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Abstract 
Rapid thermal treatments potentially allow for a significant reduction in production time of 

ceramic multilayered membranes, in turn aiding increased industrial application of these 

membranes and accelerating research on their development. Two methods are proposed for the 

rapid thermal treatment of thin supported inorganic membrane films. Both methods involve an 

instant increment in temperature imposed on the membrane. In the first method, the instant 

temperature step is enforced by placing the membrane in a preheated environment; in the second 

method, the membrane is placed directly onto a hot plate. The proposed methods can be used for 

a diverse range of materials. Mesoporous γ-alumina and microporous silica have been selected 

as model membrane materials. Both rapid heating methods require ~20 minutes to yield 

mesoporous γ-alumina membranes that are comparable to membranes made via conventional 

calcination (~1 day). Selective silica membranes have been obtained after one hour exposure to 

an environment of 400 °C or 600 °C, and after one hour contact with a hot plate of 550 °C 

(compared to up to 2 days for conventional calcination). The results indicate that, although 

prevention of contaminations needs continuous attention, both methods proposed for rapid heat 

treatment can reduce cost and time in ceramic membrane production. 
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1. Introduction 

Sol-gel deposition is a versatile method for the production of thin, inorganic membrane layers 

with a broad range of properties and competitive permeances and selectivities [1-7]. Sol-gel 

derived layers are coated on a porous support that provides mechanical strength. Multiple 

membrane layers are coated onto support sequentially, rendering the production process of the 

membranes laborious and expensive [8]. Especially the thermal treatment step is time 

consuming and energy-intensive. Typically, each layer is calcined at temperatures around 

600 °C for 3 hours, with heating and cooling rates in the order of 1 °C per minute [4-7, 9]. For a 

full heating and cooling cycle from and to room temperature, this results in a total residence 

time in the furnace of 22 hours. For a membrane comprising multiple layers, processing time 

may continue for over a week. By minimizing the time required for thermal treatment, 

production costs of ceramic membranes can be decreased, in turn boosting opportunities for 

application and research for rapid material screening. 

Recently, rapid thermal processing (RTP) was applied to inorganic membranes in the prevention 

of grain boundary defect formation in the zeolite silicate-1 [10] and for the significant reduction 

in calcination time of γ-alumina membranes [11]. In both cases, the application of RTP leads to 

an improvement in the material microstructure. While not yet commonly applied in membrane 

production, RTP is common in especially the semiconductor industry. Using an infrared lamp 

array, heating rates over 100 °C per second are applied in combination with dwell times shorter 

than ten minutes [12]. Apart from decreasing process time, there are several other reasons to 

choose for RTP over conventional processing, including the prevention of dopant diffusion [13], 

the improvement of crystallization behavior [14, 15], and the ability to rapidly fabricate 

multilayered films of micrometer thickness [16]. The high heating rate and controlled 

atmosphere give RTP an advantage over conventional furnace processing, especially for 

nanoscale systems that are sensitive to particles (e.g. dust, aerosols).  
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Although thin membrane layers are known to be prone to defects, they may be less susceptible 

to contamination than e.g. integrated circuits, where one particle could damage the whole 

system. As RTP techniques have been developed for single wafers they may even be unsuited 

and too expensive for the production of membranes on industrial scales, where surface areas in 

the order of hundreds of square meters need to be treated thermally. In addition, RTP techniques 

seem inapt for thermal treatment of desired non-flat geometries like tubes and hollow fibers that 

are required for industrial up-scaling. 

As an alternative to classic RTP methods, we demonstrate two generic rapid thermal treatment 

methods for the calcination of inorganic membranes. In both methods, an instant change in 

temperature is imposed onto the membrane. In the first method, hereafter referred to as Hot 

Environment (HE), the membrane is suddenly exposed to a preheated environment. In the 

second method, referred to as Hot Plate (HP), the membrane is placed directly onto a hot 

surface. Two model membranes were selected to explore the heating methods: supported thin 

film mesoporous γ-alumina, synthesized from a boehmite precursor containing an organic 

binder, and supported thin film microporous silica, synthesized from a polymeric sol in ethanol.  

Silica membranes have arbitrarily been defined as ‘high-quality’ if selectivity for 

helium/methane is at least 100. From experience, it is known that such selectivities are only 

found on homogeneous γ-alumina intermediate layers with defect-free silica layers. Hence, by 

demonstrating the successful synthesis of high-quality, rapid-calcined γ-alumina and silica 

layers it is proven that rapid thermal treatments can be applied for the calcination of membrane 

layers without compromising their quality.  

2. Experimental 

2.1. Materials 

AKP-30 α-alumina powder (Sumitomo) was used for supports; aluminium tri-sec-

butylate (Merck) and poly(vinyl alcohol) (86.7-88.7 mol-% hydrolysis, Mw ~67,000, 
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Sigma-Aldrich) were used for boehmite sol synthesis and preparation of the coating 

solution; and tetraethyl orthosilicate (Merck) was used for silica sol synthesis. α-

alumina supports, made via a process identical to that of the homemade supports 

(described below), were purchased from Pervatech (Netherlands). 

2.2. Support and sol-synthesis 

Synthesis of flat α-alumina supports, and synthesis of and coating with boehmite 

colloidal sol and silica sol was all carried out following the procedures described 

elsewhere [5]. Coating was carried out in a controlled environment (corresponding to 

clean room class 6). 

2.3. Calcination procedure 

Supported  γ-alumina membranes were dried for three hours in a climate chamber 

(Heraeus Vötsch) at 40 °C and 60% relative humidity prior to thermal treatment. 

Thermal treatments were categorized into three groups: conventional calcination, hot 

environment calcination, and hot plate calcination. Conventional calcination was carried 

out in a furnace (Carbolite CWF with Eurotherm 3504 temperature controller) for three 

hours at the desired temperature with heating and cooling rates of 1 °C (γ-alumina) or 

0.5 °C (silica), resulting in total calcination times of 22 and 41 hours, respectively. Hot 

environment calcination was carried out in the same furnace that was preheated to 

400 °C or 600 °C. Membranes were loaded onto a wafer and placed inside the furnace 

for the desired time. After removal, the wafer was placed on a thick alumina plate at 

room temperature to cool down. Hot plating was performed by placing membranes for 

desired times on a hot plate (Schott, SLK 1) at maximum power (corresponding to a 

surface temperature of approximately 550 °C). During the hot plate experiment, the 
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membrane was covered by a quartz glass plate to prevent contamination from the 

environment (Figure 1). 

 

Figure 1: Covering of a membrane during hot plate experiments. The membrane is 
placed on a wafer and shielded by a quartz glass plate supported by an alumina 
ring. 

 

2.4. Nomenclature 

Conventionally calcined (CC) samples are indicated by material-temperature-CC; hot 

environment (HE) samples are named material-temperature-time; and hot plating (HP) 

samples are named material-temperature-time-HP. Materials are indicated by γ (γ-

alumina) and Si (silica), temperature and time are in °C and minutes, respectively. 

2.5. Characterization 

The pore size of γ-alumina membranes was determined using permporometry. 

Measurements were carried out on an in-house designed apparatus using cyclohexane as 

the pore-filling liquid and an oxygen sensor to determine oxygen flow, following the 

procedure described by Cao et al. [17].  

Silica membranes were characterized by single-gas permeation in dead-end mode 

without backpressure. The standard measurement carried out for every membrane 
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consisted of measuring the permeances of a selection of He, H2, N2, CO2, CH4, and SF6 

at 200 °C and a pressure difference of 2 bar. Single-gas permeance was determined by: 

 i
i

NF
P

=
∆

 (1) 

where N is the molar flux through the membrane. The permselectivity F� between a gas 

i and a gas j was determined by taking the ratio of the permeation of the two single 

gases. 

To follow the debinding of organics from the γ-alumina precursors, video recordings of 

the membrane color in time were made with a Canon PowerShot A530 at 640 x 480 

resolution and a frame rate of 10 s-1. The movie was cropped to a 15 x 15 pixel spot on 

the membrane. Using Matlab (version 2010a, Mathworks), RGB color data was 

extracted from the video and converted to L*a*b* color space (applying the 

makecform(‘srgb2lab’) and applycform commands), after which the L*a*b* colors 

were averaged over the selected area. The color was compared to white (L*=100, a* = 

0, b* = 0) by taking the Euler distance between white and the measured color:  

 ( ) ( ) ( )2 2 2* * *E L a b∆ = ∆ + ∆ + ∆  (2) 

  



7 
 

3. Results and discussion 

3.1. γ-alumina membranes 

The obtained oxygen permeance through the different membranes was plotted as a 

function of the relative cyclohexane pressure in the gas in Figure 2A. For a non-cured 

(γ−0) layer, no permeance was detected for the whole range of cyclohexane pressures, 

indicating a non-porous or microporous layer.  For membranes rapidly calcined at 

increasing times, the cumulative oxygen permeance as well as the onset cyclohexane 

pressure at which permeance starts were found to increase as well.  

 

Figure 2: A. Oxygen permeance through rapidly calcined γ-alumina membrane layers as a function 
of relative cyclohexane pressure. B. Calculated average Kelvin radii for γ-alumina membranes after 
rapid treatment. The triangle indicates a γ-alumina layer after 3 minutes of RTP treatment as 
reported by Schillo et al. [11] 

 

From the relative cyclohexane pressure, the corresponding Kelvin radius was calculated 

[17]. Figure 2B shows the progress of the average Kelvin radius of rapid-calcined γ-

alumina membranes as a function of their thermal treatment time. The radius steeply 

increases in the first 5 minutes, after which the pore size slowly increases further to 

reach an asymptotic value of 2.0 nm. The asymptotic Kelvin radius of 2.0 nm compares 

well to literature [18] and is only slightly lower than the average pore radius of 
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conventionally calcined membranes (2.3 nm for γ-600-CC). Analysis of layers of 

boehmite/PVA on wafers by ATR-FTIR (see supplementary data) shows that no PVA 

remains in the structure after calcination. The results of this study also agree well to the 

results that were obtained by Schillo et al. using rapid thermal processing by a 

tungsten-halogen lamp array [11].  

The steep pore size increase in the first five minutes of calcination is attributed to the 

debinding of poly(vinyl alcohol) from the membrane layer, which takes place in two 

steps. First, the alcohol groups are removed from the polymer backbone by chain-

stripping [19], resulting in a conjugated polyene with a brown-orange color. Secondly, 

at higher temperatures, the polyene will be decomposed into volatiles via a chain-

scission mechanism. In oxygen, this decomposition will not leave any residues behind if 

the temperature becomes higher than 700K [20]. Hence, to verify whether the fast 

increase in Kelvin radius in the first minutes indeed corresponds to the debinding of the 

poly(vinyl alcohol) binder from the green boehmite, the change in membrane color was 

recorded by performing the calcination step was performed on a hot plate and recording 

it on video. The derived L*a*b* color is plotted in Figure 3.  
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Figure 3: Membrane surface color (solid line) and temperature (dotted line) as a 
function of the time on the hot plate. The color is given as the deviation from white 
as determined by equation 2. 

 

The progress of color and temperature in time is visualized for two membranes: γ-550-

60-HP and γ-450-60-HP, where a 2 mm copper plate was inserted as a thermal barrier 

between the hot plate and the membrane in the latter case. In both cases, a temperature-

color correlation is evident, since the darkest color is observed as the membrane surface 

reaches a temperature of 150 °C and the membrane returns to its initial color at roughly 

400 °C.  

3.2. Rapidly calcined silica layers 

The permeance of multiple gases through Si-400-60 and Si-600-60 membranes at 

200 °C is given in Figure 4 and Figure 5, respectively. Regardless of the temperature, 
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the membranes treated for 60 minutes show comparable helium permeances, averaging 

3.13 ± 0.75 ∙ 10-7 mol m-2 s-1 Pa-1. This value compares well to literature, indicating that 

applying an instant temperature step did not result in significant network densification. 

The high permselectivity of the silica layers (He/CH4 > 100) indicates a defect-free 

layer and thus demonstrates the viability of the hot environment technique. On the other 

hand, as can be seen in Figures 4 and 5, approximately 50% of the membranes only 

show moderate selectivities (He/CH4 < 100, henceforth called defect), whereas for 

conventionally processed membranes, a defect rate of approximately 15% is stated [7]. 

This increased defect rate for the HE method can be explained by the increased 

exposure to particles present in the environment (e.g. dust, aerosols) that damage the 

thin membrane layer. Whereas this contamination is easily prevented in the 

conventional process by shielding the membranes until placement in the furnace, the 

shielding requires more attention in the case of a preheated furnace. As we focused on 

delivering a proof-of-concept, no effort was taken to optimize the shielding for the hot 

environment concept.  

 

Figure 4: Permeance through silica layers rapidly calcined in a hot environment at 
400 °C for 60 minutes (Si-400-60). The three lines indicate distinct membranes that 
were made through identical procedures.  
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Figure 5: Permeance through silica layers rapidly calcined in a hot environment at 
600 °C for 60 minutes (Si-600-60). The four lines indicate distinct membranes that 
were made through identical procedures. 

 

Figure 6 shows the permeances of a batch of membranes calcined for only 10 minutes at 

600 °C (Si-600-10). Although the helium permeance of these membranes equals that of 

the membranes calcined for 60 minutes, the selectivity of helium over nitrogen and 

methane is low as compared to conventional membranes [6] and the membranes 

calcined for 60 minutes. Apparently, the desired membrane microstructure has not yet 

been fully developed after 10 minutes. 
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Figure 6: Permeance through silica layers rapidly calcined in a hot environment at 
600 °C for 10 minutes (Si-600-10). The four lines indicate distinct membranes that 
were made through identical procedures. 

 

Figure 7 shows the permeance data of a membrane obtained after 1 hour calcination on 

a hot plate temperature of 550 °C. The helium permeance is comparable to that of the 

other membranes. The measured selectivity of He/CO2 is 43, and the selectivities of 

He/N2 and He/CH4 are well above 500. These values show that rapid calcination using 

the hot plate can result in high-performance membranes. It has to be noted that 

continuous attention needs to be paid to the prevention of contamination; any 

calcination performed without the shielding device (Figure 1) resulted in membranes 

showing only Knudsen selectivity (even for sulfur hexafluoride, dk = 5.5 Å), which 

indicate pores with sizes larger than nanometers, or defects.   
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Figure 7: Gas permeance data obtained on the hot plate at 550 °C for 1 hour (Si-
550-60-HP) using the cover mechanism. 

 

4. Conclusions 

Rapid thermal treatments are employed successfully for the calcination of γ-alumina and 

silica membranes. The membranes obtained by the proposed methods are comparable to 

conventionally calcined membranes; however, the calcination time is reduced from 22 

hours to 30 minutes for γ-alumina, and from 41 hours to at most 1 hour for silica. This is 

a reduction to less than 3%. For both methods, a decrease in repeatability of the 

experiments was found, presumably caused by defects in the membrane layers that 

originate from an increased exposure time to the environment at the insertion and 

removal of the membranes from the furnace. Likely, this defect rate can be decreased in 

an optimized configuration, where the shielding of the membrane from the environment 

is further improved.  

γ-alumina and silica are regarded representative for meso- and microporous membrane 

layers, respectively. Since both types of materials where successfully calcined rapidly, 
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the developed rapid thermal treatment methods can probably be extended to a wide 

class of inorganic materials, like titania and hybrid organic-inorganic membranes. 

Employing rapid thermal treatments encourages the rapid screening of materials for 

research purposes. Above all, on industrial scale, both methods offer an advantage over 

RTP, as they can be scaled to larger areas and applied to non-planar geometries, 

potentially decreasing costs and production time. The results confirm the viability of 

rapid thermal treatments and give reason to continue the research into a wider range of 

materials and further optimized configuration for hot plate experiments.  
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Figure captions 
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6. Figures 

 

Figure 7 
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