more like
Gaussians. Nevertheless, the tails of the distribufion deviate
the most from being Gaussian.

To assess the model assumptions, we compare the esti-
mated bit error probability of the feature components of the
bicmeftric database pgb with the corresponding analytically
obtained P™ given by (18). The test protocol per feature
compenent is as follows: Pg‘b is calculated as the average
over the error probability P, of each subject. The subject
error probability P, is calculated by performing 200 matches
and determining the relative number of errors. For each
match, N, distinct features are randomly selected, averaged
and binarized {enrclment phase). The obtained bit is com-
pared against bit obtained from averaging and binarizing
N, different randomly selected features of the same subject
(verification phase}. To evaluate P, the parameters oy, oy,
Ne and N, are needed for each component. The estimated
standard deviation of the between-class distribution &y, is
calculated as the standard deviation over the average feature
vector of all subjects. For the within-class distribution & is
computed as the average standard deviation of each subject.

The comparison between P9® and P™ is shown in Fig. 5
for both dbl and db2. Fig. 5{(a)}(d) show the comparison for
the features prior to PCA for the No = N, = 1 case, while
Fig. 5(b){e) show the features after PCA for the N, = N, =
1 case, and Fig. 3{cX{} Ny = N, = 3 show the feafures affer
PCA for the N, = N, = 3 case. In all figures, three lines are
given. The solid line represents the average bit error probabil-
ity as a function of &y, /7w according to the analytical model
of Section II with known Gaussian distributions. From these
Gaussian distributions, for a given oy, /oy, two synthetic
databases db1* and db2* are drawn with the same number of
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Fig. 4. Normal probability plot of each feature vector component of dbl and db2 before and after applying PCA.

samples as dbl and db2, respectively (i.e. dbl* contains 230
individuals and db2* contains 110 individuals with 8 samples
each). Por each subject, we randomly generate ji,, according
to Ny, o) and generated 8 samples from N (t,, 02 ). For
each synthetic database db1* and db2*, the average bit error
probabilities are estimated using the same test protocol as
used to estimate PP, For the same value of oy, and oy,
500 synthetic databases are generated which allows us to
estimate the distribution of the average error probability for
a given oy, /oy as well as the 95 percentile interval of the
distribution. By repeating this process for a range of oy, /oy
values, the overall 95 percentile area can be determined
which is indicated by the dashed and dashed-dotted lines.
This indicates the area where 95% of the estimated average
bit error probabilities using the databases dbl and db 2 would
fall if they would satisfy the assumptions of the analytical
model. Because of its smaller size, db2 has a larger 95
percentile area than dbl.

Fig. 5 shows that there is a smaller difference between P*
and pedb when PCA has been applied, which strengthens the
assumption that by applying PCA the features will tend to
approximate a Gaussian distribution on which this analytic
framework is based. When PCA has been applied, in most
cases Pgb is estimated within the 95 percentile boundaries.
In the N, = N, = 1 case, the Pedb of three features for both
dbl and db2 slightly fall outside the boundaries, which 1is
well within the 95 percent of 88 and 85 respectively. In the
N, = N, = 3 case, there are six cases outside the boundary
for dbl and four for db2, where four would be allowed by

the 95 percent boundary.

Possible causes for the observed deviations are (i) the
limited size of the database which also has an influence
on the estimation error of &y, and &, (ii) the Gaussian
assumption of the feature vector distribution, and (iii) the
outliers in the biometric samples of the databases.

V. CONCLUSIONS

We have presented a framework for analytically estimating
the bit error probability when comparing binary vectors
extracted in the enrolment and the verification phase. Having
the error probability of each bit, the expected Hamming
distance between the enrolment and verification binary vec-
tors can be determined. Hence, a bound on the performance
of the biometric system can be formulated. We focused on
formulating the analytical error probability for the threshold-
ing binarization method under the assumption that the real-
valued biometric sample is distributed according to Gaussian
models characterized by the within-class variance o2, and the
between-class variance U%.

We derived the analytic expression of P, for three cases,
namely (i) the known reference template with a single
verification sample P}, (i) the single enrolment and ver-
ification sample P, and (iii) the multiple enrolment and

verification sample P*. The latter case has resulted in a
general analytical expression from which case (i) and (ii)
can be derived. We validated the analytic expressions using
two real biometric database: 1) 3D face images from a subset
of the FRGC v2 database with 230 subjects and a total of

3147 samples, and ii) fingerprint images from the FVC2000
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Fig. 5. Comparison between PP and P™ for the feature ecmpenents of databases dbl and db2. The lower and upper boundaries (LB and UB) indicate
the 95 percentile area of the estimated error probability when using a synthetic database of similar size.

database with 110 subjects and 880 samples in total. By using
normal probability plots, we have shown that when applying
PCA, the resulting features tend fo betler approximate a
Gaussian distribution and thus the analytic framework has
a much better fit with real biometric data if PCA has been
applied. Furthermore, a good fit was cbserved between the
analytic and calculated error probability for both biometric
databases for both the No = N, = land N, = N, = 3
settings. In all but one setting, the number of occurrences
where the analytic error probability PI™ was outside the given
95 percentile boundary was smaller than what was allowed.
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