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Abstract

This paper reviews the use of discrete particle models (DPMs) for the study of the flow phenomena prevailing in fluidized beds. DPMs
describe the gas-phase as a continuum, whereas each of the individual particles is treated as a discrete entity. The DPMs accounts for the
gas–particle and particle–particle interactions. This model is part of a multi-level modeling approach and has proven to be very useful to generate
closure information required in more coarse-grained models. In this paper, a basic DPM, based on both the hard- and soft-sphere approaches is
described. The importance of the closures for particle–particle and gas–particle interaction is demonstrated with several illustrative examples.
Finally, an outlook for the use of DPMs for the investigation of various chemical engineering problems in the area of fluidization is given.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Fluidized beds are widely used in the chemical and process
industries for a large variety of processes. In order to improve
design and scale-up procedures of fluidized beds, a sound un-
derstanding of the transport phenomena in these systems is
vital. There exists a vast amount of literature on various ex-
perimental investigations of transport phenomena in fluidized
beds. Often, flat, pseudo-two-dimensional fluidized beds are
used to study the fluidization behavior with the aid of video
techniques or probe measurements because three-dimensional
fluidized beds are not visually accessible. Although the latter
system can be utilized in principle probes, they in general, at
least locally, disturb the fluidization behavior and thereby influ-
ence the outcome of the measurement. To overcome these prac-
tical limitations detailed computer models have gained consid-
erable attention since the early 1990s. With the use of computer
models one is able to ‘look’ inside the fluidized bed without
disturbing the flow-field. Furthermore, the use of the discrete
particle model (DPM) enables the simultaneous ‘measurement’
of several properties, such as the gas and particle velocities,
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and the porosity, which is difficult if not impossible to achieve
by direct experimentation. Provided that computer models pos-
sess sufficient predictive capabilities, they have the additional
advantage over experiments that several design options and op-
eration conditions can be tested with relative ease.

Despite these advantages, the construction of reliable mod-
els for large-scale gas–solid contactors is seriously hindered
by the lack of understanding of the fundamentals of dense
gas–particle flows. In particular, the phenomena which can
be related both to the effective gas–particle interaction (drag
forces), particle–particle interactions (collision forces), and
particle–wall interaction, are not well understood. The prime
difficulty here is the large separation of scales: the largest flow
structures can be of the order of meters; yet these structures
are directly influenced by details of the particle–particle and
particle–gas interactions, which take place on the scale of mil-
limeters, or even micrometers. To describe the hydrodynamics
of both the gas and particle phase, continuum-(Eulerian) and
discrete-(Lagrangian) type of models have been developed.
To model gas–solid two-phase flows at different scales, one
can choose appropriate combinations of the gas- and solid-
phase models, provided that a four-way coupling is used either
directly or effectively, depending on the scale of the simula-
tion domain. The basic idea is that the smaller scale models,
which take into account the various interactions (fluid–particle,
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Fig. 1. Multi-level modeling scheme (after Van der Hoef et al., 2006).

particle–particle) in detail, are used to develop closure laws
which can represent the effective ‘coarse-grained’ interactions
in the larger scale models (Van der Hoef et al., 2004, 2005,
2006).

Note that in principle it is not guaranteed that all correla-
tions between small- and large-scale processes can be captured
by effective interactions. However, experience has shown that
in many cases the main characteristics of gas–solid flows can
be well described by the use of closure relations. In this pa-
per we focus on the intermediate level of modeling: the DPM.
Furthermore, its connection to the other two levels of mod-
eling (i.e. the direct numerical simulations and the two-fluid
model (TFM) or Euler–Euler model based on the kinetic the-
ory of granular flow) will be highlighted. In Fig. 1 we show
a schematic representation of the four models, including the
information that is abstracted from the simulations, which is
incorporated in higher scale models via closure relations, with
the aid of experimental data or theoretical results.

Discrete element models or DPMs have been used for a wide
range of applications involving particles (see, for example, the
book of Ristow, 2000 and the references therein) ever since
it was first proposed by Cundall and Strack (1979). A major
difference with these traditional DPM models is that a detailed
description of the gas-phase dynamics is required, in order to
describe the interaction between the particles and the fluidizing
air. The coupling of the DPM with a finite volume description
of the gas-phase based on the Navier–Stokes equations was
first reported in the open literature by Tsuji et al. (1993) and
Hoomans et al. (1996) for the soft-sphere model and the hard-
sphere model respectively. From this point we will refer to these
Euler–Lagrange types of models (i.e. a discrete description of
the particulate phase and a continuous description of the gas-
phase) as DPMs (Fig. 2).

It is the purpose of this work to provide an overview of the
development of discrete element models applied to fluidization
since the work of Tsuji et al. (1993) and Hoomans et al. (1996)

and to give an overview of the state of the art of these models to-
day. This work is organized as follows. First, we will present the
framework of the collision model for both hard- and soft-sphere
approaches, followed by a discussion of their numerical im-
plementation. Subsequently, the different particle–particle and
gas–particle interactions will be discussed in more detail, fol-
lowed by a discussion of selected examples of applications of
the DPM. We will conclude with an outlook on possible future
developments of DPM with application to fluidized beds.

2. Framework of the collision model

2.1. Hard-sphere approach

In a hard-sphere system the trajectories of the particles are
determined by momentum-conserving binary collisions. The
interactions between particles are assumed to be pair-wise ad-
ditive and instantaneous. In the simulation, the collisions are
processed one by one according to the order in which the events
occur. For not too dense systems, the hard-sphere models are
considerably faster than the soft-sphere models. Note that the
possible occurrence of multiple collisions at the same instant
cannot be accounted for.

Campbell and Brennen (1985) reported the first hard-sphere
discrete particle simulation used to study granular systems.
Since then, the hard-sphere models have been applied to study
a wide range of complex granular systems. Hoomans et al.
(1996) used the hard-sphere model, in combination with a CFD
approach for the gas-phase conservation equations, to study
gas–solid two-phase flows in gas-fluidized beds. By using this
model, they studied the effect of particle–particle interaction
on bubble formation (Hoomans et al., 1996) and the particle
segregation induced by particle size differences and density dif-
ferences (Hoomans et al., 2000). This model has been further
used in connection with the kinetic theory of granular flow by
Goldschmidt et al. (2001), high-pressure fluidization by Li and
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Fig. 2. Graphic representation of the multi-level modeling scheme. The arrows represent a change of model. On the left is a fluidized bed on a life-size scale
that can be modeled with the aid of phenomenological models, a section of which is modeled by the two-fluid model (see enlargement), where the shade of
gray of a cell indicates the solid phase volume fraction. On the right, the same section is modeled using discrete particles. The gas-phase is solved on the
same grid as in the two-fluid model. The bottom graph shows the most detailed level, where the gas-phase is solved on a grid much smaller than the size of
the particles (after Van der Hoef et al., 2006).

Kuipers (2002, 2003, 2005), circulating fluidized beds by He
et al. (2006), spout-fluid beds by Link et al. (2004, 2005) and
particle flows through contractions by Vreman et al. (2006).

Similar simulations have been carried out by other research
groups. Dahl et al. (2004) and Dahl and Hrenya (2004, 2005)
applied a hard-sphere model to study segregation in continuous
size distributions. Ouyang and Li (1999a,b) developed a slightly
different version of this model. Helland et al. (1999) developed
a DPM in which hard-sphere collisions are assumed, but where
a time-driven scheme (typically found in the soft-sphere model)
is used to locate the collisional particle pair. Effect of the gas
turbulence has also been taken into account in some hard-sphere
models by Helland et al. (2000, 2002, 2005), Ibsen et al. (2004),
Lun (2000) and Zhou et al. (2004).

At high particle number densities or low coefficients of nor-
mal restitution e, the collisions will lead to a dramatical de-
crease in kinetic energy. This is the so-called inelastic collapse
McNamara and Young (1992), in which regime the collision
frequencies diverge as relative velocities vanish. Clearly in that
case, the hard-sphere method becomes useless.

2.2. Soft-sphere approach

In more complex situations, the particles may interact via
short- or long-range forces, and the trajectories are determined
by integrating the Newtonian equations of motion. The soft-

sphere method originally developed by Cundall and Strack
(1979) was the first granular dynamics simulation technique
published in the open literature. Soft-sphere models use a fixed
time step and consequently the particles are allowed to overlap
slightly. The contact forces are subsequently calculated from the
deformation history of the contact using a contact force scheme.
The soft-sphere models allow for multiple particle overlap al-
though the net contact force is obtained from the addition of all
pair-wise interactions. The soft-sphere models are essentially
time driven, where the time step should be carefully chosen in
the calculation of the contact forces. The soft-sphere models
that can be found in literature mainly differ from each other
with respect to the contact force scheme that is used. A review
of various popular schemes for repulsive inter-particle forces
is presented by Schäfer et al. (1996). Walton and Braun (1986)
developed a model which uses two different spring constants to
model the energy dissipation in the normal and tangential di-
rection respectively. In the force scheme proposed by Langston
et al. (1994), a continuous potential of an exponential form is
used, which contains two unknown parameters: the stiffness of
the interaction and an interaction constant.

A two-dimensional soft-sphere approach was first applied
to gas-fluidized beds by Tsuji et al. (1993), where the linear-
spring/dashpot model similar to the one presented by Cundall
and Strack (1979) was employed. Kawaguchi et al. (1998) ex-
tended this model to three dimensions as far as the motion
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of the particles is concerned. Yu and co-workers (Xu and Yu,
1997; Xu et al., 2000; Yu and Xu, 2003) independently devel-
oped a two-dimensional model of a gas-fluidized bed. How-
ever, in their simulations a collision detection algorithm that is
normally found in hard-sphere simulations was used to deter-
mine the first instant of contact precisely. Feng and Yu (2004)
and Feng et al. (2004) applied this model to study segregation
processes of a binary mixture.

Based on the model developed by Tsuji et al. (1993), Iwadate
and Horio (1998) and Mikami et al. (1998) incorporated Van
der Waals forces to simulate fluidization of cohesive particles.
Further studies of the influence of gas and particle properties
for Geldart A particles were performed by Ye et al. (2004,
2005b) and Pandit et al. (2005). Kafui et al. (2002) developed
a DPM based on the theory of contact mechanics, thereby en-
abling the collision of the particles to be directly specified in
terms of material properties such as friction, elasticity, elasto-
plasticity and auto-adhesion. The soft-sphere model has been
coupled to models describing mass transfer and chemical reac-
tions to study the decomposition of ozone on catalyst coated
particles in a two-dimensional fluidized bed by Limtrakul et al.
(2004). Kuwagi et al. (2000) coupled the soft-sphere model
with a model for the description of metallic solid bridging by
surface diffusion mechanisms including the effect of surface
roughness.

3. Governing equations

3.1. The discrete particles

The motion of every individual element i (particle or droplet)
with mass mi and volume Vi in the system is calculated from
Newton’s second law

mi

dvi

dt
= mi

d2ri

dt2
= −Vi∇p + Vi�

�s
(ug − vi ) + mig

+ Fcontact,i + Fpp,i , (1)

where vi is the velocity and ri the position of the element i.
The forces on the right-hand side of Eq. (1) are respectively
due to the pressure gradient, drag, gravity, contact forces (i.e.
due to collisions) and (long-range) particle–particle interaction
(for instance Van der Waals forces):

The angular momentum of the particle is computed with

Ii

d�i

dt
= Ti , (2)

where T is the torque and I is the moment of inertia, which for
spherical particles with radius Ri is equal to Ii = 2

5 miR
2
i .

The inter-phase momentum transfer coefficient � is fre-
quently modelled by combining the Ergun (1952) equation for
dense regimes (�g < 0.8)

FErgun = �d2
p

�
= 150

�2
s

�g
+ 1.75�s Re (3)

and the correlation proposed by Wen and Yu (1966) for the
more dilute regimes (�g > 0.8)

FWen and Yu = �d2
p

�
= 3

4
CD Re �s�

−2.65
g ;

CD =
{

24(1 + 0.15Re0.687)/Re if Re < 103,

0.44 if Re > 103,
(4)

where Re = �g�g|ug − vp|dp/�g is the particle Reynolds num-
ber and �g is the gas volume fraction (�g = 1 − �s). The parti-
cle Reynolds number is usually much larger than unity, which
gives rise to an unrealistic jump in the drag curve at �g = 0.8.
This problem can be circumvented by using the least value of
Eqs. (3) and (4) for the calculation of �.

Hill et al. (2001) derived the following drag relation for
Re > 40, obtained from simulations using the lattice Boltzmann
approach:

FHill = �d2
p

�
= A

�2
s

�g
+ B�sRe

A =
⎧⎨
⎩

180, �g < 0.6,

18�3
g

�s

1 + 3√
2
�1/2
s + 135

64 �s ln �s + 16.14�s

1 + 0.681�s − 8.48�2
s + 8.16�3

s

, �g > 0.6,

B = 0.6057�2
g + 1.908�s�

2
g + 0.209�−3

g . (5)

Note that this expression for A is slightly different from the
actual lattice Boltzmann data of Hill et al. (2001). For a dis-
cussion of on this point see the work of Benyahia et al. (2006)
and Beetstra et al. (2006a).

Using a similar approach as Hill et al. (2001), Beetstra et al.
(2006a) derived the following drag relation:

FBeetstra = �d2
p

�
= A

�2
s

�g
+ B�s Re

A = 180 + 18�4
g

�s

(
1 + 1.5

√
�s

)
,

B = 0.31(�−1
g + 3�g�s + 8.4Re−0.343)

1 + 103�s Re2�g−2.5
. (6)

The latter relation is based on a wider range of data than the
expression of Hill et al. (2001), for Reynolds numbers up to
1000 showing proper limiting behavior and is therefore believed
to be of more practical value than the correlation of Hill et al.
(2001).

3.2. The gas-phase

The gas-phase hydrodynamics are calculated from the
volume-averaged Navier–Stokes equations:

�

�t
(�g�g) + ∇ · (�g�gug) = 0, (7)

�

�t
(�g�gug) + ∇ · (�g�gugug)

= −�g∇pg − ∇ · (�g�g) − Sp + �g�gg. (8)
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Fig. 3. The coordinate system used in the description of the discrete particle
collision models.

The gas-phase stress tensor is given by

�g = −(�g − 2
3 �g)(∇ · ug)I − �g((∇ug) + (∇ug)

T), (9)

where the bulk viscosity �g can be set to zero for gases. The
two-way coupling between the gas-phase and the particles is
enforced via the sink term Sp in the momentum equations of
the gas-phase, which is computed from:

Sp = 1

Vcell

∫
Vcell

Np∑
i=0

Vi�

�s
(ug − vi )D(r − ri ) dV . (10)

The distribution function D distributes the reaction force acting
on the gas-phase to the Eulerian grid. When the volume of
the smallest computational cell for the fluid is much larger
than the volume of a particle, the mapping of properties from
the Lagrangian particle positions to the Eulerian computational
grid and vice versa can be done in a straightforward manner
through volume-weighing techniques (Hoomans et al., 1996;
Delnoij et al., 1999). On the other hand, when a high spatial
resolution is required for the solution of the gas flow field, the
computational grid can become smaller than the particle size. In
that case, other distribution functions are needed, one of which
is introduced in the section on numerical implementation.

3.3. Hard-sphere collision model

The collision model described in this work is based on the
hard-sphere model developed by Hoomans et al. (1996, 2000,
2001). In this model it is assumed that the interaction forces
are impulsive and therefore all other finite forces are negligible
during a collision. Consider two colliding spheres a and b with
position vectors ra and rb and radii Ra and Rb (see Fig. 3).
The particle velocities prior-to-collision are indicated by the
subscript 0 and the relative velocity at the contact point c is
defined as follows:

vab ≡ va,c − vb,c = (va − vb) − (Ra�a + Rb�b) × nab. (11)

The normal and tangential unit vectors are respectively defined
as:

nab = ra − rb

|rb − ra| and tab = vab,0 − nab · vab,0

|vab,0 − nab · vab,0| . (12)

For a binary collision of these spheres, the following equations
can be derived by applying Newton’s second and third law:

ma(va − va,0) = −mb(vb − vb,0) = J, (13)

Ia

Ra

(�a − �a,0) = − Ib

Rb

(�b − �b,0) = −nab × J. (14)

Eqs. (13) and (14) can be rearranged to obtain:

vab − vab,0 = 7J − 5nab(J · nab)

2mab

, (15)

where mab is the reduced mass given by

mab =
(

1

ma

+ 1

mb

)−1

. (16)

In order to calculate the post-collision velocities, a closure
model consisting of three parameters is used to describe the
impulse vector J. The parameters are the coefficient of normal
restitution (0�en �1),

vab · nab = −en(vab,0 · nab), (17)

the coefficient of dynamic friction (��0),

|nab × J| = −�(nab · J), (18)

and the coefficient of tangential restitution (0��0 �1),

nab × vab = −�0(nab × vab,0). (19)

Combining Eqs. (15) and (17) yields the following expression
for the normal component of the impulse vector:

Jn = −(1 + en)mab(vab,0 · nab). (20)

For the tangential component, two types of collisions can be
distinguished, i.e. sticking or sliding collisions. If the tangen-
tial component of the relative velocity is sufficiently high in
comparison to the coefficients of friction and tangential resti-
tution, gross sliding occurs throughout the whole duration of
the contact and the collision is of the sliding type. The non-
sliding collisions are of the sticking type. When �0 is equal to
zero, the tangential component of the relative velocity becomes
zero during a sticking collision. When �0 is greater than zero
in such a collision, reversal of the tangential component of the
relative velocity will occur. The criterion to determine the type
of collision on basis of pre-collision information is as follows:

Jt =
{− 2

7 (1 + �0) if �Jn � 2
7 (1+�0)mab(vab,0·tab),

×mab(vab,0 · tab)

−�Jn if �Jn<
2
7 (1+�0)mab(vab,0·tab),

(21)

where the two equations describe collisions of the sticking and
sliding type, respectively.

Given the definition of J in Eqs. (20) and (21), the post-
collision velocities can now be calculated from Eqs. (13)
and (14).

In particle–wall collisions the mass of particle b (i.e. the
wall) is taken infinitely large, which makes all terms containing
1/ mb equal to zero, and consequently mab = ma in that case.
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3.4. Soft-sphere collision model

In the soft-sphere model, the contact force on particle a is
calculated as the sum of the contact forces of all particles in
the contact list of particle a, i.e. all particles b, including walls,
which are in contact with particle a:

Fcontact,a =
∑

∀b∈contactlist

(Fab,n + Fab,t ), (22)

where Fab,n and Fab,t represent, respectively, the normal and
tangential component of the contact force between particle a
and b.

The torque only depends on the tangential contact force and
is defined as follows:

Ta =
∑

∀b∈contactlist

(Ranab × Fab,t ). (23)

The calculation of the contact force between two particles is
actually quite involved. A detailed model for accurately com-
puting contact forces involves complicated contact mechan-
ics (Johnson, 1985), the implementation of which is extremely
cumbersome. Contact mechanics models can be simplified in
order to reduce the calculation time, while maintaining suffi-
cient accuracy in the energy household of the collisions. In this
respect, many simplified models have been proposed, which use
an approximate formulation of the inter-particle contact force.
The simplest one is originally proposed by Cundall and Strack
(1979), where a linear-spring and dashpot model is employed
to calculate the contact forces.

In the latter model, the normal component of the contact
force between two particles a and b can be calculated with

Fab,n = −kn�nnab − 	nvab,n, (24)

where kn is the normal spring stiffness, nab the normal unit
vector, 	n the normal damping coefficient, and vab,n the normal
relative velocity. The overlap �n is given by

�n = Ra + Rb − |rb − ra|. (25)

Using Eq. (12) for the relative velocity between particle a and
b, the normal relative velocity is obtained as follows:

vab,n = (vab · nab)nab. (26)

The normal damping coefficient is given by

	n =
⎧⎨
⎩

−2 ln en

√
mabkn√


2 + ln2en

if en �= 0,

2
√

mabkn if en = 0,

(27)

where en is the coefficient of normal restitution, which has been
defined in Eq. (17), and mab has been defined in Eq. (16). In
particle–wall collisions the mass of particle b (i.e. the wall) is
set infinitely large, resulting in mab = ma .

For the tangential component of the contact force a Coulomb-
type friction law is used

Fab,t =
{−kt�t − 	t vab,t if |Fab,t |��|Fab,n|,

−�|Fab,n|tab if |Fab,t | > �|Fab,n|, (28)

where kt , �t , 	t , and �f are the tangential spring stiffness, tan-
gential displacement, tangential damping coefficient, and fric-
tion coefficient, respectively. The tangential relative velocity
vab,t is defined as

vab,t = vab − vab,n. (29)

The tangential damping coefficient is defined as

	t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−2 ln �0

√
2
7 mabkt√


2 + ln2�0

if �0 �= 0,

2
√

2
7 mabkt if �0 = 0,

(30)

where �0 is the friction coefficient, which has been defined in
Eq. (19).

The tangential displacement is given by

�t =
{

�t,0H + ∫ t

t0
vab,t dt if |Fab,t |��|Fab,n|,

�

kt

|Fab,n|tab if |Fab,t | > �|Fab,n|, (31)

with

H =
⎡
⎣ qh2

x + c qhxhy − shz qhxhz + shy

qhxhy + shz qh2
y + c qhyhz − shx

qhxhz − shy qhyhz + shx qh2
z + c

⎤
⎦ , (32)

where h, c, s and q are defined as

h = nab × n0,ab

|nab × n0,ab| , c = cos �, s = sin �, q = 1 − c

and � = arcsin(|nab × n0,ab|).
The required closures for the normal and tangential stiffness
will be discussed in the section on interfacial interactions. For
a more detailed discussion of this model we refer to Van der
Hoef et al. (2006).

3.5. Inter-phase coupling

The equations for the gas-phase are coupled with those of the
particle phase through the porosity and the inter-phase momen-
tum exchange. All relevant quantities should be averaged over
a volume, which is large compared to the size of the particles,
and in such a way that they are independent of the Eulerian
grid size.

A straightforward method for the calculation of the porosity
was given by Hoomans et al. (1996). In their work, the porosity
in an Eulerian cell is calculated as follows:

�g,cell = 1 − 1

Vcell

∑
∀i∈cell

f i
cellV

i
p, (33)

where f i
cell is the fractional volume of particle i residing in

the cell under consideration. This method works well when the
size of the grid cells is much larger than that of the particles
(i.e. Vcell 	 Vp). From a numerical point of view, however,
it is sometimes desirable to use small computational cells in



34 N.G. Deen et al. / Chemical Engineering Science 62 (2007) 28–44

order to resolve all relevant details of the gas flow field and still
obtain a grid-independent solution. Unfortunately, the method
of Hoomans et al. (1996) generates problems once Vcell ap-
proaches Vp. That is, computational cells can be fully occupied
by a particle, which leads to numerical problems. The calcu-
lation of the porosity and the two-way coupling between the
gas-phase and the particles through the fluid–particle interac-
tion requires the ratio between the size of the computational
grid cells and the size of the particles to be large. To overcome
these contradictory demands regarding the computational grid
Link et al. (2005) developed an alternative inter-phase coupling
method for the DPM.

In this method the porosity and the force exerted by the
gas-phase on the particles are calculated in a grid-independent
manner, thus allowing a sufficiently fine solution of the gas flow
field. Link et al. (2005) represent the particles as porous cubes,
where this geometry was selected because of its computational
advantages. The diameter of the cube depends on the particle
diameter and a constant scaling factor a, which defines the ratio
between the cube and particle diameter and consequently the
volume where interaction between the fluid and the particle
under consideration occurs:

dcube = adp. (34)

The volume of the cube should be larger than or equal to the
volume of the particle, resulting in:

a�
(


6

)1/3 ≈ 0.8. (35)

In practice, a typically takes a value from 3 to 5. The porosity
of a porous cube representing a particle is then equal to:

�cube = Vp

Vcube
= 


6a3
. (36)

Finally, the porous cube representation can be used to calculate
the gas fraction in a computational cell in a manner analogous
to Eq. (33)

�g,cell = 1 − �cube

∑
∀i∈cell

f i
cell, (37)

where f i
cell is the volume fraction of the cell under consideration

that is occupied by cube i. Contrary to the real particles, the
cubes representing the particles are allowed to overlap.

By representing the particle as a porous cube, its presence
is felt only relatively weakly in a larger portion of the flow
domain. Consequently, grid refinement will not lead to local
extremes in the gas fraction around the center of mass of the
particle.

For the calculation of the drag force acting on the particle
Link et al. (2005) uses a similar method. That is to say that a
general variable �cell on the Eulerian grid can be mapped to
a property �p on the Lagrangian position of the particle using
the following equation:

�p = 1

Vcube

∑
∀j∈cube

f cube
j Vj�j , (38)

where f cube
j is the volume fraction of cell j occupied by the

cube.
Vice versa, the backward mapping of a general variable �p

on the Lagrangian particle position to a property on the Eulerian
grid �cell can be done via

�cell = Vcell

∑
∀i∈cell

f i
cell�i

Vi

, (39)

where f i
cell is the volume fraction of the cell under consideration

that is occupied by cube i. Link et al. (2005) demonstrated
that the inter-phase coupling as described above yields grid
independent results.

4. Numerical implementation

The computational strategy generally used for DPMs is dis-
played in Fig. 4. This figure shows a flow diagram of the dif-
ferent modules that constitute the model and the variables that
are exchanged between the modules.

To resolve the time-dependent motion of the particles and
the gas-phase, the DPM uses two different time scales. The
main time step, �tflow, is constant and is used to solve the
Navier–Stokes equations and the inter-phase coupling. While
for the particle–particle interaction a different time step is used,
which depends on the particle–particle interaction approach.

In the soft-sphere approach a constant time step, �tsoft, is
used to update the particle velocities, for instance by use of a

no

Apply fluid-particle interaction

In:vn un pn rn , Out: vn+1/2 �n (explicit) 
p p p

Apply particle-particle interaction and 
move particles 
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p

p
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t = t + �tflow , n ⇒ n+ 1

BEGIN: Set up initial condition

END

f

p p

In: vn-1/2 un-1 pn-1 �n-1�n, Out: un  pn
p f f

Fig. 4. Flow diagram of the discrete particle model.



N.G. Deen et al. / Chemical Engineering Science 62 (2007) 28–44 35

BEGIN: Initial particle configuration
tacc = t p       = 0

No

Process collision 
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Fig. 5. Hard-sphere collision algorithm.

first order integration scheme for Newton’s law

vi (t + �tsoft) = vi (t) + Fi

mi

�tsoft,

ri (t + �tsoft) = ri (t) + vi (t + �tsoft)�tsoft, (40)

with Fi (t) the total force on the RHS of Eq. (1) at time t.
Note that this first-order scheme possesses very poor energy
conservation, and for this reason it is advisable to use a higher-
order scheme. More details can be found in Van der Hoef et al.
(2006).

The time step should be sufficiently small to make sure
that the contact lasts for a certain number of time steps to
avoid problems concerning energy conservation due to the
numerical integration, which is inevitable in the soft-sphere
approach.

The contact time in the normal direction can be determined
using

tcontact,n =
√

mab


2 + ln2(en)

kn

, (41)

where mab is defined in Eq. (16) and en is defined in
Eq. (17).

The contact time in the tangential direction can be determined
using

tcontact,t =
√

2

7
mab


2 + ln2(�0)

kt

, (42)

where �0 is defined in Eq. (19).
To maintain the energy balance the normal and tangential

contact times should be the same, which yields the following
relation between kt and kn:

kt

kn

= 2

7


2 + ln2(�0)


2 + ln2(en)
. (43)

Although the normal stiffness can be determined from the
Youngs modulus, it usually yields a very high value, which
implies the use of a very small time step, which is undesir-
able from a computational point of view. In practice kn is set
to lower values, while ensuring that the normal overlap is kept
small, i.e. typically below 1% of the particle diameter, ensuring
that the predicted hydrodynamics are not affected.

The numerical implementation of the hard-sphere approach
differs from that of the soft-sphere approach, in the sense that it
is event driven, which means that the collision algorithm, illus-
trated in Fig. 5, is searching for the next collision in the fluidized
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bed holding Npart particles with index B={0, 1, . . . , Npart −1}.
In between subsequent collisions all particles are assumed to
be in free flight.

To make the search for the next collision more efficient only
collisions that can occur during one main time step �tflow are
considered. This limits the maximum distance |rab|max between
particle a and potential collision partner b, which can also be
a wall, to:

|rab|max = Ra + Rmax + 2vmax�tflow, (44)

where Rmax =max(Ra) ∀a ∈ B and vmax =max(|va|) ∀a ∈ B.
All particles (including walls) within this distance of particle

a make up its neighbor list, Nblist(a). The time required for a
particle a to collide with a collision partner b ∈ Nblist(a) from
their current position can be determined by

�tpair(a, b)

=
−rab · vab −

√
(rab · vab)

2 − v2
ab(−r2

ab − (Ra + Rb)
2)

v2
ab

,

(45)

where rab = ra − rb. Note that if rab · vab > 0 the particles
are moving away from each other. In this case no collision
is possible and �tpair(a, b) is discarded. The minimum of all
�tpair(a, b) of particle a with partner b ∈ Nblist(a) is defined
as the collision time of particle a:

�tcoll(a) = min(�tpair(a, b)) ∀b ∈ Nblist(a). (46)

The time to the next collision in the entire calculation domain
is obtained by

�tab = min(�tcoll(a)) ∀a ∈ B. (47)

Subsequently, this time step is added to the time at which the
last collision occurred:

tacc = tacc + �tab. (48)

Only particle a and its partner b are moved to their new posi-
tions at time tacc to minimize the number of computations (and
accompanying accumulation of computational errors). This can
only be done when the time each particle has moved within
the timestep, tmove (which is taken into account for each sub-
sequent calculation involving that particle) is stored.

Once the next collision is determined, momentum is ex-
changed between particle a and b, as described in the previous
section. Subsequently only the collision times, �tcoll affected
by the collision are updated, i.e. the collision times of the col-
liding particles themselves and of the particles that prior to the
collision regarded one of the colliding particles as their colli-
sion partner. Once all collisions are processed (tacc > �tflow),
all particles are moved to their position at �tflow.

5. Discussion of interfacial interactions

5.1. Particle–particle interaction

It is well known that the formation of heterogeneous struc-
tures in fluidized beds can be attributed to a combination of

the inelasticity of the particles and the strong non-linear de-
pendency of the drag force on the porosity (Li and Kuipers,
2005). Hoomans et al. (1996) were among the first to investi-
gate the effect of the particle collision properties on the fluidiza-
tion behavior. They found that even for slightly inelastic parti-
cles, the dissipation of energy resulting from particle–particle
collisions can give rise to heterogeneous structures. Due to
the loss of energy during the collisions, the involved particles
tend to cluster, forming dense regions next to dilute regions
(i.e. bubbles).

These observations were confirmed by studies of Goldschmidt
et al. (2002) who tested several particle properties for both
the DPM and the TFM. They used the collision parameters
that were determined from detailed impact measurements per-
formed by the Impact Research Group of the Open University
at Milton Keynes, where an accurate technique to measure
collision parameters has been developed (Kharaz et al., 1999)
and compared those to experimental data. They found a good
correspondence between the numerical and experimental re-
sults, especially for the DPM. It is noted that in the case of
wet particles, which are commonly found in several fluidized
bed processes, such as spray granulation, the elasticity of the
particles can be strongly reduced. This was shown by Fu et al.
(2004), who investigated the change of the restitution coeffi-
cient as a function of the liquid-to-solid mass ratio for several
wet particles. They found that for liquid-to-solid mass ratios
larger than 0.2 particles become fully inelastic (i.e. the normal
restitution coefficient approaches zero).

As mentioned earlier, it is usually assumed that particle–
particle collisions are impulsive events that do not depend on
the local flow field of the continuous phase. This assumption is
only true in case the inertia of the continuous phase is negligi-
ble compared to that of the dispersed phase, which is the case
for most of the contributions discussed in this work, in which
the continuous phase is a gas. However, Zhang et al. (1999)
have shown that the collision models as presented in the pre-
vious section need to be adapted when the continuous phase is
a liquid, in order to account for the drainage of the fluid be-
tween the colliding particles and the acceleration of the fluid
surrounding the particles. The adaptations of the DPM as pro-
posed by Zhang et al. (1999) involve two additional forces, i.e.
the virtual or added mass force and the pressure force. When
these two forces are incorporated, the strong influence of the liq-
uid surrounding the particles on the particle trajectories before
and after the collision can be faithfully captured, as shown in
Fig. 6. The closures for the close-distance interaction proposed
by Zhang et al. (1999) were successfully used by Li et al. (1999,
2001) and Zhang et al. (2000a,b) in the two-dimensional VOF-
DPM model for the hydrodynamic description of the particu-
late phase in a three-phase gas–liquid–solid flow. An extension
of this approach to three dimensions was given by Chen and
Fan (2004) who used a level-set method for the description of
a large bubble and a DPM for the description of the particles.
A similar model was reported by Van Sint Annaland et al.
(2005) who combined a front tracking model with a DPM to
describe the transport of particles in the wake of a single bubble
rising in a liquid.
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Fig. 6. Experimental and simulation results of trajectories of two colliding particles (taken from Zhang et al., 1999).

The virtual mass force was also considered in the work of
Potic et al. (2005), who investigated fluidization behavior of
hot compressed water in micro-reactors. They compared mea-
sured values of the minimum fluidization and minimum bub-
bling velocities with predictions of dedicated 2D and 3D DPM
and (semi)-empirical relations. They found a good agreement
between the measurements and the model predictions and con-
cluded that the model supports the concept and development
of micro-fluidized beds.

5.2. Gas–particle interaction

Various investigations of the closure relations for the drag
force in the framework of continuum models have demonstrated
that the choice of the drag closure has a significant impact on
the resulting flow phenomena (see for instance Van Wachem
et al., 2001; Ibsen, 2002; Andrews et al., 2005; Beetstra et al.,
2006a). As indicated earlier, continuum models need closure
models for both the drag force and the rheological properties
of the particulate phase. One can only faithfully validate clo-
sure models for the drag force if and only if the rheological
properties of the particulate phase are accurately known. Given
the current limitations in the predictive capabilities of the TFM
employing the kinetic theory of granular flow (Bokkers, 2005),
it is much more worthwhile to use the DPM to validate closure
models for the drag force since this model does not require
closures for the rheological properties of the particles, which
could give rise to anomalous behavior.

Link et al. (2005) has tested several drag closures in the DPM
to assess their suitability to describe the particle dynamics in
a pseudo-two-dimensional spout-fluid bed and compared the
results with detailed particle image velocimetry measurement

data. They compared time-averaged particle flux profiles and
pressure drop fluctuations at different operating regimes for the
following drag closures:

• The most frequently used drag model in literature, i.e.: the
Ergun equation (3) for �g < 0.8, and the Wen and Yu equation
(4) for �g < 0.8.

• The least value of the Eqs. (3) and (4), i.e. F = min(FErgun,

FWen and Yu).
• The drag relation derived from lattice Boltzmann simulations

by Hill et al. (2001), i.e. Eq. (5).

As can be seen in Fig. 7, the first model produces unsatisfac-
tory results for the shape of the vertical particle flux profiles
p,z for fluidized beds with stable high-velocity jets, as en-
countered in spout-fluid beds. The usage of the minimum of
the drag given by the relations of Ergun (1952), and Wen and
Yu (1966), as well as the relation proposed by Hill et al. (2001)
considerably improves the predictions of the DPM, although
Link et al. (2005) found that the computed frequency of the
pressure drop fluctuations is still somewhat too high. Li and
Kuipers (2003) also investigated several drag relations for the
case of a bubbling fluidized bed. They arrived at the same con-
clusion as Link et al. (2005), i.e. that the relation of Hill et al.
(2001) has the best predictive capabilities. The expression re-
cently proposed by Beetstra et al. (2006a) derived from similar
type of LBM simulations is consistent with that of Hill et al.
(2001), in particular when compared to the large deviations
with the Ergun and Wen and Yu equations. For this reason, we
expect that the simulation results as found by Li and Kuipers
(2003) and Link et al. (2005) using the Hill et al. correlation will
not be very different from the results that would be obtained
with Eq. (6).
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Fig. 7. Measured and computed vertical time-averaged particle flux profiles for two different regimes using several drag closures (taken from Link et al., 2005).

6. Applications

6.1. Flow phenomena in fluidized beds

In this section we will discuss some of the recent applications
of the DPM in the framework of research on the flow phenom-
ena prevailing in fluidized beds. Many of the unique properties
of gas-fluidized beds can be directly related to the gas bubbles
behavior and therefore it is of crucial importance to assess the
capability of the Euler–Lagrange model (DPM) to predict bub-
ble formation and propagation in dense beds. Bokkers et al.
(2004) studied the evolution of the bubble size and shape in
time of a single bubble injected with a central jet into a fluidized

bed, kept at minimum fluidization conditions via a porous plate
distributor, with the use of a high-speed digital camera. Experi-
ments were performed in a flat bed (0.30 m×0.015 m×1.00 m;
0.015 m jet width), with spherical glass beads of 2.5 mm di-
ameter, fluidized with air. The initial bed height was 0.22 m,
the background velocity was set at 1.25 m/s and the jet veloc-
ity and pulse duration were 20 m/s and 150 ms. Further details
about the experimental setup can be found in Bokkers et al.
(2004). In Fig. 8 snapshots of the bed at different moments in
time after bubble injection are presented and compared with
simulation results obtained with the DPM using a 40 × 80 grid
(handling the particle dynamics fully 3D, while approximat-
ing the gas-phase as 2D). For the purpose of reference, the
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Fig. 8. Injection of a single bubble into the center of a mono-disperse fluidized
bed (bed width: 0.30 m), consisting of spherical glass beads of 2.5 mm
diameter at incipient fluidization conditions. Comparison of experimental data
(top) with DPM (center) and TFM (bottom) simulation results for 0.1, 0.2,
and 0.4 s after bubble injection (taken from Bokkers, 2005).

results of a TFM based on the kinetic theory of granular flow
(Goldschmidt et al., 2004) using a 60 × 120 grid, employing a
time step of 10−5 s are included. The restitution coefficient for
particle–particle collisions was 0.97.

Both models capture the interaction of the particles with the
jet: particles in the wake of the bubble are dragged into the
center of the bubble, although this effect seems to be slightly
overestimated by the TFM. Additionally, the raining of the par-
ticles through the roof of the bubble is predicted by the simu-
lations. Both the DPM and TFM predict a slightly larger bub-
ble size compared to the experiments for both beds, which
can be attributed to the implemented equations for gas–particle
drag (Ergun, 1952; Wen and Yu, 1966, drag closures). A some-
what better correspondence with experiments was obtained (see
Bokkers et al., 2004) with new gas–particle drag closures de-
rived from Lattice–Boltzmann simulations (Hill et al., 2001;

Fig. 9. Mixing patterns of a colored under-layer of particles (dp = 2.5 mm)

induced by a single bubble: (a) experiment; (b) discrete particle model (c)
two-fluid model.

Van der Hoef et al., 2005). Similar results were obtained for
systems with different particle diameters and fluidization ve-
locities. Concluding, the bubble size and shape for a single
bubble injected into a bed at minimum fluidization conditions
can be well described with the DPM and TFM, which provides
a good basis to apply the DPM to more complex situations.
The differences between the DPM and the TFM can best be
observed from Fig. 9, which shows the particle mixing patterns
induced by the passage of a single bubble through two initially
completely segregated layers of particles of different color. The
DPM shows good correspondence with the experimental ob-
servations, whereas the TFM largely overpredicts the mixing.
This is caused by the fact that the KTGF only accounts for bi-
nary collisions between two particles, where friction between
the particles is not included. Omitting friction between the par-
ticles and the corresponding additional dissipation of granular
energy might result in an under-prediction of the shear viscos-
ity of the solids phase.

Rhodes and co-workers (i.e. Rhodes et al., 2001a,b; Wang
and Rhodes, 2003, 2004a,b, 2005a–c; Pandit et al., 2005;
Takeuchi et al., 2004, 2005) used DPM simulations to study
various aspects of fluidization, including the effect of cohesive
forces on defluidization and particle mixing. Recently Wang
and Rhodes (2005c) investigated the characteristics of pulsed
fluidization with the aid of a two-dimensional soft-sphere
model. They incorporated a periodically fluctuating compo-
nent in the gas supply of a fluidized bed, which leads to two
distinctive effects: ordered pressure fluctuations and regular
bubble patterns. It was found that transition from chaotic to
ordered behavior occurs as long as the applied frequency is
not too low (e.g. 2 Hz). Formation of regular bubble patterns
arises from periodical formation of a horizontal channel-like
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structure near the distributor plate. Applied pulsation frequen-
cies in a medium range, e.g. from about 5 to 15 Hz, give rise to
regular bubble patterns. Increase in the amplitude of pulsation
from about 0.125 to 1× the minimum fluidization velocity was
found to favor regulation of bubble patterns.

6.2. Generation of closures for continuum models (KTGF)

The mixing patterns predicted by the TFM presented in the
previous section, illustrates that the TFM suffers from uncer-
tainties in the closures, i.e. the kinetic theory of granular flow.
One of the great advantages of discrete particle simulations is
that it allows studying rheological properties of the system that
are very difficult to obtain via experimentation. The velocity
distribution of the particles is a particularly important exam-
ple of a property that is difficult to acquire experimentally. It
would be extremely difficult to obtain reliable estimates for
the velocity distribution from experiments; yet, this function
is of great relevance for the validity of higher scale models
in the multi-level strategy, i.e. the TFM derived from the ki-
netic theory, where it is assumed that the velocity distribution
is both isotropic and nearly Gaussian. The DPM is an ideal
tool for testing this assumption, since it is relatively straight-
forward to measure the velocity distribution as all particle ve-
locities are known at any moment in time. Goldschmidt et al.
(2002) and Lu et al. (2005) both used the DPM to study the
velocity distribution for the case of elastic and inelastic parti-
cles. Fig. 10 shows the results obtained by Goldschmidt et al.
(2002) for a fluidized bed of ideal (i.e. perfectly smooth and
elastic) and non-ideal (i.e. rough and inelastic) particles. The
system contained 25,000 particles of 2.5 mm diameter, where
the gas velocity is set to 1.5 times the minimum fluidization ve-
locity. Details of the sampling procedure for obtaining the ve-
locity distributions can be found in Goldschmidt et al. (2002).
Fig. 10 shows that for both ideal and non-ideal particles, the
velocity distributions do not deviate significantly from a Gaus-
sian and Maxwellian distribution. However, Fig. 10 reveals a
clear anisotropy of the distribution in case of non-ideal particles.
A possible explanation is the formation of dense particle clus-
ters in the case of inelastic collisions, which may disturb the
spatial homogeneity and thereby causing collisional anisotropy.
Analysis (Jenkins and Savage, 1983) of the normal and tangen-
tial component of the impact velocity indeed showed that, in
dense gas-fluidized beds, not all impact angles occur with the
same frequency.

Another example of the use of the DPM to generate closures
for the two-fluid model is given in the work of Ye et al. (2005a),
who used a soft-sphere DPM to test the kinetic theory, with an
emphasis on the excess compressibility as it is the key quantity
in KTGF for calculating the particle pressure and other trans-
port coefficients. For slightly cohesive particles, only a very
small deviation has been found from the classical kinetic the-
ory of granular flows, which suggests that with the Hamaker
constants tested in the range used in their research the cohe-
sion only has a weak influence on the excess compressibility.
It is expected that in the presence of a strong cohesive force,
particles will form complicated agglomerates. In this case, an

0

1

2

3

4

5

6

7

8

9

10

f [
s/

m
]

Cx
Cy
Cz
C

0

5

10

15

20

25

-0.15 -0.05

f [
s/

m
]

Cx
Cy
Cz
C
Gauss
Maxwell

-0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50

C [m/s]

C [m/s]
0.250.200.150.100.050.00-0.10

Maxwell
Gauss

Fig. 10. DPM simulation data for the normalized particle velocity distribution
fx(Cx), fy(Cy), fz(Cz) and f (C), compared to a Gaussian/Maxwellian
distribution. Top graph: ideal particles; bottom graph: non-ideal particles
(taken from Goldschmidt et al., 2002).

equilibrium state may not exist, so that the validity of kinetic
theory of granular flows is questionable. However, the quantifi-
cation of the cohesive force is not straightforward, since there
is no reference force (such as gravitational force) in these sys-
tems. Note also that the absolute value of the force is not pre-
cisely known, since it is extremely difficult to directly measure
the cohesive forces between Geldart A particles, and a theo-
retical estimate based on the (bulk) particle properties is also
unreliable since these forces strongly depend on the surface
properties.

Another example is the simulation results of segregation in a
bidisperse fluidized bed. Recently a new drag force relation for
polydisperse systems has been suggested on the basis of lattice
Boltzmann simulations (Beetstra et al., 2006b), and the DPM
offers a way to test these relations, by comparing the segrega-
tion rate of a freely bubbling bed directly with experiments.
These experiments were performed by Goldschmidt et al.
(2003a) in which glass particles with diameters of 1.5 and
2.5 mm were fluidized with air in a pseudo-two-dimensional
column of 15 × 45 × 1.5 (H × W × D) cm3. The mixture
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Fig. 11. Segregation rate as a function of time for a freely bubbling fluidized bed with 1.5 and 2.5 mm (diameter) particles. The lines represent the results
from DPM simulations: the solid line is obtained with the drag relation for bidisperse systems, the dashed line is obtained with the standard drag model. The
symbols represent the experimental result (after Beetstra et al., 2006b).

in the simulation consisted of 45,000 particles (25% small
particles and 75% large particles) and the fluidization velocity
is 1.30 m/s. The various other parameters in the simulations
were chosen such to match the experimental conditions as
close as possible. From the fraction of large and small particles
in the cell, both in experiment and simulation, the degree of
segregation s is determined, which is defined as:

s = S − 1

Smax − 1
, (49)

where S = 〈hsmall〉/〈hlarge〉 and Smax = (xlarge + 1)/xlarge, 〈hi〉
being the average height of particles of type i and xlarge the
volume fraction of large particles. Thus, for a completely mixed
system s = 0, and for a completely segregated system s = 1.
In Fig. 11 we show the segregation rate as a function of time,
from the experiment (points) and from the discrete particle
simulations using two different drag force relations (lines).

It can be seen that in the simulations with the standard drag
correlations (in which the bidispersity is not explicitly taken
into account), the system is almost completely segregated after
1 min, whereas the segregation in the experiment is only about
64% after the same period of time. The degree of segregation
in the simulation with the new drag relation by Beetstra et al.
(2006b) has a value of 65% after 1 min, and the rate at which
the segregation occurs in the same simulation also compares
very well with the trend observed in the experiment. For a

more detailed description of these simulations we refer to the
contribution by Beetstra et al. (2006b) in this issue.

7. Outlook

Based on the examples discussed in the preceding sections,
it is evident that the DPM is a very powerful tool to study the
details of flow phenomena prevailing in fluidized beds. The
main reason for its success is the reliable description of the
particle–particle collisions, since many processes are to a large
extent determined by the collision frequency (e.g. granulation
processes). Moreover, the phenomena prevailing at the level
of individual particles can be naturally incorporated since the
properties of each individual particle are described separately.
System properties such as size and density distributions can
therefore be incorporated in a straightforward fashion. Further-
more, properties such as temperature, specific area available
for chemical reaction or wetness can be assigned to each indi-
vidual particle. In the future three-dimensional versions of the
DPM should be extended to incorporate all necessary details to
model various chemical engineering problems. In this respect
first attempts, mainly in two dimensions, have already been re-
ported in literature. We will conclude this review with a few
examples where these kind of problems have been investigated.
Kaneko et al. (1999) who studied gas-phase olefin polymer-
ization, including a description of the energy balance and the
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chemical reaction rate at the level of individual particles. They
demonstrated the effect of elevated pressure on the fluidization
behavior and the heat transfer. Furthermore, they demonstrated
that a non-uniform gas supply system can lead to undesirable
hot spot formation in the polymerization process.

Goldschmidt et al. (2003b) used the DPM to describe flu-
idized bed spray granulation. To this end they considered
several discrete elements, i.e. dry particles, wet particles and
droplets, including rules for each possible contact of the vari-
ous elements. They demonstrated that the DPM can be used to
investigate the particle size distribution resulting from different
nozzle configurations.

Czok et al. (2005) modeled chemical vapor deposition with
the aid of a three-dimensional DPM. In their model, the for-
mation of a thin aluminum coating on glass spheres was de-
scribed through a simple growth kernel depending on the local
tri-isobutyl-aluminum concentration. Their calculation revealed
zones of insufficient mixing near the wall, in the corners and
near the bottom plate, and zones of possible agglomeration due
to excessive deposition.

Link et al. (2006) studied the granulation in spout-fluid beds
with a three-dimensional DPM. They found that the growth rate
scales with the projected surface area of the particle and that
two growth mechanisms could be identified in the simulations,
i.e. very fast growth in the nozzle region and a more modest,
though constant growth outside the nozzle region. See for more
information the paper by Link et al. (2006) in this issue.

Although in most of these examples only a limited number
of parameters have been varied, it clearly shows the powerful
capabilities of the DPM. Given the steady improvement in com-
putational resources, it is expected that the DPM can be used
to tackle various problems of increasing size (in the terms of
number of particles) and complexity in the future. This will en-
able the researchers in the field of discrete particle modeling to
generate data to improve the closure relations that are required
by more coarse-grained models in the multi-level modeling
approach.

Notation

a ratio between cube diameter and particle diameter,
dimensionless

CD drag coefficient, dimensionless
d diameter, m
D distribution function, dimensionless
en coefficient of normal restitution, dimensionless
Fab contact force, N
f volume fraction, dimensionless
g gravitational acceleration, m/s2

〈hi〉 average height of particles of type i, m
H rotation matrix, dimensionless
I moment of inertia, N m
I unit matrix, dimensionless
J impulse, kg m/s
Jab impulse vector, kg m/s
k spring stiffness, N/m

mab effective mass, kg
mp particle mass, kg
n computational time step, dimensionless
nab normal unit vector, dimensionless
N number specified by subscript, dimensionless
p pressure, Pa
r position, m
r radius, m
s degree of segregation, dimensionless
Sp particle drag sink term, N/m3

tab tangential unit vector, dimensionless
t time, s
T torque, N m
uf fluid velocity, m/s
vi velocity of particle i, m/s
vab relative velocity at the contact point, m/s
V volume, m3

xlarge volume fraction of large particles, dimensionless

Greek letters

� inter-phase momentum transfer coefficient, kg/m3s
�0 coefficient of tangential restitution, dimensionless
� displacement, m
� volume fraction, dimensionless
	 damping coefficient, N s/m
�f gas phase bulk viscosity, kg/m s
�g gas phase shear viscosity, kg/m s
� dynamic friction coefficient, dimensionless
� density, kg/m3

�g gas phase stress tensor, Pa
� general variable
� flux, kg/m2 s
� angular velocity, 1/s

Subscripts

0 prior to collision
a, b particle indices
cell computational grid cell
n normal direction
p particle
t tangential direction
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