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Extensive lattice-Boltzmann simulations were performed to obtain the drag force for
random arrays of monodisperse and bidisperse spheres. For the monodisperse systems,
35 different combinations of the Reynolds number Re (up to Re ¼ 1,000) and packing
fraction f were studied, whereas for the bidisperse systems we also varied the diameter
ratio (from 1:1.5 to 1:4) and composition, which brings the total number of different
systems that we considered to 150. For monodisperse systems, the data was found
to be markedly different from the Ergun equation and consistent with a correlation,
based on similar type of simulations up to Re ¼ 120. For bidisperse systems, it was
found that the correction of the monodisperse drag force for bidispersity, which
was derived for the limit Re ¼ 0, also applies for higher-Reynolds numbers. On the
basis of the data, a new drag law is suggested for general polydisperse systems, which
is on average within 10% of the simulation data for Reynolds numbers up to 1,000,
and diameter ratios up to 1:4. � 2007 American Institute of Chemical Engineers AIChE J,
53: 489–501, 2007
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Introduction

From a purely theoretical point of view, surprisingly little
is known about the force that a fluid, when flowing past an
assembly of spheres, exerts on the individual particles. In fact,
one could argue that the only exact result is the well-known
Stokes-Einstein drag force Fd ¼ 3pmduo for a single, isolated
sphere (dia. d), subject to Stokes flow (viscosity m, flow
velocity uo). This result is valid in the limit where both the
packing fraction f, and the Reynolds number Re approach
zero. The correction to the Stokes-Einstein drag due to the
presence of neighboring particles has been evaluated in terms
of an expansion in the packing fraction f, but only the first
few terms can be worked out analytically,3 which limits its
validity to packing fractions smaller than f ¼ 0.10. For
larger packing fractions, the drag force has to be estimated

from approximate theoretical methods, such as those leading
to the Brinkman equation, or from empirical data via Carman-
Kozeny type relations.4 There is a similar situation when the
deviation from Stokes flow—now again for an isolated
particle—is considered. The first-order correction to the
Stokes-Einstein drag force for Re > 0 was obtained analyti-
cally by Oseen in 1910, and terms up to order Re5 were
derived by Goldstein.5 Unfortunately, already for Reynolds
numbers as small as three, these expressions deviate mark-
edly from the experimental data, and the conclusion is that
for Re > 1 these analytical solutions have little value.6 Given
the fact that the evaluation of the drag force for the two limit-
ing cases f ? 0 and Re ? 0 is already difficult, it will be
clear that our understanding of fluid-solid interactions from a
purely theoretical basis is very limited for systems in which
both the packing fraction and Reynolds number are non-zero.
Kaneda7 was the first to derive an expression for the drag
force in such systems, where he found that in the limit of Re
,,

ffiffiffiffi
f

p
,,1 the first inertial contribution to the drag-force

scales as Re2. Later theoretical work8,9 has confirmed the
Re2 scaling for the first inertial contribution, at least for
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ordered arrays, and was found consistent with data from

numerical simulations. Nevertheless, the practical value of

these theories is rather limited since they are restricted to

very low-Reynolds numbers and small packing fractions. For

this reason, historically one has resorted to empirical data for

either the pressure drop (for packed beds) or terminal veloc-

ities of sedimenting particles (and bed expansion experi-

ments), to obtain estimates for the gas-solid drag for Re > 1

and f > 0.1. One of the problems is that such data only pro-

vides indirect information on the drag force, for systems

which are very different, and often not well-defined in terms

of homogeneity, monodispersity, sphericity of the particles,

mobility, and so on. This has resulted in a large number

of empirical relations for the gas-solid drag force,10 and

although the relations by Ergun1 and Wen and Yu11 are the

most widely used, there is at present no real consensus as to

what the most accurate prediction for the drag force is at a

given Reynolds numbers and packing fraction. Thus far, all

correlations were based on experimental data, however, very

recently a new correlation has been proposed on the basis of

lattice-Boltzmann simulation data.2 One of the biggest

advantages of simulations is that the material and/or flow

conditions can be perfectly controlled, which is often not

the case in experiments. For instance, the Ergun correla-

tion is widely used for beds of perfectly monodisperse,

spherical particles, whereas Ergun derived his equation

from data which not only involved spheres, but also sand

and pulverized coke.1 With the advancement of computer

resources, direct numerical simulations methods (such as

the lattice-Boltzmann method) have become a viable alter-

native for acquiring accurate data on the gas-solid drag

force, from which new ‘‘empirical’’ correlations can be

derived for well-defined systems.
In this article, we want to present the results of extensive

lattice-Boltzmann (LB) simulations of both monodisperse

and bidisperse systems, for packing fractions ranging from

f ¼ 0.10 to f ¼ 0.65, and Reynolds numbers in the range

of 10–1,000, where results for the limit Re ? 0 have been

published in a previous article,12 to which we refer, hereafter,

as reference I. The data which we present here for bidisperse

systems are to our knowledge the first of this kind. For

monodisperse systems, however, as mentioned earlier, similar

type of simulations have been performed previously.2 The

justification for also including monodisperse results in this

article is that we extended the Reynolds number range up to

1,000, where the data of Hill et al.2 was limited to Re <
120. More generally, the focus of the Hill et al.2 article was

to contribute to the fundamental understanding of inertial

flow in particulate systems, and not so much aimed at pro-

viding a drag force relation for practical use. For instance,

they do not provide a correlation over the entire range 0 <
Re < 120, but only for small Re (typically < 2), and for

Re > 40. Moreover, for the latter range they suggest a

functional form F ¼ F2(f) þ F3(f) Re where only for

F3(f) the explicit functional form is given. The validity of

this expression for Re > 120 is not clear either. In the

limit f ? 0 and Re ? ?, the Hill-Koch-Ladd expression

corresponds to a drag coefficient Cd ¼ 1.09, which is more

than a factor of two larger than the commonly accepted

range of 0.40–0.44.

The purpose of this article is to provide a new drag force
correlation for mono- and polydisperse systems for a large
range of Reynolds numbers and packing fractions, based on
lattice Boltzmann data. The main motivation for constructing
such a correlation is that effective fluid-solid drag laws are a
key input in the numerical models for dense particle-laden
flows (for example, gas-fluidized beds), and are, therefore, of
crucial importance in chemical engineering.13 For this reason,
the functional form of our final correlation is determined
completely by the requirements of accuracy and simplicity,
and not by theoretical considerations. For instance, we will
not make use of the fact that the drag force scales as Re2

for very small Reynolds numbers, since this would make
the functional form much more complicated without pro-
viding a better fit to the data in the Reynolds number
range that is relevant for industrial applications. In a previ-
ous article13 we have reported on a preliminary fit to part
of our data, to serve as an illustration of the multiscale
modeling approach. In this work, we present a more exten-
sive and more precise fit.

In the next two sections we will first give an overview of
the drag force relations for monodisperse and bidisperse
systems. This is followed by a short recapitulation of the
simulation procedure, the details of which can be found in
reference 1.

Overview of Drag Force Relations
for Monodisperse Systems

Before presenting the various drag force relations that have
appeared in literature, it is essential to first carefully define
the various quantities of interest, in particular since there
exists some ambiguity in literature in the way the Reynolds
number and the drag force are defined. To this end, we con-
sider a static bed of N monodisperse spheres (dia. d, volume
Vp), at a packing fraction f ¼ NVp/V, where V is the total
volume of the system. When a gas (or a liquid) flows
through the bed with a constant velocity uo, a particle experi-
ences two forces from the fluid, namely the drag force Fd

due to the fluid-solid friction at the surface of the spheres,
and a force Fb ¼ �Vp!P due to the static pressure gradient
!P, which drives the gas flow. The sum of Fd and Fb is the
total force Fg?s that the gas phase exerts on a solid particle,
which is sometimes also referred to as the drag force. From
a balance of forces follows that V!P ¼ NFg?s; eliminating
!P from the expressions gives that Fd ¼ (1 � f)Fg?s, and,
thus, the two definitions for the drag force differ by a factor
of 1 � f. In this paper, we define Fd as the drag force,
which is the common choice in chemical engineering.10

Since there exists an exact expression for the drag force on
an isolated particle in the limit of zero Reynolds number—
the aforementioned Stokes-Einstein relation 3pmduo—it is
natural to use this expression to normalize the drag force at
arbitrary packing fractions and flow velocities. We, thus,
define the dimensionless drag force F as

Fðf;ReÞ ¼ Fd=3pmdU; so that Fð0; 0Þ ¼ 1 (1)

Note that in this definition we have used the superficial
velocity U ¼ (1 � f) uo instead of average fluid-flow
velocity uo. As is indicated in Eq. 1, the dimensionless drag
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force F will only depend on other dimensionless parameters
which characterize the system, which are the packing fraction
f and the particle-Reynolds number Re, defined by

Re ¼ rgUd

m
¼ rgð1� fÞuod

m
(2)

with rg the density of the gas phase. In chemical engineering
literature, the gas-particle interaction is often represented in

terms of a pressure drop per unit length !P rather then a

drag force. The relation between !P, and the dimensionless

drag force defined by (Eq. 1) is

F ¼ � 1� f
f

� �rPd2

18mU

Basically two classes of relations can be found in literature
to describe the drag force for general flow conditions. The
first class of relations is based on the expression for the drag
force in the limit of Stokes flow F(f, 0), to which a term
linear in Re is added to account for inertial effects, viz

Fðf;ReÞ ¼ Fðf; 0Þ þ aðfÞRe (3)

The second class of relations is based on the expression
for the drag force on a single particle F(0, Re), where the
influence of the neighbouring particles is accounted for by
multiplying with a power of the voidage, viz

Fðf;ReÞ ¼ Fð0;ReÞð1� fÞ�b
(4)

where b is usually taken as a constant, independent of Re.
We start with the first representation, which has the

longest history. In the 1920s, Blake,14 Kozeny,15 and Burke
and Plummer16 suggested the following expressions for the
functional form of F(f, 0) and a(f)

Fðf; 0Þ ¼ af

18 ð1� fÞ2 ; aðfÞ ¼ b

18 ð1� fÞ2 (5)

Ergun1 obtained the values a ¼ 150 and b ¼ 1.75 on the

basis of data for the pressure drop over packed beds of vari-

ous materials (sand, spheres, pulverized coke) from 640

different experiments; the combination of Eqs. 3 and 5 with

these values for a and b has become known as the Ergun

correlation, and is one of the most widely used expressions

for fluid-solid drag, even to date. More recent experiments

showed that three main regimes exist in fluid flow through

packed beds, where for each regime a different set of param-

eters a, b was derived.17 In particular, for Re < 2.3: a ¼
192, b ¼ 0: for 5 < Re < 80: a ¼ 182, b ¼ 1.92; and for

Re > 120: a ¼ 225, b ¼ 1.61. Since 1999 also accurate nu-

merical-simulation data for the drag force has become avail-

able from three different research groups,9,12,18 using the

lattice-Boltzmann method. For dense beds at low-Reynolds

numbers, all three research groups concluded that expression

(Eq. 5) for F(f, 0) provides an accurate representation of the

drag force if a coefficient a ¼ 180 is used, which corre-

sponds to the Carman19 equation. One of the shortcomings of

expression (Eq. 5), however, is that its validity is limited to
dense beds. In reference 1 it was shown that the following

simple modification of the Carman equation provides the
best fit to all simulation data for arbitrary packing fractions

Fðf; 0Þ ¼ 180f

18ð1� fÞ2 þ ð1� fÞ2ð1þ 1:5
ffiffiffiffi
f

p
Þ (6)

The lattice-Boltzmann simulations have been extended
also to intermediate Reynolds number flow.2,20 On the basis
of their data in the range 40 < Re < 120, Koch, Hill and
Ladd2 suggest an expression for the form-drag coefficient
a(f) which is different from the Burke and Plummer expres-
sion (Eq. 5)

aðfÞ ¼ 0:03365 ð1� fÞ þ 0:106fð1� fÞ þ 0:0116

ð1� fÞ4 þ
dF
Re

(7)

where we have added a term dF/Re which is not found in
Hill et al.,2 and needs some clarification. In their article, Hill
et al., define two expressions for the normalized drag force:†

F ¼ F0(f) þ F1(f) Re
2 for very small Re (typically smaller

than 2), and F ¼ F2(f) þ F3(f) Re for Re > 40. If F0(f) ¼
F2 (f) then a(f) as defined by (3) would be equal to F3(f),
since F(f, 0) ¼ F0(f). However from table 1 of Hill et al.2

it can be seen that there are some small differences between
the numbers for F2 and F0. Unfortunately, Hill et al. have
only provided a fit for F0, and not for F2, and for this reason
researchers have neglected the difference when applying the
Hill-Koch-Ladd correlation, which is justified for Re > 200,
but not for smaller Reynolds numbers. The data from Hill-
Koch-Ladd shows that the difference dF ¼ F2 � F0 as a
function of f is rather scattered, which makes it difficult to
identify a clear trend. On the basis of their data, we have
made the following rough estimate for dF

dF ¼ 6f� 10f2

ð1� fÞ2 (8)

where again we stress that the actual data is strongly fluctuat-
ing around this fit, particularly for f < 0.2. Nevertheless, the
use of this dF in expression (7) will give a better estimate of
the Hill- Koch-Ladd data for Reynolds numbers smaller than
200, compared to setting dF ¼ 0. The lattice Boltzmann sim-
ulations of Kandhai et al.,20 performed in the range Re < 70,
were found to be consistent with the results by Hill et al.

The second class of drag force relations (4) is based on
the expression for the normalized drag force on a single par-
ticle F(0, Re), which is traditionally described in literature
by a drag coefficient Cd ¼ 24F(0, Re)/Re. Finding accurate
estimates for F(0, Re) has challenged the scientific commu-
nity for a large number of years. As mentioned in the intro-
duction, an evaluation from theory proves to be a cumber-
some route, so that our current knowledge of F(0, Re) is
mainly based on experimental data, from which one can
roughly distinguish four different flow regimes. For Re < <
1 there is the Stokes flow regime, for which by definition
F(0, Re) ¼ 1. For Re > O(103) the drag force is found to
scale linearly with the Reynolds number: F(0, Re) ¼ c Re/24

†
Note that the definitions of the drag force, and the Re number are different in the
Hill et al. article.
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with c in the range 0.40–0.44, which is referred to as the
Newton flow regime. The regime 1 < Re < O(103) can be
viewed as a transition regime from Stokes flow to Newton
flow (sometimes referred to as Allen flow), for which the
functional form of the drag force is not a priori obvious. And
finally, for large-Reynolds numbers (Re > 105), a sudden
drop in the drag force occurs (the critical transition), after
which it again seems to grow linear with Re. A large number
of empirical relations for the subcritical region Re < 105

have been suggested over the years, a selection of which are
listed in Table 1, and also shown in Figure 1, together with
the experimental data.21

The modification of the single-particle-drag force to ac-
count for the presence of neighboring particles has been
determined experimentally by fitting the ratio vt(0)/vt(f) to a
function (1 � f)�n, where vt(f) and vt(0) are the terminal
velocities of an assembly of spheres and an isolated sphere,
respectively. Apart from sedimentation experiments, also flu-
idization experiments have been used to estimate the value n.
On the basis of the experimental data, various expressions
for n as a function of the Reynolds number have been sug-
gested; an overview is given by Di Felice.10 Unfortunately, it
is not possible to derive a general relation between b in
Eq. 4 and n, since this depends on how the nondimensionless
drag force Fd scales with vt. For very low-Reynolds numbers
Fd ~ vt which gives b ¼ n � 1, while for higher-Reynolds
number, one may assume that Fd ~ vt

2 which yields b ¼ 2n
� 1. Richardson et al.22 found that n ¼ 4.65 for Re < 0.2,
and n ¼ 2.4 for Re > 500, which values thus correspond to
b ¼ 3.65, and b ¼ 3.8, respectively. For this reason, Wen
and Yu11 suggested a drag force relation of the type (Eq. 4)
with a constant value b ¼ 3.7 for the entire Reynolds-
number range, in combination with the Schiller and Nauman23

expression for F(0, Re), which was at that time regarded as
the most accurate relation. The Wen and Yu correlation has
remained very popular in chemical engineering ever since.
Di Felice24 found that the power b is weakly dependent on
the Reynolds number, and proposed the following modifica-

tion to the value 3.7:

b ¼ 3:7� 0:65 exp
�ð1:5� log ReÞ2

2

( )
(9)

Figure 1. Normalized drag force for an isolated particle
as a function of the Reynolds numbers, on a
log-log scale.

Shown are the various empirical correlations from table 1, to-
gether with the f ¼ 0 limit of the correlation from Hill et al.,2

and from this article (see simulation results for monodisperse
systems section). The range below Re¼ 1,000 is shown on a lin-
ear scale in the inset. The experimental data are taken from the
book of Schlichting21. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

Table 1. Some Well-Known Empirical Correlations for the Normalized Drag
Force on an Isolated Particle

Schiller & Nauman (1935):23 Fð0;ReÞ ¼ 1þ 0:15 Re0:687 ðRe , 103Þ
0:44
24

Re ðRe > 103Þ
�

Dallavalle (1948):38 Fð0;ReÞ ¼ 1þ 0:2624 Re0:5 þ 0:413

24
Re

White (1974):37 Fð0;ReÞ ¼ 1þ 0:25 Re0:5

1þ Re�0:5
þ 0:4

24
Re

Turton & Levenspiel (1986):39 Fð0;ReÞ ¼ 1þ 0:173 Re0:657 þ 0:413

24

Re

1þ 16300Re�1:09

� �

Note that the traditional representation for the drag force in this limit is via a drag coefficient Cd ¼ 24F(0,
Re)/Re.
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This approach is particularly popular in sedimentation lit-
erature and liquid fluidization.

Both type of correlations (3) and (4) have their relative
merits and weaknesses, which makes them to some extend
complementary. The ‘‘Ergun type’’ relations (3) are only valid
for denser systems, whereas the ‘‘Wen and Yu’’ type rela-
tions have been derived on the basis of data from relatively
dilute systems. For this reason, Gidaspow has suggested to
use the Ergun equation for packing fractions higher than
f ¼ 0.2, and the Wen and Yu equation for lower-packing
fractions.25 The disadvantage of such a drag law is that there
is a discontinuity at f ¼ 0.2, and also it is questionable
whether the Ergun equation can be extrapolated to such
high-porosities. Nevertheless, this hybrid Ergun-Wen and Yu
drag law is widely used in chemical engineering, and for this
reason we will compare it with our lattice Boltzmann results
later in this work. A different approach to combining expres-
sions of the type (3) and (4) has been followed by Gibilaro
et al.26 They suggest a function

Fðf;ReÞ ¼ f ðReÞð1� fÞ�3:8; f ðReÞ ¼ 17:3

18
þ 0:336

18
Re

(10)

where f(Re) is chosen such that F(f, Re) is equal to the
Ergun equation for f ¼ 0.6. Note that in the limit f ? 0,

Re ? 0 expression (Eq. 10) leads to F ¼ 0.96, thus, very
close the Stokes-Einstein result; taking the limit f ? 0,

Re ? ? shows that Eq. 10 leads to a drag coefficient Cd ¼
0.448, which is very close to the experimental value. There

is no doubt that expression (Eq. 10) represents a very useful

unification of the Ergun, Wen and Yu type expressions, and
is also backed by experimental data.26 However one may

argue if the ‘‘true’’ drag force would indeed take such a sim-
ple form as given by Eq. 10, or more generally by equations

of the type (3) and (4). In particular, the dependence on the

packing fraction ; (1 � f)�b of (3) seems oversimplified,
when compared to the most accurate expression (6) for the

limit Re ? 0. Also, the linear scaling with the Reynolds
number of Eq. 3 seems to be an oversimplified representation

for the sub-Newton-flow regime (Re < 1,000).
In this work we want to come to a single correlation

where the scaling with both the Reynolds number and the
packing fraction is re-evaluated. This expression will be
based on the data of lattice Boltzmann simulations for 35 dif-
ferent combinations of f, and Re in the range f ¼ 0.4 � 0.9
and Re ¼ 20 � 1,000. For the limit Re ¼ 0 the correlation
should satisfy expression (Eq. 6), whereas in the limit f ¼ 0
we will constrain our correlation to approach the widely
accepted value F(0, Re) ¼ 0.413 Re/24 in the limit Re ? ?.
We will discuss this in detail in the simulation results for
monodisperse systems section.

Drag Force for Polydisperse Systems

For a random array of polydisperse particles, two additional
parameters for each species are required to characterize the
system, for instance the diameter di, and the number of par-
ticles Ni of species i. It is more convenient, however, to char-
acterize the system by the dimensioneless parameters xi and

yi which carry the same information

xi ¼ fi

f
; yi ¼ di

hdi

where fi ¼ Nipdi
3/6V is the individual packing fraction of

species i, and hd i is the Sauter mean diameter, which is
defined as

hdi ¼
Pc

i¼1 Nid
3
iPc

i¼1 Nid2i
¼

Xc

i¼1

xi
di

" #�1

(11)

where c is the number of species present in the system. If
Fd,i is the individual drag force on a sphere of species i, then
we define the individual normalized drag force Fi as

Fi ¼ Fd;i=3pmdiU (12)

In principle, the normalized drag force will depend on all
the dimensioneless parameters which characterize the sys-
tems, that is Fi(f, Re; x1,x2,. . ., xc; y1,y2,. . .,yc).

In literature, the gas-solid interaction in polydisperse sys-
tems is mainly studied in terms of the sedimentation velo-
cities of the individual species, which can be obtained directly
from experiments. For dilute arrays in the limit of zero-
Reynolds number, Batchelor27 derived an explicit expression
for the sedimentation velocities, which corresponds to a nor-
malized drag force

Fi ¼ 1� f
1þPc

j¼1 Sijfj

The diagonal terms Sii take the same value �6.55 as was
derived for monodisperse systems. The other coefficients

depend on the diameter and density ratios, and are not sym-

metrical (that is, Sij = Sji).
28 For higher-volume fractions

and Reynolds number, one has to resort to empirical data for

the sedimentation velocities to determine the gas-particle
interaction forces. On the basis of this data (mainly for bidis-

perse systems), various corrections to the monodisperse drag

force have been proposed, in order to account for polydisper-
sity (for example, see Di Felice,10 and references therein).

The problem with these kind of experiments is the particles
segregate while falling, so that locally the mass fraction of

the species—and, thus, also hd i—is not constant. Also, the
experiments only give indirect information on the drag force.

Although several methods have been developed to measure

the drag force on a particle directly,29,30,31 these are all lim-
ited to single particles or particles that are surrounded by

only a few others, which cannot be representative of a bi- or
polydisperse system.

The approach that is most often encountered in numerical
modeling of large scale gas-binary solid flow is to assume
that a particle experiences the same normalised drag force
as it would in a monodisperse system of equal overall poros-
ity, with the Reynolds number Re replaced by the individ-
ual value Rei ¼ rgUdi/m (for example, see Gidaspow25).
Patwardhan and Tien32 suggested a more refined model, in
which a different effective packing fraction for each species
is used, instead of the same overall packing fraction. They
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assumed that the porosity that a particle experiences is
mainly determined by the ratio of the average-pore size to its
diameter. This means that in a binary mixture the smaller
(larger) particles will experience a larger (smaller) porosity,
since the pores are large (small) compared to their diameter.
In our previous study on binary systems at low-Reynolds
numbers, we found that using the same overall packing frac-
tion (that is, the approximation Fi ¼ F(f)) gave a drag force
that was almost a factor of five different from the simulation
results, for a dia. ratio 1:4. A much better agreement with
the simulation data was obtained when using an effective po-
rosity as suggested by Patwardhan and Tien.32 Also excellent
agreement was found with the new expression

Fi ¼ ðð1� fÞ yi þ f y2i þ 0:064ð1� fÞy3i ÞFðf; 0Þ (13)

which we derived on the basis of the Carman-Kozeny
approximation. The advantage of Eq. 13 over the Patwardhan
and Tien model is that it is much simpler to evaluate. In this
work, we will test if the same modification (Eq. 13) can
be applied to the bidisperse drag force at higher-Reynolds
numbers.

Very recently, Okayama et al.33 studied segregation in a
bidisperse-fluidized beds by numerical simulation in which
they used 4 different models for the individual drag force
on the particles. They subsequently compared with experi-
ments of the same system in order to validate the various
models. Specifically, they used a model A where the dia. d in
the expression for the actual (that is, non-normalized) drag
force for a monodisperse system, is replaced by the individ-
ual diameter of the particles, which is the equivalent to set-
ting Fi ¼ F(f, Rei). In the other three models B1–B3, they
replace the dia. d in the expression of the non-normalized
drag force for a monodisperse system by the Sauter-mean
diameter, and, subsequently, distribute this force to the indi-
vidual particles by ratio of the particle diameter (B1), pro-
jected surface (B2), and volume (B3). In our notation, the
model BN corresponds to Fi ¼ yi

N�1 F(f, hRei), with N ¼ 1,
2, 3. The data from Okayama et al. indicates that the experi-
mental segregation rate lies in between the predictions that are
made by the simulations using drag model B2 and B3, respec-
tively, which seems to indicate that the true individual drag
force should be decribed by a combination of model B2 and
B3, as is indeed the case in our expression (Eq. 13).

Simulation Method

The simulation procedure that we use to determine the
drag force has been discussed in detail in reference I. We
will quickly reiterate the most important aspects. In the simu-
lations we make use of the lattice-Boltzmann (LB) method to
resolve the flow of gas around the particles, where stick
boundary conditions are employed at the surface of the par-
ticles. In the LB method, space and time are discretized, and
the information on the local gas momentum and density is
contained in the single gas-particle distribution function,
which is updated via a discretized version of the Boltzmann
equation.34 The change in gas momentum per unit time,
required to maintain stick boundary conditions at the surface
of a solid particle i, is equal to the total force �Fg?s,i that
the particle i exerts on the gas phase, from which the drag

force can be obtained.35 Due to the discretization of the sur-
face, the precise diameter of a spherical particle is not well-
defined. Therefore, a calibration run needs to be performed
for each individual boundary configuration, where the meas-
ured drag force for a dilute cubic array for low-Reynolds
numbers is compared with the exact expression by Hasi-
moto,36 from which the effective diameter can be obtained.
The same effective diameter is used for the simulations at
finite Reynolds numbers. Note that in the LB model, all
quantities are in units of the time step dt, and the lattice
spacing dl, but a conversion to SI units is not required since
in the end we are only interested in the relation between the
dimensionless quantities F, Re and f.

For the monodisperse simulations, N ¼ 54 particles with

an effective dia. d are distributed randomly in a box of nx �
ny � nz lattice sites via a Monte Carlo procedure, where d
has a value typically in between 17 and 26 lattice spacings.

For these values the size of the box can always be chosen

such that packing fraction fsim ¼ Npd3/(6nxnynz) is within

1% of the desired packing fraction f. The result for the drag

force is then extrapolated to exactly f by a second order

Taylor expansion using an initial estimate for the drag force

as a function of f. Periodic boundary conditions are used.

All spheres are forced to move with the same constant velo-

city v
sim in some arbitrary direction, so that the array of

spheres moves as a static configuration through the system.

A uniform force is applied to the gas phase, to balance the

total force �P
i¼1
N Fg?s,i from the moving particles on the

gas phase. From this follows that in a frame of reference

where the particles are static, the superficial flow velocity U
is equal to �v

sim, so that Re ¼ rd|vsim|/m, where the density

r ¼ 36 in LB units. Once an equilibrium state is obtained,

the average value Fg?s ¼ hPi¼1
N Fg?s,i/Nit is determined,

with h�it a time average. A second average h�ic is performed

over typically 10–30 different-particle configurations and

flow directions, so that the final estimate for the dimension-

less drag force from the simulations is F(f, Re) ¼ �(1 � f)
hFg?sic/3pmdvsim, where the error in the data is determined

from the standard deviation s of F in the average h�ic. Note
that there can be large fluctuations in the outcome of the dif-

ferent configurations, and for this reason we did not include

any data which deviated more than 2.5 s from the mean

value. Note that simulation procedure of Hill, Koch and

Ladd is slightly different, where the particles are held static

and a gas flow is induced by applying a uniform body force.9

One of the advantages of our procedure is that the Reynolds

number is set, whereas in Hill, Koch and Ladd the Reynolds

number has to be measured, which introduces additional

uncertainties. The error in our data for the drag force is on

average 2.5%, which is comparable to the error margins

reported by Hill, Koch and Ladd.
The actual quantity of interest, however, is not F itself,

but rather the deviation of the drag force from the low-

Reynolds number limit F(f, 0), since for the latter we

already have an accurate representation (6). Hence, from the

simulation data we evaluate the quantity a as defined in

Eq. 3, but now in a generalized form so that it can also be

dependent on the Reynolds number

aðf;ReÞ ¼ ðFðf;ReÞ � Fðf; 0ÞÞ=Re (14)
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For evaluating a from simulation, we use for F(f, 0) the raw
simulation data as shown in Figure 2 and 3 of reference I,
and not expression (6), which represents the extrapolated,
grid-independent result for F(f, 0). The reason is that this
way any of the Re ¼ 0 finite size effects and fluctuations in
F(f, Re) are automatically canceled, since the Re > 0 simu-
lations are performed for exactly the same configurations,
diameters and shear viscosity m ¼ 0.03 (in LB units) as in
the simulation reported in reference I. An important issue
which remains to be addressed is whether the resolution of
the grid that we use is sufficiently high to yield reliable
results, in particular for higher-Reynolds numbers. In our
simulations, we reach Reynolds numbers of up to 1,000,
which is clearly far beyond the laminar regime, and even
may be in the turbulent regime—depending on how ‘turbu-
lence’ is precisely defined. The lattice-Boltzmann model is in
principle well capable of modeling turbulent flow, provided
that the grid resolution is high enough so that all the relevant
length-scales are captured.34 In this respect there exists no
difference with direct numerical simulations utilizing finite-
difference or finite-volume techniques. It is difficult to pre-
cisely pinpoint what resolution is ‘‘sufficient’’ for these type
of simulations, which also depends on the packing fraction
of the spheres. Also it is not clear if a lack of resolution will
affect the average gas-solid momentum exchange in the
same way as it would affect for instance the instanteneous
fluid-flow profiles. In order to test the effect of the grid reso-

lution on the drag force, we have evaluated a for various
values of the dia. d, keeping the Reynolds number Re con-
stant. In Figure 2 we show the simulation result for a as a
function of the particle diameter in lattice-Boltzmann units,
for a typical packing fraction f ¼ 0.5. We find that for the
highest-Reynolds number (Re ¼ 1049) the data is independ-
ent of the particle size for diameters larger than 25 lattice
units. For the lower Reynolds number (Re ¼ 210) the fluctu-
ations are larger, but also no clear trend can be observed
beyond diameters of 17 lattice units. We did an additional
test for an even denser system (f ¼ 0.6) at the largest Reyn-
olds number (Re ¼ 1049), which is the most difficult case
for the simulation to resolve, since the space between the
particles is the smallest. We found that the difference in a
using a diameter of 25 and 34 lattice spacings was only
2.2%, which is comparable to the error in the simulation data
itself. On the basis of the observations from Figure 2, we
have performed all simulations at packing fractions above f
¼ 0.3 for two diameters: d ¼ 17.5 and d ¼ 25.5, where the
final estimate for a(f, Re) is then obtained as the average of
the two results. For packing fractions 0.3, 0.2 and 0.1 we
have used the d ¼ 17.5 data only.

The procedure for binary systems is essentially the same
as for the monodisperse systems, only that we now collect
the data for the drag force on type 1 and type 2 particles sep-

Figure 3. a multiplied by the porosity squared, as a
function of the packing fraction.

The symbols are the simulation data from this work for
various Reynolds numbers (see legend). The error bars are
only shown when larger than the size of the symbols. The
black dashed line is the Ergun equation a (1 � f)2 ¼ 1.75/
18; The black solid line represents expression (7) by Hill
et al.,2 with dF ¼ 0. The dot-dashed line is expression (7)
with dF given by (8), for Re ¼ 40. The lower and upper
grey line is the prediction from our best fit Eq. 16 at Re ¼
1049.4, and Re ¼ 21, respectively. [Color figure can
be viewed in the online issue, which is available at www.
interscience.wiley.com.]

Figure 2. Simulation data for the drag force at finite Re
minus the simulation data at Re = 0, divided
by Re, as a function of the particle diameter.

The filled circles are for Re ¼ 210, the open circles for Re
¼ 1049. The diameter is in units of lattice spacings of the
lattice Boltzmann model. The packing fraction is equal to f
¼ 0.5. Note that for this packing fraction Eq. 7 gives a ¼
0.2375 þ 1.85/Re, whereas the Ergun relation1 predicts a ¼
0.389, independent of the Reynolds number.
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arately, that is, we calculate the individual drag force as
F1 ¼ �(1 � f) hhPi¼1

N1 Fg?s,i/N1itic/3pmd1vsim, where the

summation Si is over type 1 particles only. Another differ-
ence with the monodisperse simulations is that the diameters

are on average somewhat smaller (due to the larger number
of particles) so that the finite size effects are more apparent.

Test runs for different diameters showed that the simulation

data for ai was scaling roughly as 1/hdi2, so that in all cases
simulations for two values of hd i have been performed,

where the final estimate is obtained from the extrapolation to
1/hd i2 ? 0. The precise values that we used depended on

the packing fraction, Reynolds number and composition,
where we note that we studied 115 different combinations of

these parameters. For dense systems (f & 0.5) with f1 ¼
f2 and d1/d2 ¼ 2 we typically evaluate ai from the extrapola-
tion of the data at hd i & 9 and hd i & 18.

Simulation Results for Monodisperse
Systems

In Figure 3 we show our simulation data (symbols) for
a(f, Re) multiplied by (1 � f)2, as a function of f, together
with the Ergun equation (dashed black line) and Eq. 7, from
Hill, et al. (solid line). We find that for f < 0.6, our data is
markedly different from the Ergun equation, and in reasona-
ble agreement with the Hill, Koch and Ladd expression. It
should be reminded, of course, that the Ergun equation is not
expected to be valid for the entire packing fraction range,
but only for dense systems. Our data clearly indicates that a
is dependent on the Reynolds number, which implies that a
linear scaling of the normalized drag force F with Re is an
oversimplified representation in the range below Re ¼ 1,000.
This is shown more clearly in Figure 4, where we plot the
same quantity a(1 � f)2 but now as a function of the Reyn-
olds number, for packing fraction f ¼ 0.6 and f ¼ 0.2. The
lattice-Boltzmann data clearly indicate that a is not constant
with respect to the Reynolds number, revealing a distinct
peak at Re ¼ 100 for f ¼ 0.4. For f ¼ 0.5 (not shown in
the figure) we found a less pronounced peak at about the
same position, whereas for lower-packing fractions the data
seems to indicate that the peak has shifted to lower-Reynolds
numbers, however, the range Re < 100 we have not resolved
with sufficient detail in the simulations to determine the loca-
tion of the maximum. Figure 4 also shows that the simulation
data is in reasonable agreement with the correlation (7) by Hill
et al., although the latter expression does not capture the de-
pendence of a on the Reynolds number for f ¼ 0.6, due to the
fact that dF in Eq. 7, vanishes at this packing fraction. Note
that this vanishing is not just an anomaly of our fit function
(8), but does follow from the actual data of Hill et al.

Next, we test how well the ‘‘Wen and Yu’’-type relations
(4) can describe the simulation data. We recall that the Ergun
type description was based on F(f, 0), where we introduced
a generalized function a(f, Re) to replace 1.75/18(1�f)2 in
the Ergun equation. The Wen and Yu type description is
based on F(0, Re), where we now introduce a generalized
function b(f, Re) to replace the constant power 3.7 in the
Wen and Yu equation. Before we evaluate b from the simu-
lation data, however, we should first determine the best pos-
sible function F(0, Re) for the drag on an isolated particle.

To this end, we show in Figure 5 the simulation data for
F(f, Re) normalized by F(f, 105), as a function of the
Reynolds number. In this, the drag force F is calculated from
the simulation data for a via F(f, Re) ¼ F(f, 0) þ a Re,
with F(f, 0) given by Eq. 6. Note that the choice Re ¼ 105
is quite arbitrary, but in this case most convenient since we
have simulation data available at this Reynolds number for
all packing fractions. If b is independent of the Reynolds
number, then expression (4) gives that

�F ¼ Fðf;ReÞ
Fðf; 105Þ ¼

Fð0;ReÞ
Fð0; 105Þ

which is independent of the packing fraction. In Figure 5 it
can be seen that the data for �F for different f do not fall
onto a single curve, which indicates that it cannot be de-
scribed by a function of the type (4), or more generally not
by a product f1(f)f2(Re), with f1 and f2 functions of the f
and Re only, respectively. If we would be forced to use such
a description, however, then the function by White37 for F(0,
Re) fits the data best, although the function by Dallavalle38

(not shown in the figure) performs equally well. Note that
this does not necessarily mean that the White correlation pro-
vides the best description for the drag on a single particle—it
only seems the best choice for a Wen and Yu type drag cor-
relation for Reynolds numbers higher than 100. We now cal-

Figure 4. a multiplied by the porosity squared, as a
function of the Reynolds number.

The filled circles, black solid line and grey solid line repre-
sent the simulation data, expression (7) by Hill et al.,2 and
expression (16) from this work, respectively, for f ¼ 0.6.
The open circles, black short-dashed line and grey short-
dashed line represent the simulation data, expression (7), and
expression (16), respectively, for f ¼ 0.2. The long-dashed
line represents the Ergun correlation a¼ 1.75/18, which is in-
dependent of both f and Re. [Color figure can be viewed in
the online issue, which is available at www.interscience.
wiley.com.]
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culate the exponent b from our simulation results for F(f,
Re) via

bðf;ReÞ ¼ � log1�f
Fðf;ReÞ
Fð0;ReÞ

� �
(15)

where the drag F(0, Re) on a single particle is calculated
from the correlation by White. Figure 6 shows that for f �
0.3 the power b is in the range of 3–4, but not constant as
assumed in the Wen and Yu-equation. The value for b as
calculated by Eq. 9 also varies between 3–4, but has the
wrong trend when compared to the simulation data. More-
over, we find that b also clearly depends on f. For the low-
est packing fractions 0.2 and 0.1 the disagreement with the
Wen and Yu exponent 3.7 is very large. Note that these
results depend very much on the expression for F(0, Re)
that is used in Eq. 15. If the expression by Turton and
Levenspiel39 is used, then the data for f ¼ 0.5 and 0.6
agrees reasonably well with Di Felice’s expression 9, how-
ever, for f ¼ 0.1 the power gets almost as high as 9.

From the comparison of our data with both the Ergun and
Wen and Yu type expressions, the conclusion is that the for-
mer type is most suitable as a starting point when deriving a
more refined drag force correlation. That is, it turns out to be
more natural to describe the drag force in terms of a gene-
ralized a(f, Re), then in terms of a generalized power b(f,
Re). On the basis of our data, we suggest the following
expression for a, which takes into account the dependence on

both the packing fraction and the Reynolds number as shown
in Figures 3 and 4

aðf;ReÞ ¼ 0:413

24ð1� fÞ2

� ð1� fÞ�1 þ 3fð1� fÞ þ 8:4Re�0:343

1þ 103fRe�ð1þ4fÞ=2

" #
ð16Þ

The predictions for a calculated from this equation are
given in Figures 3 and 4 by the grey lines. It can be seen that
Eq. 16 does not provide a perfect fit, which is partly due to
the scattering in the simulation data, and partly due to the fact
that the drag force has a non trivial dependence on f and Re,
which cannot be captured by a single and relative simple func-
tion. Therefore, the function as suggested in Eq. 16 represents
a compromise, where we put the emphasis on the accuracy at
higher-Reynolds number, since for low Re the inertial contri-
bution a Re to the total drag force F is relatively small. Com-
bining the form drag (16) with the low-Reynolds number drag
from reference I gives the final result for the normalized drag
force at arbitrary Reynolds numbers and packing fractions

Fðf;ReÞ ¼ 10f

ð1� fÞ2 þ ð1� fÞ2�1þ 1:5f1=2
�

þ 0:413Re

24ð1� fÞ2
ð1� fÞ�1 þ 3fð1� fÞ þ 8:4Re�0:343

1þ 103fRe�ð1þ4fÞ=2

" #

(17)

Figure 5. Log-log plot of the drag force F normalized
to one at Re = 105 as a function of Re.

The symbols are the simulation data from this work for var-
ious packing fractions (see legend); the solid, dashed and
grey lines are calculated from the correlations for F(0, Re)
by White, Schiller and Nauman, and Turton and Levenspiel,
respectively (see Table 1). [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.]

Figure 6. Exponent b in the Wen and Yu type drag
relations (4), calculated from our simulation
results for different packing fractions (points).

The solid line is the exponent 3.7 of the Wen and Yu
equation,11 the dashed line is expression (9) by Di Felice.24
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The relative deviation of the simulation data for F with
Eq. 17, as well as with the correlation by Hill et al.,2 and the
combined Ergun and Wen and Yu correlation are shown in
Table 2. It can be seen that the maximum deviation of the
simulation data with Eq. 17 is 8%, where the average deviation
is only 3%. Note that the functional form of Eq. 16 is chosen,
such as to provide the best possible fit, and does not have any
physical origin. However, the power 0.343 and the prefactor
0.413 are taken from the Turton and Levenspiel expression for
F(0, Re).39 In the limit f ¼ 0, Eq. 17 reduces to

Fð0;ReÞ ¼ Cd Re

24
¼ 1þ 0:145Re0:657 þ 0:413

24
Re

1þ Re�1=2

which is compared with the other correlations from Table 1
in Figure 1.

Simulation Results for Bidisperse Systems

We have performed simulations for bidisperse systems at

Reynolds numbers Re ¼ 10, 100 and 500, packing fractions

f ¼ 0.10, 0.25, 0.35, 0.40, 0.50, 0.60 and 0.65, dia. ratios
d2/d1 ¼ 4, 3, 2, 1.65 and 1.43, and mass ratios f2/f1 & 20,

5, 3, 1, 1/3, and 1/9. We have not studied all combinations

of these parameters, but limited ourselves to 120 different

systems, with the emphasis on the higher-packing fractions
and moderate-diameter ratios. In reference I it was found

that for low Re, the individual drag force on the spheres

could be well described by Eq. 13, that is, by the drag force

of a monodisperse system multiplied by a correction term
which depends on yi ¼ di/hdi, and the packing fraction. Here

we want to test if this correction is also valid for higher-

Reynolds numbers. Thus, we assume that the following rela-

tion holds for the normalized individual drag force Fi on spe-

cies i

Fi ¼ ðð1� fÞ yi þ f y2i þ 0:064ð1� fÞy3i ÞFðf; hReiÞ (18)

with F(f, hRei) the drag force for a monodisperse system at
the same overall packing fraction, and Reynolds number
equal to the average Reynolds number of the binary system,
which is defined as

hRei ¼ rgUhdi
m

(19)

In Figure 7 we show Fi/F(f, hRei) as a function of the cor-

rection factor. The solid line represents Eq. 18, the symbols

are the simulation data for Fi from all 120 systems that we

studied, divided by F(f, hRei) as calculated from our best fit

Eq. 17. On the basis of Figure 7 we can conclude that the

correction factor which was derived for low Re, also applies to

higher Re, which is to some extend remarkable since this cor-

rection factor was derived within the framework of the Darcy

equation and the Carman-Kozeny approximation, which only

hold for the limit of Stokes flow.

At present, in all chemical engineering models of gas-solid
flows, no special modification is made for the drag force in
bidisperse systems. That is, the drag force on an individual
particle in such a system is simply assumed to be equal to
the monodisperse drag force, with the dia. d replaced by the
individual dia. di. In terms of the normalized drag forces as
defined by Eq. 1 and 12, this corresponds to

Fi ¼ Fðf;ReiÞ with Rei ¼
rgUdi
m

¼ yi hRei (20)

Table 2. Relative Deviation (F
sim � F)/F

sim
of the Total Drag force F

sim
Obtained from the Lattice

Boltzmann Simulations with the Various Correlations for F

Re ; f ? 0.100 0.200 0.300 0.400 0.450 0.500 0.550 0.600

21.0 �0.014 �0.019 0.008 0.002 – �0.031 �0.024 �0.014
�0.109 �0.123 �0.044 �0.013 – �0.034 �0.020 �0.008
0.167 0.178 0.072 0.065 – 0.041 0.054 0.072

30.5 – – – – – – – �0.006
– – – – – – – 0.020
– – – – – – – 0.070

105.0 �0.054 �0.027 0.013 0.006 – �0.054 – 0.039
�0.099 �0.002 0.107 0.134 – 0.063 – 0.070
0.167 0.174 �0.268 �0.185 – �0.161 – 0.009

153.0 – – – – – – – 0.049
– – – – – – – 0.063
– – – – – – – �0.034

210.0 �0.055 �0.014 0.030 0.015 – �0.051 – 0.042
�0.146 0.006 0.133 0.156 – 0.069 – 0.038
0.221 0.235 �0.451 �0.340 – �0.292 – �0.089

420.0 – – – 0.029 – �0.048 – 0.012
– – – 0.155 – 0.049 – �0.045
– – – �0.493 – �0.428 – �0.229

612.5 – – – 0.000 – �0.065 – �0.017
– – – 0.115 – 0.015 – �0.109
– – – �0.609 – �0.514 – �0.315

1049.4 0.027 0.038 �0.010 �0.033 �0.016 �0.074 �0.080 �0.074
�0.243 �0.051 0.024 0.057 0.065 �0.025 �0.105 �0.218
0.456 0.449 �0.932 �0.753 �0.648 �0.615 �0.534 �0.438

Top value: deviation with Eq. 17 proposed in this work. Middle value: deviation with the correlation (7) by Hill et al. Bottom value: deviation with the tradi-
tional correlations used in chemical engineering, which are the Wen and Yu11 correlation for f < 0.2, and the Ergun1 correlation for f > 0.2.
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In Figures 8 to 10 we compare the LBM data for one partic-
ular packing fraction (f ¼ 0.5) with expression Eq. 20. We
find that for the small and large particles, the current drag
models significantly over- respectively underpredict the
individual drag force on the particles, and that the modifica-
tion (Eq. 18) to F as proposed in this work provides a much
better description of the individual drag force. In Figures 8–
10 we also compare the LBM data to the theory by Pat-
wardhan and Tien32. In their original theory, the average di-
ameter in the calculation of d (which is the average distance
between a particle and its neighbours) is defined as davg ¼
x1d1 þ x2d2. However, this results in deviations of more than
100% with the LBM data, in particular for extreme diameter
ratios and/or low porosities. A significant improvement can be
made by using davg ¼ hdi as defined by Eq. 11. The short-
dashed line in Figures 8–10 is the result from the Patwardhan
and Tien theory using davg ¼ hdi, and the average Reynolds
number of the bidisperse systems. We find that there is now a
very good agreement with the LBM simulation data. A similar
trend was observed for the other packing fractions that we
studied. On average the simulation data agrees within 10%
with both expression Eq. 18, and the theory by Patwardhan
and Tien. By contrast, the average deviation with Eq. 20 is
90%, with individual deviations that are as much as 350%.
For packing fractions other than f ¼ 0.5 a similar conclusion
can be drawn.

Summary and Conclusions

In this work we have derived a new drag force relation for
fluid flow past mono- and bidisperse arrays of spheres, on
the basis of lattice-Boltzmann simulations. For monodisperse
systems we suggest the following correlation for the normal-
ized drag force

Fðf;ReÞ ¼ 10f

ð1� fÞ2 þ ð1� fÞ2�1þ 1:5f1=2
�

þ 0:413Re

24ð1� fÞ2
ð1� fÞ�1 þ 3fð1� fÞ þ 8:4Re�0:343

1þ 103fRe�ð1þ4fÞ=2

" #

(21)

where f is the solids volume fraction, and F and Re are
defined by Eqs. 1 and 2. We found for monodisperse systems
that the lattice-Boltzmann simulation data was consistent
with previous lattice Boltzmann simulation results2 (the aver-
age deviation being 8 %), however, our data for the form
drag clearly exhibits a more complex functional form than
the linear scaling with Re assumed by the Ergun-type corre-
lation (Eq. 3). In particular, both in the monodisperse and the
bidisperse simulations we found that a has a clear maximum
around Re ¼ 100 at high-packing fractions. Note that the
data by Hill et al.2 also indicate a deviation from linear scal-

Figure 8. Individual normalized drag force Fi of a bidis-
perse system as a function of the diameter
over the average diameter, for Re = 10.

The points are the simulation data, the lines are the various
predictions based on expression (17) for the monodisperse
drag force. The solid line is calculated from equation (18),
the short dashed line the prediction from the theory by Pat-
wardhan and Tien,32 and the long-dashed line is calculated
from Eq. 20. Note that the latter is used in almost all
numerical models for large-scale gas-solid flows. The pack-
ing fraction for this system is equal to 0.5.

Figure 7. Ratio of the individual normalized drag force
Fi of a bidisperse system to the monodis-
perse normalized drag force F.

The solid line represents Eq. 18, the points represent the
simulation data for Fi, divided by F as calculated from
(17), with Re the average-Reynolds number of the bidis-
perse system.
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ing, however, this has not been included explicitely in their
correlation; the deviation shown in Figure 4 for f ¼ 0.2 is
due to the extra term dF/Re in Eq. 7, which we constructed
on the basis of the Hill-Koch-Ladd data. In our new correla-
tion (Eq. 21), the deviations from linear scaling have been
taken into account, leading to an average deviation of 3 %
with the simulation data. By contrast, our data deviates sub-
stantially (more than 100%) from the Ergun correlation,
where we found that the latter equation under- respectively
over-predicts the drag force at low- and high-Reynolds num-
bers. The same conclusion was drawn by Hill et al.2 If we
rule out any errors in the determination of !P, m, and f in
the experiments by Ergun, then the only cause of the devia-
tion of his data with the lattice-Boltzmann results could lie
in the fact that the particulate systems in the experiments are
not as well-defined—in terms of homogeneity and monodis-
persity—as in the simulations. In some of the experiments,
the beds consist of crushed coke particles, with volume frac-
tions in the range 0.46–0.56. In reference I it was argued
that for low-Reynolds numbers, a size distribution could
decrease the pressure drop substantially, when compared to a
perfect monodisperse system. Also the fact that the coke
particles in the experiment are nonspherical could have an
influence. The diameter D that appears in Ergun’s equation is
that of a sphere, which has the same surface area as the coke
particles, which would cancel the effect of the irregular
shape, at least in the Carman-Kozeny approximation, that is,
for low-Reynolds numbers. However, Ergun also mentions
that the particles are oriented by the gas flow, which would
decrease the pressure drop. Another argument for the differ-
ence with Ergun is given by Hill et al.2 They argued that the
rather loose packing fraction of 0.46–0.56 would require a
network of touching particles. Compared to a random array

of nontouching particles, such a network would increase the
drag force at higher-Reynolds numbers, whereas it would
decrease the drag force at low-Reynolds numbers.

We should note that in the simulations at the highest pack-
ing fraction (f ¼ 0.60) the systems showed some ordering,
where in snapshots the underlying structure of a BCC-type
lattice could be identified. Also the f ¼ 0.55 configurations
revealed some very weak structure, although much less then
for f ¼ 0.60. In previous simulation studies,2 it was shown
that for ordered systems at larger Reynolds numbers, the
drag force very much depends on the flow direction; that is,
a large difference was found between flow along one of the
main lattice directions, and a random direction. Therefore,
for our final estimate for the drag force we averaged the
results from 2–3 different random-flow directions, where we
found that the variation in F for these directions was on the
same level as the variation from the different configurations.
In this respect we would also like to point out that in practi-
cal situations (for examples, dense gas-fluidized beds) at
high-packing fractions, some ordering will be inevitable, so
that the systems we studied can be considered representative
for dense beds of particles. For systems with packing frac-
tions of 0.50, and lower, there was no evidence of order in
the configuration.

For bidisperse systems, we found that the individual drag
force on a particle of species i can be well represented by

Fi ¼ ðð1� fÞ yi þ f y2i þ 0:064ð1� fÞy3i ÞFðf; hReiÞ;
yi ¼ di

hdi ð22Þ

with Fi, hdi and hRei defined by Eq. 12, Eq. 11, and Eq. 19
and where F is given by the monodisperse expression (Eq. 21).

Figure 9. As Figure 8, but now for Re = 100.

Figure 10. As Figure 8, but now for Re = 500.
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For the largest diameter ratios that we studied, we found that
the deviation can be as much as a factor of 3 with estimates
for Fi, that are currently used in the larger scale models gas-
solid flow. In particular for flow-driven segregation phenom-
ena, we expect that the modification to F given in Eq. 22
will have a large impact on the results. Simulation studies of
segregation in a laboratory scale bidisperse-fluidized beds,
using a hybrid discrete-particle model—computational fluid
dynamics model, are reported elsewhere.40 Finally, we expect
that the relation (Eq. 22) is also valid for general polydis-
perse systems. Some preliminary simulation data for a 4 spe-
cies system with diameter ratios 1:2:3:4 were in very good
agreement with expression (Eq. 22), however, much more
extensive simulations are required to come to any definite
conclusions. It should also be stressed that the drag relation
that we propose is for static arrays of spheres, whereas in
many practical applications the particles are moving about.
The precise effect of the granular temperature on the drag
force is very much an open issue, and is one of the important
topics which still needs to be addressed in this field of
research.
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