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Abstract. The Coulomb friction model is frequently used for sheet metalforming simulations. This
model incorporates a constant coefficient of friction and does not take the influence of important
parameters such as contact pressure or deformation of the sheet material into account. This article
presents a more advanced friction model for large-scale forming simulations based on the surface
changes on the micro-scale. When two surfaces are in contact,the surface texture of a material
changes due to the combination of normal loading and stretching. Consequently, shear stresses be-
tween contacting surfaces, caused by the adhesion and ploughing effect between contacting asperities,
will change when the surface texture changes. A friction model has been developed which accounts
for these microscopic dependencies and its influence on the friction behavior on the macro-scale. The
friction model has been validated by means of finite element simulations on the micro-scale and has
been implemented in a finite element code to run large scale sheet metal forming simulations. Results
showed a realistic distribution of the coefficient of friction depending on the local process conditions.

Introduction

Finite Element simulations of sheet metal products are everyday practice in the automotive industry.
An accurate forming analysis can however only be made if, among others, the material behavior and
friction conditions are modeled accurately. For material models, significant improvements have been
made in the last decades, but in the majority of simulations still a simple Coulomb friction model is
used. Consequently, it is still cumbersome to predict the draw-in and springback of a blank during
forming processes correctly.

To better understand contact and friction conditions during lubricated sheet metal forming pro-
cesses, experimental and theoretical studies have been performed. On microscopic level, friction is
due to the adhesion and ploughing effect between contactingasperities and the appearance of hy-
drodynamic friction stresses. The real area of contact, which depends on different flattening and
roughening mechanisms, plays an important role in characterizing friction. However, micro models
encompassing these mechanisms are generally regarded as too cumbersome to be used in large scale
simulations.

An advanced friction model is proposed which couples the most important friction mechanisms.
Based on statistical parameters a fast and efficient translation from micro- to macro modeling is
included. A general overview of the friction model is presented and the translation from micro to
macro modeling is outlined. The development of real area of contact is described by the flattening
models proposed by Westeneng [1] and the effect of ploughingand adhesion on the coefficient of
friction is described by the friction model of Challen & Oxley[1, 2]. The flattening models are
validated by means of FE simulations on micro-scale and the feasibility of the advanced macroscopic



friction model is shown by a full scale sheet metal forming simulation.

Theoretical background

Solution procedure. A friction model, to be used in finite element codes, has been developed to
couple the various micro friction models. The friction model starts with defining the process variables
and material characteristics. Process variables are the nominal contact pressure and strain in the
material which are calculated by the FE code. The contact force carried by the asperities equals the
total nominal contact force since hydrodynamic friction stresses will not be accounted for. Significant
material characteristics are the hardness of the asperities and the surface properties of the tool and
workpiece material. Once the input parameters are known, the real area of contact is calculated
based on the models accounting for flattening due to normal loading and flattening due to stretching.
The amount of indentation of the harder tool asperities intothe softer workpiece asperities can be
calculated if the real area of contact and the contact pressure carried by the asperities are known.
After that, shear stresses due to ploughing and adhesion effects between asperities and the coefficient
of friction are calculated. It is noted that in reality flattening due to normal loading and flattening
due to stretching will appear simultaneously during sheet metal forming, as well as the combination
between flattening and sliding. Nevertheless, it has been assumed that the various mechanisms act
independently of each other in this research.

Friction models encompassing micro-mechanisms are generally regarded as too cumbersome to
be used in large-scale FE simulations. Therefore, translation techniques are necessary to translate
microscopic contact behavior to macroscopic contact behavior. Using stochastic methods, rough
surfaces are described on the micro-scale by their statistical parameters (mean radius of asperities,
asperity density and the surface height distribution). Assuming that the surface height distribution on
the micro-scale represents the surface texture on the macro-scale, it is possible to describe contact
problems that occur during large-scale FE analyses of sheetmetal forming processes [1].

Characterization rough surfaces.A discrete surface height distribution of the tool and workpiece
material is obtained from surface profiles (Figure 1a). However, a continuous function is desirable
to eliminate the need for integrating discrete functions during the solution procedure of the friction
model. An advanced method to describe discrete signals can be achieved by using a Fourier series.
A Fourier series makes it possible to describe non-smooth asymmetric distribution functions from
which the accuracy of the evaluation depends on the number ofexpansions used.

The results discussed in this article are obtained by evaluating the surface height distribution func-
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Figure 1: Surface profile (a) and corresponding surface height distribution (b)



tionsφ(z) by a half range sine Fourier function [3], given by:
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in which n represents the number of expansions,L the evaluation domain andf (z) the discrete form
of the surface height distribution. In Figure 1b, the discrete surface height distribution from the
workpiece material (Figure 1a) is evaluated by a Fourier function using 15 expansions.

Asperity flattening due to normal loading and stretching. Two flattening mechanisms have been
implemented in the friction model to calculate the real areaof contact of the workpiece: flattening
due to normal loading and flattening due to stretching. In this section a brief explanation of the
theory will be provided. For a detailed derivation of the following equations, the reader is referred to
[4]. The asperities of the rough surface are modeled by bars which can represent arbitrarily shaped
asperities. 3 stochastic variables are introduced: The normalized surface height distribution function
of the asperities of the rough surfaceφ(z), the uniform rise of the non-contacting surfaceU (based on
volume conservation) and the separation between the tool surface and the mean plane of the asperities
of the rough surfaced. The following expression has been derived for the nominal contact pressure
using energy and volume conservation laws:
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The parametersd andU are calculated by simultaneously solving Equations 2, 3 and4. Pnom rep-
resents the nominal contact pressure (input parameter) andH the hardness.ξ can be regarded as an
energy factor andχ as a shape factor. The persistence parameterη describes the amount of energy
required to lift up the non-contacting asperities. A value of η = 0 means that no energy is needed to
rise the asperities, a value ofη = 1 implies that a maximum amount of energy is needed to rise the
asperities.

The above equations are based on a normal loading case without additional bulk strain. To account
for flattening due to stretching, the models have to be adapted. The change of the fraction of the real
contact area as a function of the nominal strain can be presented as:
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with n the iteration number. The subscriptS is used for variables that become strain dependent. The
contact area ratio is updated incrementally by:

αn
S = αn−1

S +dαn
S (6)

The initial valuesα0
S , d0

S andU0
S are obtained from the model without bulk strain. To calculate

the change ofαS, the value ofUS anddS needs to be solved simultaneously whileε is incrementally
increased. Based on volume conservation (Equation 8) and thedefinition of the fraction of real contact
area (Equation 7)US anddS can be obtained.
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Shear stresses.The model of Challen & Oxley [2, 5] takes the combining effect of ploughing and
adhesion between a wedge-shaped asperity and a flat surface into account. Westeneng [1] extended
the model of Challen & Oxley to describe friction conditions between a flat workpiece material and
multiple tool asperities. He assumed that the flattened peaks of the asperities are soft and perfectly
flat and the surface of the tool material is rough and rigid. The difference in hardness between the tool
and workpiece material and the difference in length scales between the two surfaces is significant in
the case of a sheet metal forming process. Therefore, it is valid to make a subdivision in two length
scales using a rigid tool and a soft workpiece. The ‘macro-scale’ model of Challen & Oxley has been
implemented in the friction model to describe friction conditions between the tool and workpiece
material:

Fw = ρtαSAnom

∫ smax

δ
µaspπωβtHφt (s)ds (9)

with ω the amount of indentation,βt the mean radius of the tool asperities andµasp the coefficient
of friction at single asperity scale [5].ρt represents the asperity density of the tool surface,Anom the
nominal contact area andφt the normalized surface height distribution function of thetool surface.
The bounds of the integral are described bysmax, the maximum height of the tool asperities, andδ ,
the separation between the workpiece surface and the mean plane of the tool asperities. Since the
normal force is known (input parameter), the coefficient of friction can finally be obtained by:

µ =
Fw

FN
(10)

Validation flattening models

The flattening models proposed by Westeneng are used to determine the real area of contact between
the tool and workpiece material. FE simulations on the micro-scale have been performed in order
to validate these models. Two sets of simulations have been performed for this purpose. In the first
analysis, a two-dimensional rough surface of 4mm long was indented by a perfectly flat and rigid tool.
The second analysis was focused on indenting a rough surfaceby a normal load including a bulk strain
in the underlying material. Three simulations have been executed for each analysis using different
roughness profiles. The roughness profiles used correspondsto three roughness measurements on
DC04 low-carbon steel. The surface height distributions used for the analytical model belongs to the
roughness profiles used for the FE simulations. A fixed hardness of 450 MPa (3σy) was used in the
analytical model since a yield strength of 150MPa was used for the FE simulation.
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Figure 2: Development real contact area of analysis 1 (a) anddevelopment contact area of analysis 2
(b)



The development of the real area of contact has been tracked during the simulations and compared
with the analytical solutions. The analytical solutions and the FE solutions for elastic ideal-plastic
and elastic non-linear plastic material behavior are presented in Figure 2. The results shown are the
mean values of the three simulations performed per analysiscase. As can be seen in Figure 2, taken
work hardening effects into account has a significant influence on the development of the real area
of contact. Due to work hardening, material subjected to high strains will harden resulting a higher
resistance against asperity flattening. Consequently, taken work hardening into account results in a
lower development of the real contact area.

The analytical model to describe flattening due to normal loading (Figure 2a) uses a persistence
parameterη to describe the amount of energy required to lift up the non-contacting asperities [1].
A value of η = 0 means that no energy is required to rise the asperities, whereas a value ofη = 1
implies that a maximum amount of energy is required to rise the asperities. Since the exact value of
this parameter is not known, different calculations have been performed in order to obtain a precise
value for this parameter. A higher value for the persistenceparameterη results a smaller value of the
real contact area (Figure 2a). The real contact area calculated by the analytical solution using a value
of η = 1 correspond very well to the elastic ideal-plastic FE solution. The analytical model deviates
from the more realistic elastic nonlinear-plastic FE simulation, since work-hardening effects are not
accounted for. The flattening of the asperities will be lowerdue to work-hardening effects, which in
turn result in a lower amount of real area of contact (Figure 2a).

Combined normal loading and stretching the underlying bulk material decreases the effective hard-
ness [6]. A lower hardness results in an increase of the real area of contact. Both the analytical and the
FE results of analysis 2, where a rough surface has been indented by a nominal load and a bulk strain
has been applied to the underlying material, are presented in Figure 2b. As for analysis 1, results
shown are the mean values of the three simulations performedper analysis case. It can be concluded
from Figure 2b that work-hardening effects have a large influence on the flattening behavior of the
asperities. A difference of 20% in the real area of contact isobtained at the end of the simulation
between the results of the elastic ideal-plastic and the elastic nonlinear-plastic simulation.

The density of workpiece asperities (in mm−2) is an unknown parameter in the analytical strain
model. Hence, calculations have been performed using realistic values for the asperity density for
DC04 to show the importance of this parameter, see Figure 2b. From this figure, it can be concluded
that the asperity density of the workpiece has a significant influence on the development of the real
area of contact. If a higher value of the asperity density is used the amount of real area of contact
will be lower. The trend of the graphs corresponds well to theflattening behavior obtained by the FE
simulations. Using an asperity density of 5000 asp/mm2 it is possible to describe the results of the
elastic ideal-plastic FE solution (which has comparable material characteristics) precisely.

Figure 3: Example cross-die product

Table 1: Roughness parameters

Roughness parameter Value Unit

Hardness workpiece (H) 1400 MPa
Persistence parameter (η) 1
Density workp. asp. (ρwork) 5.0·103 mm−2

Density tool. asp. (ρtool) 2.0·103 mm−2

Radius tool. asp. (βtool) 2.0·10−2 mm
Nr. of Fourier expansions 10



Application

The cross-die product is a test piece designed at Renault which approximates process conditions of
complex automotive parts (Figure 3). The cross-die productis used to test the numerical performance
of the developed friction model in a large-scale FE simulation. To validate the model, an experimental
test procedure is currently being setup.

Due to symmetry of the cross-die product only a quarter of theworkpiece was modeled. The
workpiece was meshed by 9000 triangular discrete Kirchhoffshell elements using 3 integration points
in plane and 5 integration points in thickness direction. The yield surface was described by the Vegter
model [7] using the Bergström-Van Liempt hardening relation [8] to describe hardeningbehavior.
Material parameters were used from DC04 low carbon steel, a typical forming steel used for SMF
processes. Contact between the tools and the workpiece was described by a penalty method using a
penalty stiffness of 200 N/mm. The coefficient of friction used in the contact algorithm was calculated
on the basis of the friction model presented in this article.Roughness parameters are given in Table 1.
The simulation was performed by prescribing the displacement of the punch until a total displacement
of 50 mm was reached. The punch speed was set to 5 cm/sec and theforce applied to the blankholder
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was 50 kN.
Two simulations have been performed in order to quantify theindividual contributions of the two

flattening mechanisms. The first simulation only accounted for the influence of normal loading on the
coefficient of friction, Figure 4. The second simulation uses both flattening models to determine the
coefficient of friction, Figure 5. Results shown in Figure 4 and 5 are from the punch side of the sheet.
The gray areas represent the non-contacting areas.

If only flattening due to static loading is assumed (Figure 4), rather low values for the ratio of the
real to the nominal area of contact are obtained. This results in friction coefficients that vary between
0.13 and 0.145. Higher values are obtained in high-pressureregions: the contact area of the punch
radius (region A) and the thickened area of the blankholder region (region B). Lower values occur in
low-pressure regions: the blankholder region and the top area of the punch. Results look reasonable,
but it should be noted that only one of the two flattening mechanisms was taken into account during
the simulation. If the second flattening mechanism is taken into account (flattening due to stretching),
higher values for the real area of contact are obtained (Figure 5). The higher contact ratios result in
higher values of the coefficient of friction, i.e. between 0.13 and 0.19. It can be observed from Figure
5 that higher values of the coefficient of friction occur at regions where high strains occur. Region
C is purely stretched, region D is compressed which causes thickening of the material and region E
is stretched over the die radius. On the other hand, low values of the coefficient of friction can be
observed in low-strain regions. Overall it can be concludedthat the distribution of the coefficients of
friction lies within the range of expectation.

Conclusions

A friction model that can be used in large-scale FE simulations is presented. The friction model
includes two flattening mechanisms to determine the real area of contact at a microscopic level. The
real area of contact is used to determine the influence of ploughing and adhesion effects between
contacting asperities on the coefficient of friction. A statistical approach is adapted to translate the
microscopic models to a macroscopic level.

The friction model has been validated by means of FE simulations at a micro-scale. An excellent
comparison between the analytical and the FE simulation is obtained in case of indenting a rough
surface by a normal load. It was also found that work-hardening effects do not play a significant role in
the case of pure normal loading. If a nominal strain is applied to the bulk material, the effect of work-
hardening becomes much more significant. The analytical model is able to accurately describe the
FE results based on a elastic ideal-plastic material model.However, it was not possible to accurately
describe the influence of work-hardening effects due to the large difference between the elastic ideal-
plastic FE results and the elastic nonlinear-plastic FE results. It is concluded that work-hardening
effects should not be neglected in the analytical strain model.

The friction model has been implemented in a FE code and applied to a full-scale sheet metal
forming simulation. Results of the simulations have shown reasonable values for the coefficient of
friction in the case of normal loading only, namely between 0.13 and 0.145. If flattening due to
stretching is also incorporated, more realistic values areachieved (between 0.13 and 0.19).
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