
ETRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, FALL 2004 1

Comparing the Performance of
SNMP and Web Services-Based Management

Aiko Pras, Thomas Drevers, Remco van de Meent, Dick Quartel

Abstract—This paper compares the performance of Web
services based network monitoring to traditional, SNMP based,
monitoring. The study focuses on the ifTable, and investigates
performance as function of the number of retrieved objects. The
following aspects are examined: bandwidth usage, CPU time,
memory consumption and round trip delay. For our study several
prototypes of Web services based agents were implemented;
these prototypes can retrieve single ifTable elements, ifTable
rows, ifTable columns or the entire ifTable. This paper
presents a generic formula to calculate SNMP’s bandwidth
requirements; the bandwidth consumption of our prototypes was
compared to that formula. The CPU time, memory consumption
and round trip delay of our prototypes was compared to Net-
SNMP, as well as several other SNMP agents. Our measurements
show that SNMP is more efficient in cases where only a single
object is retrieved; for larger number of objects Web services
may be more efficient. Our study also shows that, if performance
is the issue, the choice between BER (SNMP) or XML (Web
services) encoding is generally not the determining factor; other
choices can have stronger impact on performance.

Index Terms—SNMP, Web services, performance, bandwidth
usage, CPU time, memory consumption, round trip delay, BER,
XML, compression, ifTable.

I. INTRODUCTION

F IFTEEN years ago SNMP was designed as the protocol
to manage the Internet. Through the years, new functions

were added and nowadays SNMPv3, which includes a rich
array of security functions, has reached the status of full
Internet standard. Despite this status, there are still concerns
about SNMP’s deployment. The IAB, for example, discussed
these concerns at a special Network Management Workshop,
which was organized in summer 2002. One of the conclusions
at that workshop was that it becomes time to investigate
alternative network management technologies, in particular
those that take advantage of XML technology [1], [2].
Web services is a specific form of XML technology. The

interesting fact about Web services, which build upon W3C
standards like SOAP [3] and WSDL [4], is that it is a generic
technology, supported by many vendors and available on many
platforms. There are many tools that ease the implementation
of Web services based applications, integration with existing
software is relatively simple, and many researchers are already
familiar with this technology. Organizations like, for example,
the DMTF and OASIS have already several years of experi-
ence in applying XML and Web services technologies in the
area of applications and systems management. Thus, wouldn’t

The authors are with the University of Twente, P.O. Box 217, 7500 AE
Enschede, the Netherlands. E-mail: {pras, meent, quartel}@cs.utwente.nl.
Part of this research has been sponsored by the Telematica Instituut (TI)
in the Netherlands.

Web services be an interesting technology for network man-
agement?
At the 11th meeting of the IRTF Network Management

Research Group (NMRG), which was organized three months
after the IAB workshop, a possible paradigm shift towards
XML based network management was discussed [5]. The at-
tendees agreed that such a shift would have a dramatic impact
on the possibilities to model management information: the
Structure of Management Information (SMI) [6], as used with
SNMP, only supports simple variables and tables; whereas
Web services and XML support the creation of far more
sophisticated constructs. A move towards Web services based
management would also have consequences for security and
the possibility to create transactions. The attendees did not
agree, however, on the consequences for performance; several
attendees expressed their concern that the anticipated high
demands of Web services on network and agent resources
would hinder, or even prohibit, the application of this tech-
nology in the field of network management. Unfortunately, at
that meeting, the issue could not be settled since no figures
were known in which the performance of Web services was
compared to that of SNMP.
The discussions at that NMRG meeting inspired researchers

from the University of Twente to further investigate the
possible performance differences between SNMP and Web
services technology. To conduct tests, several Web services
based prototypes were built, and the performance of these
prototypes was compared to various SNMP agents. Amongst
the investigated SNMP agents are open source packages, as
well as commercial versions. This paper presents the outcome
of our comparison.
The results of this paper show that there is a signifi-

cant difference in the bandwidth requirements of SNMP and
Web services. This difference may be particularly interest-
ing whenever large amounts of management data must be
exchanged. A good example is the case where software of
cable modems must be updated; at this moment this is often
done via SNMP [1]. Another example is the retrieval of
interface specific data from access switches and DSLAMs.
Such devices connect hundreds of users, and managers may
need to retrieve for all these users counters from the interface
table (ifTable) [7], for instance to determine if performance
is still acceptable or to perform accounting. Especially if
management is performed over out-of-band 64 Kbit links, the
retrieval of such counters may put a heavy burden on the
management link.
Since one of the goals of our study was to analyze real

management scenarios (instead of theoretical scenarios that
c© 2004 IEEE

2 ETRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, FALL 2004

may only occur in lab environments), our study focuses on
the retrieval of ifTable data. In particular we investigate
performance as function of the number of retrieved objects.
Our interest is not only in finding the performance differences
between message processing in SNMP and Web services,
but also in discovering how much SNMP or Web services
processing contributes to the total performance of the agent. In
other words, is performance primarily determined by protocol
processing, or have other factors stronger impact? For this
reason our agents not only decode and encode messages, but
also fetch actual data from within the agent system.
The following performance metrics were investigated: band-

width usage, system resource usage (CPU and memory con-
sumption), and round trip delay. The first one, bandwidth us-
age, primarily depends upon the protocol definition and should
be the same for every implementation. Note that, in practice,
this may not always be true, since implementations can choose
slightly different options for encoding. Still the variance in
bandwidth usage between different implementations should
be small. The conclusions derived from our bandwidth usage
measurements should therefore be generally applicable.
This is not necessarily true for our CPU, memory and round

trip delay measurements. The results of such measurements
depend very much on the hardware platform and the quality of
the implementation; results may thus be completely different
for alternative cases. Therefore, the conclusions derived in this
paper for CPU and memory usage, as well as round trip delay,
should be seen as indications of possible performance, and not
as indisputable facts.
Since XML encoding is known to be verbose, we decided

to also investigate the effect of compression. To keep the
comparison fair, we not only investigated XML compression,
but also SNMP compression.
The remainder of this paper is structured as follows. Section

II gives an overview of related work. Section III gives details
of our measurement set-up and the prototypes we’ve built. Sec-
tion IV presents the bandwidth requirements for SNMP and
Web services based network monitoring. Section V discusses
CPU time and memory consumption. Section VI discusses
round trip delay. Conclusions are given in Section VII.

II. RELATED WORK

In literature several papers can be found that investigate
the performance of SNMP [8], compare the performance of
SOAP to other middleware technologies [9], analyze the per-
formance aspects of SOAP processing [10], and compare the
performance of different SOAP and Web services toolkits [11].
This section discusses a number of publications that focus
specifically on the performance of Web services for network
management.
Mi-Jung Choi and James Hong have published several

papers in which they discussed the design of XML-SNMP
gateways. As part of their research, also the performance
differences between XML and SNMP based management have
been investigated [12], [13]. To determine bandwidth, they’ve
measured the XML traffic at one side of the gateway, as
well as the corresponding SNMP traffic at the other side.
In their test set-up separate SNMP messages were generated

for every object that had to be retrieved; the possibility to
request multiple objects via a single SNMP message was not
part of their test scenario. The authors also investigated delay
and resource (CPU and memory) usage of the gateway. They
concluded that, for their specific test set-up, XML performed
better than SNMP.
Whereas the previous authors compared the performance of

SNMP to XML, Ricardo Neisse and Lisandro Granville fo-
cused on SNMP and Web services [14]. Just like the previous
authors, they implemented a gateway and measured traffic at
both sides of that gateway. Two gateway translation schemes
were distinguished: protocol level and object level. In the first
scheme a direct mapping exists between every single SNMP
and Web services message. In the second scheme a single,
high level, Web services operation (like Get-IfTable) maps
on multiple SNMP messages. The authors also investigated
the performance impact of using Secure HTTP and zlib
compression [15]. NuSOAP was used as web services toolkit.
For protocol level translation they concluded that Web services
always require substantial more bandwidth than SNMP. For
object level translation they found that Web services perform
better than SNMP if larger numbers of objects are retrieved.
Another interesting study on the performance of Web ser-

vices and SNMP is performed by George Pavlou et al. [16],
[17]. In fact their study is much broader than performance, and
also includes CORBA based approaches. They take as example
the retrieval of TCP MIB variables, and measure bandwidth
and round trip delay. Their approach is comparable to the one
described in this paper, in the sense that no gateways are used.
Instead of a gateway, they implemented a Web services agent,
using the WASP toolkit. The performance of this agent was
compared to a Net-SNMP agent. As opposed to this paper,
they did not investigate other SNMP agents nor the effect of
fetching the actual management data from within the system.
They concluded that Web services is a promising technology
but has more overhead than SNMP.

III. MEASUREMENT SET-UP & PROTOTYPES

Within this study many of the measurements were per-
formed on a Pentium 800 Mhz PC, running Debian
GNU/Linux (kernel v2.4.22). The PC was connected via a
100 Mbit Ethernet card. In cases where it was necessary to
have additional ifTable rows, tunnels were created to other
systems. To get fair compression figures, we made sure that
tunnel related objects would not all contain zeros.

A. Web services implementation
For our study four different Web services prototypes were

built: one for retrieving single ifTable objects, one for re-
trieving ifTable rows, one for retrieving ifTable columns
and one for retrieving the entire ifTable [18]. With these
prototypes we were able to investigate the impact that dif-
ferent levels of granularity have on performance. The results
presented in this paper have been obtained using the best
performing prototype, in general this was the first (individual
objects) or the last (complete table) prototype.
For the retrieval of interface specific data from within the

system we wanted to use the same code in our SNMP and

PRAS et al.: COMPARING THE PERFORMANCE OF SNMP AND WEB SERVICES-BASED MANAGEMENT 3

Web services prototypes. In this way, differences between
the measurements would be caused by differences in SNMP
and Web services handling, and not by other, for this study
irrelevant differences. For this reason we decided to base our
Web services prototype on an existing open source SNMP
software package, and to replace all SNMP code with Web
services specific code. Since Net-SNMP is by far the most
popular SNMP open source package, we used that package as
starting point.
Since Net-SNMP is written in C, our Web services software

had to support C too. After comparing several open source
packages, our decision was to use gSOAP (v2.3.8) [19], [20]
The code generated by gSOAP is quite efficient, since it
generates a dedicated skeleton and does not use generic XML
parsers, such as DOM and SAX. For compression zlib was
used [15].

B. SNMP implementations

To measure bandwidth and delay, the following SNMP
agents were used: 3Com (SuperStack II), Cisco (AGS+, 3750,
6500, 6502, 7200), HP (2626, 4000), IBM (8371), Nortel
(Baystack 450, Passport 8610), UCD/Net-SNMP (4.2.3, 5.0.1,
5.0.9, 5.1 / Debian, Windows XP), Microsoft Windows XP
agent, NuDesign agent, SNMP Research CIA agent, Cabletron
Systems (ssr2000), and Xircom (GemTek).
Since the SNMP standards do not define compression

and therefore none of these agents supports compression, an
existing agent had to be modified to measure the effect of
SNMP compression. In the past several SNMP compression
mechanisms have been proposed. The oldest comes from
the IRTF-NMRG, and is called ObjectID Delta Compression
(ODC) [5]. An alternative comes from the IETF Evolution
Of SNMP (EOS) working group [21], and is called ObjectID
Prefix Compression (OPC). Code exists for the OPC proposal,
and Net-SNMP v5.0.1 can be patched to include this code.
Our SNMP compression measurements therefore used this
software.

IV. BANDWIDTH USAGE

This section discusses and compares the bandwidth require-
ments of SNMP and Web services based network monitoring.
Since SNMP is standardized, it is possible to analytically de-
termine upper and lower bounds for the required bandwidth as
function of the number of retrieved MIB objects. The section
starts with deriving formulas that describe this function; since
these formulas are generally applicable, they should also be
useful in other SNMP related studies. Subsequently this sec-
tion discusses how the formulas have been validated via a large
number of measurements on the various SNMP devices at our
disposal. The bandwidth requirements of Web services based
network monitoring is discussed next. Since no standards for
Web services based monitoring exist, the bandwidth usage of
our prototypes had to be measured. The section concludes with
a discussion of the effects of compression, and the bandwidth
requirements at IP level.

version community error status /
non-repeaters

error index /
max-repetitions

request
ID

message header

variable binding lists

varbind1
name value

varbind2
name value

varbindn
name value

Fig. 1. SNMP message structure (v1/v2c)

A. SNMP messages and encoding
The structure of an SNMP message (v1/v2c) is shown

in Figure 1 [22]–[24]. Each message consists of two parts:
a header and a variable binding (varbind) list. The header
contains five fields. The varbind list contains n varbinds, each
carrying two fields: object name (OID) and object value.
The message and its various elements are defined in terms

of ASN.1 constructs [25]; to transmit a message over the
wire, Basic Encoding Rules (BER) are used [26]. Each BER
encoded element consists of three parts: an ASN.1 type part, a
length part and a value part. For SNMP, common ASN.1 types
are INTEGER, OCTET STRING, OBJECT IDENTIFIER
and SEQUENCE (OF). In most cases, the BER encoding of
an ASN.1 type takes, just as the length part, a single octet.
The number of octets needed for the value part varies:

• INTEGER values require between one and five octets.
For example, the value 127 can be coded into a single
octet, while the value 232 requires five octets.

• an OCTET STRING requires the same number of octets
as the length of the string.

• an OBJECT IDENTIFIER, in general, requires the
same number of octets as its length, minus one (since
the first two nodes are encoded into a single octet).
For example, the length of OID 1.3.6.1.2.1.1.1.0 (=
sysDescr) is 9; the encoded ASN.1 value part therefore
needs 8 octets. The length of OID 1.3.6.1.2.1.2.2.1.10.1
(= ifInOctets of the first interface) is 11, and can be
encoded in 10 octets. Note that, in cases where a node
number within the OID is higher than 127, additional
encoding octets will be needed.

• SEQUENCE (OF) is a constructor for other types (just
like struct in the language C) and needs, besides its
ASN.1 type and length parts, no additional octets.

The BER encoding of an SNMP message header is shown
in Figure 2. The figure shows that four of the five header
fields are of ASN.1 type INTEGER (version, request ID,
error status / non-repeaters and error index / max-repetitions).
The community field is of ASN.1 type OCTET STRING.
Since the entire SNMP message is also defined as an ASN.1
SEQUENCE, two additional octets are needed to code the start
of the message. The PDU type, which is implicitly coded,
requires another two octets.

B. SNMP message size
From the previous explanation we can conclude that the

length of a BER encoded SNMP header can be expressed as:

Lheader = 4 + 4 · LINTEGER + LOCTET STRING (1)

4 ETRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, FALL 2004

ASN.1 value part
ASN.1 length part
ASN.1 type part

legend:
S = Sequence
I = Integer
X = Octet String
P = PDU type (Implicit)

version community error status /
non-repeaters

error index /
max-repetitions

request
ID

IS X IP I I

Fig. 2. SNMP header - BER encoding

ASN.1 value part
ASN.1 length part
ASN.1 type part

legend:

S = Sequence (OF)
O = OID
T = arbitrary Type

varbind1
name value

varbind2
name value

varbindn
name value

S S O T S O T

Fig. 3. SNMP variable binding list - BER encoding

If we assume that the community string is “public”, the
BER encoded SNMP header can take anything between 24
and 40 octets. From various measurements we’ve performed,
we found as reasonable estimate:

Lheader ≈ 25 octets (2)

The BER encoding of the SNMP varbind list is shown in
Figure 3. The encoding starts with two octets, to indicate
that the varbind list is of ASN.1 type SEQUENCE OF. Each
varbind also starts with two octets, to indicate that each
varbind is of ASN.1 type SEQUENCE.
The length of a BER encoded SNMP varbind list can now

be expressed as:

Lvarbindlist = 2 + n · (2 + Lname + Lvalue) (3)

As discussed above, the number of octets needed for a BER
encoded object identifier (OID) is:

Lname ≥ 2 + OIDlength − 1 (4)

To get an idea of realistic values for OIDlength, we’ve
performed MIB walks over all the SNMP agents at our
disposal (see Section III). Figure 4 shows, for each agent,
the resulting OIDlength distribution.
To BER encode an object value, two octets are needed for

the ASN.1 type and length fields, plus SObjectValue octets for
the ASN.1 value part. Therefore:

Lvalue = 2 + SObjectValue (5)

To get an idea of possible values for SObjectValue, we again
performed measurements on all available agents. Also in this
case a MIB walk was performed; every Response PDU
was analyzed to determine the distribution of SObjectValue (see
Figure 5). We found that more than 90% of the object values

40

30

20

10

0

%

0 2 4 6 8 10 12 14 16 18 20 22 24 depths26

Fig. 4. SNMP OID length distribution (OIDlength)

100

75

50

25

0

%

0 2 4 6 8 10 12 14 16 18 20 22 24 octets

Fig. 5. SNMP object value size distribution (SObjectValue)

within our MIBs required for the BER encoding of the ASN.1
value part between 1 and 6 octets.
The number of octets needed to BER encode a complete

SNMP message is:

LSNMP message = Lheader + Lvarbindlist (6)

Using (2) and (3):

LSNMP message ≈ 27 + n · (2 + Lname + Lvalue) (7)

Using (4) and (5), we find that generally:

LSNMP message ≈ 27 + n · (5 + OIDlength + SObjectValue) (8)

C. Data retrieval with SNMP
For each data retrieval operation, two SNMP messages

are needed: a request and a response. The number of octets
required for the complete operation is therefore:

Loperation = Lrequest + Lresponse (9)

In every requests, the BER encoding of the object value
requires only two octets (ASN.1 type = NULL, length = 0):

SObjectValue, request = 0 (10)

Note that SObjectValue for Response PDUs was already
given in Figure 5. Three operations exist to retrieve data:
Get, GetNext and GetBulk. For each Get or GetNext

PRAS et al.: COMPARING THE PERFORMANCE OF SNMP AND WEB SERVICES-BASED MANAGEMENT 5

4000

1000

2000

3000

5000

6000

7000 Get
GetNext

objects

octets

0 67 133 20016610033

GetBulk

SObjectValue=6
SObjectValue=1

SObjectValue=6
SObjectValue=1

Fig. 6. Theoretical SNMP bandwidth consumption

operation, the number of varbinds in the request must be
identical to the number of varbinds in the response. Therefore:

Lrequest ≈ 27 + n · (5 + OIDlength)
Lresponse ≈ 27 + n · (5 + OIDlength + SObjectValue)

LGET ≈ 54 + n · (10 + 2 · OIDlength + SObjectValue)
(11)

For the GetBulk operation the number of varbinds in the
request may be as low as one. Therefore:

Lrequest ≈ 27 + 1 · (5 + OIDlength)
Lresponse ≈ 27 + n · (5 + OIDlength + SObjectValue)

LBULK ≈ 54 + 5n + n · SObjectValue + (n + 1) · OIDlength
(12)

The formulas (11) and (12) allow us to determine upper
and lower bounds for the number of octets needed to retrieve
SNMP objects. If we assume that only objects from the
ifTable will be downloaded, OIDlength will be equal to 11
and we can rewrite (11) and (12) as:

LGET ≈ 54 + n · (32 + SObjectValue) (13)
LBULK ≈ 70 + 16n + n · SObjectValue (14)

Using these formulas, it is now possible to graphically show
SNMP’s bandwidth consumption as function of the number of
retrieved objects (Figure 6).

D. Verification of SNMP message size
To verify these formulas, we’ve retrieved from every avail-

able agent (see Section III) hundreds of MIB objects. Retrieval
started from the first object of the ifTable, and often
included more than 10 ifTable rows. To capture traffic,
tcpdump was used [27]. The results are shown in Figure 7.
It is interesting to note that a small number of measurement
points fall outside the expected areas; the reason is that some

4000

1000

2000

3000

5000

6000

7000

Get
GetNext

objects

octets

0 67 133 20016610033

GetBulk

Fig. 7. Measured SNMP bandwidth consumption

agents place relatively long strings (SObjectValue > 20 octets)
within their ifDescription objects, which are amongst
the first objects to be retrieved. After more objects are re-
trieved, all lines fit within the expected area, however.

E. SNMPv3
The analysis thus far concentrated on the versions 1 and

2c of SNMP. For version 3, which is full standard, a similar
analysis is possible. For sake of brevity, however, this paper
only presents the conclusion of that analysis. With respect to
bandwidth, the main difference is that the SNMPv3 header
includes a number of additional fields, which increase its size
to something between 42 and 143 octets (instead of 25, as
needed for versions 1 and 2c). In addition, SNMPv3 may
occasionally need to exchange extra messages to synchronize
time (EngineBoots and EngineTime). Although the in-
crease may be substantial in cases where only a single object
is retrieved, it is almost negligible if a large number of objects
are retrieved.

F. Web services
Since there are no standards for Web services based network

monitoring, it is not possible to analytically derive formulas
that give lower and upper bounds for the bandwidth needed
to retrieve, for example, ifTable data. In fact, the required
bandwidth depends on the specific WSDL definition, which
may be different from case to case. This paper therefore only
discusses the bandwidth requirements of our prototypes. The
discussion focuses on the prototype that fetches the entire
ifTable within a single interaction; similar measurements
were also performed with the other prototypes.
The interaction starts with a SOAP request, which is shown

in Figure 8. The first part of the request identifies several name
spaces; the body includes the GetIfTable call, as well as

6 ETRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, FALL 2004

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/
soap/envelope/"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/
soap/encoding/"

xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:utMon="urn:UTMON">

<SOAP-ENV:Body SOAP-ENV:encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"
id="_0">
<utMon:GetIfTable>

<community xsi:type="xsd:string">
public

</commuity>
</utMon:GetIfTable>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Fig. 8. SOAP request message

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/
soap/envelope/"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/
soap/encoding/"

xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:utMon="urn:UTMON">

<SOAP-ENV:Body SOAP-ENV:encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"
id="_0">
ifEntry

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Fig. 9. SOAP response message - generic part

the community string as parameter. The length of the request
is approximately 500 octets.
The generic part of the SOAP response message is shown

in Figure 9. Again the message starts with identifying several
name spaces, after that data is followed for the first interface
table entry (ifEntry). The length of the generic part is
approximately 450 octets.
The interface specific part of the SOAP response is shown

in Figure 10. In this case 18 objects have been retrieved;
most objects are of type unsignedInt, except ifDescr,
ifPhysAddress and ifSpecific, which are of type
string. The size of this part is slightly over 1000 octets;
many of these octets are used for identifying attributes (35%),
like ifIndex, and types (15%). It is easy to see that, in
principle, bandwidth usage can be lowered by choosing shorter
attribute names. If the ifTable contains multiple rows (in-
terfaces), the response messages contains multiple ifEntry
parts; each part requiring approximately 1000 octets.
To compare the bandwidth requirements of our Web ser-

vices prototypes to SNMP, several measurements were per-
formed. The results are shown in Figure 11. It becomes clear
that SNMP is far better than Web services, particularly in
cases where only a few objects are retrieved. But, even in
cases where a large number of objects are retrieved, SNMP
remains a factor 2 (Get) to 4 (GetBulk) better than Web

<ifEntry>
<ifIndex xsi:type="xsd:unsignedInt">

2</ifIndex>
<ifDescr xsi:type="xsd:string">

eth0</ifDescr>
<ifType xsi:type="xsd:unsignedInt">

6</ifType>
<ifMtu xsi:type="xsd:unsignedInt">

1500</ifMtu>
<ifSpeed xsi:type="xsd:unsignedInt">

10000000</ifSpeed>
<ifPhysAddress xsi:type="xsd:string">

0|40|63|C9|71|18</ifPhysAddress>
<ifAdminStatus xsi:type="xsd:unsignedInt">

1</ifAdminStatus>
<ifOperStatus xsi:type="xsd:unsignedInt">

1</ifOperStatus>
<ifInOctets xsi:type="xsd:unsignedInt">

354210076</ifInOctets>
<ifInUcastPkts xsi:type="xsd:unsignedInt">

1399059</ifInUcastPkts>
<ifInDiscards xsi:type="xsd:unsignedInt">

0</ifInDiscards>
<ifInErrors xsi:type="xsd:unsignedInt">

0</ifInErrors>
<ifOutOctets xsi:type="xsd:unsignedInt">

434349174</ifOutOctets>
<ifOutUcastPkts xsi:type="xsd:unsignedInt">

1508987</ifOutUcastPkts>
<ifOutDiscards xsi:type="xsd:unsignedInt">

0</ifOutDiscards>
<ifOutErrors xsi:type="xsd:unsignedInt">

1</ifOutErrors>
<ifOutQLen xsi:type="xsd:unsignedInt">

0</ifOutQLen>
<ifSpecific xsi:type="xsd:string">

0:0</ifSpecific>
</ifEntry>

Fig. 10. SOAP response message - ifEntry

services.

G. Compression
Given the verbose nature of XML, we decided to addi-

tionally investigate the impact of (zlib) compression on Web
services’ bandwidth consumption. To make comparison fair,
we also (OPC) compressed SNMP messages and measured
their demands as well (see Section III for details). Our mea-
surements show that, for Web services, compression reduces
bandwidth consumption with a factor 2 in cases where only a
single object is retrieved; if 50 objects are retrieved the gain
is a factor 4, for 250 objects it is even a factor 8. Compared
to normal SNMP, the bandwidth consumption of compressed
SNMP reduces to approximately 75%. Because of the specifics
of the compression algorithm, this percentage will not improve
in cases where large numbers of objects are retrieved. Figure
12 shows the results: in cases where more than 70 objects
are retrieved, compressed Web services performs better than
SNMP.

H. Bandwidth usage at network level
The previous discussion focused on bandwidth usage at

the application (SNMP / SOAP) layer. To determine SNMP’s
bandwidth usage at the IP layer, the IP header (20 octets) as
well as the UDP header (8 octets) should be added for both

PRAS et al.: COMPARING THE PERFORMANCE OF SNMP AND WEB SERVICES-BASED MANAGEMENT 7

4000

1000

2000

3000

5000

6000

7000
Get

GetBulk

GetNext

objects

octets

0 67 133 20016610033

Web services

Fig. 11. Web services versus SNMP

request and response message. A complete request-response
interaction at the IP level therefore requires 56 more octets
than at the SNMP level.
For Web services the calculation is more complex. To

establish and release the TCP connection, 380 octets are
needed. The SOAP data is preceded by HTTP, TCP and IP
headers, and triggers the exchange of TCP acknowledgements.
From the measurements performed at our prototypes we found
that the SOAP data exchange at IP level requires between 273
(1 object) and 485 (250 objects) additional octets. In case of
compression, these numbers vary between 613 and 715 octets.
These numbers imply that the previous conclusions still hold,
although the point where compressed Web services outperform
SNMP, moves to somewhere between 125 and 150 objects.

V. SYSTEM RESOURCE USAGE

To compare the CPU and memory requirements of our
Web services prototype to that of SNMP, a Net-SNMP agent
(v5.0.9) had to be modified to include measurement code.
To determine delay, the gettimeofday function was used,
which gives back the current time in microseconds. By sub-
tracting the start-time of an operation (encoding, data retrieval
etc.) from its end-time, the time needed to perform that
operation can be determined. To measure memory usage, the
ps utility and the dmalloc library were used.

A. CPU time
The first test was to determine the amount of CPU time

needed for coding (decoding plus the subsequent encoding)
BER and XML encoded messages. The results, as function
of the number of objects within the message, is shown in
Figure 13. It turned out that, for an SNMP message carrying
a single object, the coding time is roughly 0.06 ms. A
semantically equivalent, XML encoded message, requires 0.44

4000

1000

2000

3000

5000

6000

7000

objects

octets

0 67 133 20016610033

compressed
Web services

compressed
SNMP

Web services
Get

GetBulk

GetNext

Fig. 12. Effect of compression

ms, which is 7 times more. Coding time increases if the
number of objects within the message increases. Coding an
SNMP message containing 216 objects requires 0.8 ms; coding
a similar Web services messages requires 2.5 ms. We may
therefore conclude that XML encoding requires 3 to 7 times
more CPU time than BER encoding.
Since our bandwidth measurements showed that compressed

Web services required considerable less bandwidth than un-
compressed Web services, we were also interested in the
effects of compression on CPU time. The results are also
shown in Figure 13; it turns out that, compared to XML
coding, compression is quite expensive (a factor 3 to 5). In
cases where bandwidth is cheap and CPU time expensive,
it might therefore be better to not compress Web services
messages.
To determine how much coding contributes to the complete

message handling time, also the remaining time to retrieve the
actual data from within the system was measured. In case of
the ifTable, but also in case of many other tables, such
retrieval requires, amongst others, a system call. It turned out
that retrieving data is relatively expensive; fetching the value
of a single object usually takes between 1.2 and 2.0 ms. This
time is considerably larger than the time needed for coding.
Figure 14 shows data retrieval time as function of the

number of retrieved objects; to facilitate comparison, the BER
and XML coding times are shown as well. The figure shows
that data retrieval times for Net-SNMP increase quite fast; five
objects already require more than 6 ms, for 54 objects 65 ms
were needed and for 270 objects even 500 ms. These results
can only be explained from the fact that Net-SNMP performs
a new system call every time it finds a new ifTable object
within the Get(Bulk) request. This could have been avoided,
since the previous system call already delivered all informa-
tion needed to fill the subsequent ifTable objects. Since

8 ETRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, FALL 2004

1

2

3

4

5

objects0 67 133 20016610033

6

7
time (ms)

WS compression

XML coding

BER coding

Fig. 13. CPU time for coding and compression

data retrieval is far more expensive than BER encoding, the
performance of Net-SNMP could dramatically be improved
if caching of system calls gets implemented. It should be
noted however, that on the same hardware, older versions
of UCD/Net-SNMP (v4.3.2) provide far better data retrieval
times; these times are roughly one third of those needed in
newer versions, like v5.0.9.
Since caching was implemented in our Web services proto-

type, data retrieval will be far more efficient than Net-SNMP in
case a single request includes multiple ifTable objects. For
a few objects data retrieval takes more time than XML coding,
but if more than 180 objects are requested, XML coding gets
more expensive.

B. Memory usage
Memory is needed for holding program instructions as

well as data. In case of data memory, a distinction can be
made between static and dynamic memory. Static memory is
allocated at the program start, and remains constant during the
programs lifetime. Dynamic memory is allocated after a re-
quest is received, and released after the response is transmitted.
If multiple requests arrive simultaneously, dynamic memory is
allocated multiple times.
Table I shows the memory requirements of Net-SNMP

and our Web services prototype. It turns out that Net-SNMP
requires roughly 3 times more instruction memory than our
Web services prototype. Also Net-SNMP requires 20 to 40
times more data memory, depending on the number of objects
contained in the request.
The importance of these numbers should not be overesti-

mated, however. Although we removed from Net-SNMP all
MIB code not related to the ifTable, the functionality
of Net-SNMP is still much richer than that of our Web
services prototype. For example, Net-SNMP supports three
different protocol versions, includes encryption, authentication

1

2

3

4

5

objects0 67 133 20016610033

6

7
time (ms)

SNMP data retrieval

WS data retrieval

BER codingXML coding

Fig. 14. CPU time for coding and data retrieval

TABLE I
MEMORY REQUIREMENTS

data
instructions static dynamic

SNMP 1972 kB 129 kB 70-160 kB
Web services 580 kB 470 B 4 kB

and access control, and is written in a platform independent
way. Our prototype has limited functionality, and is based on
gSOAP, which is generally known for its efficiency. Others,
for example, implemented comparable prototypes, but used the
WASP Web Services platform instead of gSOAP. It turns out
that such alternative implementation can easily require 6 times
more memory than our prototype, and 2 times more memory
than Net-SNMP [16]. Also if we add compression to our Web
services prototype, memory requirements for dynamic data
increases with more than 300 kB for one operation.

VI. ROUND TRIP DELAY

One of the interesting results thus far, is that the time needed
to retrieve management data from within the system, is higher
than the time needed to (de-)encode messages. In addition,
Net-SNMP does not cache previously fetched data, so data
retrieval time increases linearly with the number of retrieved
objects. The question is now whether this result is specific for
Net-SNMP, or is also valid for other SNMP implementations.
To determine this, measurements were performed on all avail-
able SNMP agents (see Section III). Since it is impossible to
add to these agents code that measures BER encoding and
data retrieval times, we decided to measure round trip delay
instead. This delay can be measured external to the agent; in
our case we used tcpdump [27] at the manager side to capture
all traffic plus timing data.

PRAS et al.: COMPARING THE PERFORMANCE OF SNMP AND WEB SERVICES-BASED MANAGEMENT 9

TABLE II
ROUND TRIP DELAY (IN MS) AS FUNCTION OF THE NUMBER OF

RETRIEVED OBJECTS

1 22 66 270
WS 1.7 2.6 10.3 36.5

WS-Comp 3.3 4.3 5.6 11.8

SNMP-1 0.4 1.6 3.9 21.1

SNMP-2 0.4 1.9 5.0

SNMP-3 0.5 1.6 4.2

SNMP-4 0.5 1.7 4.4

SNMP-5 0.5 1.8 4.8

SNMP-6 0.7 2.2 5.7

SNMP-7 0.8 1.8 2.9

SNMP-8 0.9 1.6 3.9

SNMP-9 0.9 6.6 18.5

SNMP-10 1.1 1.8 3.4 58.5

SNMP-11 1.2 2.9 6.7

SNMP-12 1.3 2.7 5.4

SNMP-13 1.5 14.0 40.1

SNMP-14 1.6 5.0 15.1

SNMP-15 1.7 4.2 9.6

SNMP-16 2.7 44.5 127.6 178.7

SNMP-17 2.7 47 140.4 251.7

SNMP-18 3.5 17.2

SNMP-19 3.7 24.3 77.9

SNMP-20 4.1 76.7 100.8

SNMP-21 11.1 83.7 243.0

SNMP-22 11.3 238.7 727.6

SNMP-23 87.7 1822.2

We focused our measurements on single request-response
interactions. In the case of our Web services prototype, we
ignored connection establishment and release times, since one
might use an existing TCP connection for multiple interac-
tions. Basically we measured the time between sending the
first TCP PSH segment, and receiving the last TCP PSH
segment. This time was measured for retrieving 1, 22, 66 and
270 objects, for normal as well as compressed Web services
(see Table II). It is interesting to note that round trip delay for
normal Web services increases faster than that of compressed
Web services. The reason is that the amount of uncompressed
data is such, that multiple TCP PSH segments must be used;
because of flow control (TCP’s delayed acknowledgements),
the time between transmitting these different segments is, in
our test environment, considerable.
Table II also shows the round trip delay for all SNMP

agents that we could use (see Section III). Since our goal
is to compare SNMP against Web services, and not to find
the best performing SNMP agent, we decided to shield the
identity of the individual agents and simply number them from
1 to 23. This should be sufficient for our purpose, and avoid
possible discussions with legal departments of companies.
Each measurement was repeated 10 times; the figure shows
the lowest delay that was obtained. For most measurements

we used a single GetBulk operation, with a max-repetition
value of 1, 22, 66 or 270; we also checked that GetBulk
would be the fastest operation. For agents that do not support
GetBulk, we used a single Get request, asking for 1, 22
or 66 objects. Not all agents were able to deal with large
sized messages; the size of response message carrying 270
objects is such that, on an Ethernet LAN, the message has to
be fragmented by the IP protocol.
Since the hardware for the various agents varied, the delay

times shown in Table II should be used with great care and
only considered as an indication. Under slightly different
conditions, delay times might be quite different. For example,
the addition of a second Ethernet card may have significant
impact on delay times. Also delay times will change if other
objects are retrieved than ifTable objects. In addition, the
first SNMP measurement often takes considerable more time
than subsequent measurements.
Despite these remarks, the overall trend is clear. Just as with

Net-SNMP, for most agents delay time heavily depends on
the number of retrieved objects. It seems that several SNMP
agents would benefit from some form of caching and, after
15 years of experience in SNMP agent implementation, there
is still room for performance improvements. From a delay
point of view, the choice between BER and XML encoding
doesn’t seem to be of great importance. Our Web services
prototype performs reasonably well and, for multiple objects,
even outperforms several commercial SNMP agents.

VII. CONCLUSIONS

This paper compared the performance of Web services
based network monitoring to that of SNMP. In particular it in-
vestigated bandwidth usage, CPU time, memory requirements
and round trip delay.
Bandwidth usage of SNMP depends on the specific request-

response message pair that is used to retrieve data. From
our bandwidth measurements it becomes clear that SNMP
is far better in cases where just a single object is retrieved.
Also in cases where a large number of objects is retrieved,
SNMP remains a factor 2 (Get) to 4 (GetBulk) better
than normal Web services. The conclusion changes, however,
when compression is used. If a large number of objects are
requested, compressed Web services demands less bandwidth
than SNMP. If, for example, ifTable data from a DSLAM
holding 500 ADSL interfaces is retrieved, compressed Web
services will clearly be the winner.
CPU time that is needed for the coding of SNMP (BER)

messages, is 3 to 7 times less than needed for the coding of
Web services (XML) messages. If Web services messages get
also compressed, differences grow further with an additional
factor of 3 to 5. One of the surprises of this study, however,
is that the CPU time required for coding and compression is
still less than the time required to retrieve data from within
the system. Since many agents do not seem to cache system
calls, data retrieval times go up with the number of retrieved
objects. If hundreds of objects are requested, the time needed
to code and compress messages can be neglected, compared
to the time spent on retrieving data. From a performance point
of view, coding is not the issue, but data retrieval.

10 ETRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, FALL 2004

Memory usage of our Web services prototype is less than
that of Net-SNMP. It should be noted, however, that Net-
SNMP is much richer in functionality; comparison is therefore
not fair and these results should be used with great care. For
example, other studies, using different Web services toolkits,
obtained opposite results.
Round trip delay of our Web services prototype turned

out to be comparable to existing SNMP agents. The disap-
pointing performance of some SNMP implementations can be
explained from the fact that data retrieval from within the
system is usually more expensive than encoding and decoding,
and many SNMP agents do not seem to cache data.
The overall conclusion of our study can be summarized as

follows:
• In case a single object is retrieved, SNMP is more
efficient than Web services.

• In case many objects are retrieved, Web services may be
more efficient than SNMP.

• Coding is less expensive than data retrieval. The choice
between BER and XML encoding is not the main factor
that determines performance.

From these conclusions it seems that, from a performance
point of view, there is no convincing reason to refuse Web
services for network monitoring.
Further work is needed before a final conclusion can be

drawn whether Web services technologies would be useful for
network management purposes. In particular it is important to
understand the impact of adding encryption, authentication,
authorization (access control) and transactions. As opposed to
the SMI, Web services and XML also facilitate the creation
of more advanced data structures. Since the introduction of
improved data modeling capabilities will have far reaching
consequences, further research is needed before standardiza-
tion of WSDL descriptions for network management purposes
should take place [28].

ACKNOWLEDGMENTS
This paper is influenced by discussions at the 11th, 14th

and 15th meeting of the IRTF Network Management Research
Group. We would like to thank the participants of these
meetings for their contributions. We would also like to thank
Wes Hardeker for discussions on Net-SNMP, Dave Shields
for the ObjectID Prefix Compression (OPC) code, as well as
Mark Borst and Jürgen Schönwälder for giving us access to
SNMP devices.

REFERENCES
[1] J. Schönwälder, “Overview of the 2002 IAB Network Management

Workshop,” May 2003, IETF RFC 3535.
[2] J. Schönwälder, A. Pras, and J.P. Martin-Flatin, “On the future of

Internet management technologies,” IEEE Communications Magazine,
vol. 41, no. 10, pp. 90–97, October 2003.

[3] “Homepage of the XML Protocol WG,” http://www.w3.org/
2000/xp/Group/.

[4] “Homepage of the Web Services Description WG,” http://www.w3.
org/2002/ws/desc/.

[5] “Homepage of the IRTF Network Management Research Group
(NMRG),” http://www.ibr.cs.tu-bs.de/projects/
nmrg/.

[6] K. McCloghrie, D. Perkins, and J. Schönwälder, “Structure of Manage-
ment Information Version 2 (SMIv2),” April 1999, IETF STD 58, RFC
2578.

[7] K. McCloghrie and F. KastenHolz, “The Interfaces Group MIB,” June
2000, IETF RFC 2863.

[8] C. Pattinson, “A Study of the Behaviour of the Simple Network
Management Protocol,” in Proceedings of DSOM2001, October 2001.

[9] D. Davis and M. Parashar, “Latency Performance of SOAP Implementa-
tions,” in Proceedings of IEEE Cluster Computing and the GRID 2002,
2002, pp. 407–412.

[10] K. Chiu, M. Govindaraju, and R. Bramley, “Investigating the Limits
of SOAP Performance for Scientific Computing,” in Proceedings of
11th. IEEE International Symposium on High Performance Distributed
Computing, 2002, pp. 246–254.

[11] A. Ng, S. Chen, and P. Greenfield, “An Evaluation of Contemporary
Commercial SOAP Implementations,” in Proceedings of the 5th Aus-
tralasian Workshop on Software and System Architectures (AWSA 2004),
2004, pp. 64–71.

[12] M. Choi, J. Hong, and H. Ju, “XML-Based Network Management for
IP Networks,” ETRI Journal, vol. 25, no. 6, pp. 445–463, December
2003.

[13] M. Choi and J. Jong, “Performance Evaluation of XML-based Net-
work Management,” Presentation at the 16th IRTF-NMRG meet-
ing, 2004, http://www.ibr.cs.tu-bs.de/projects/nmrg/
meetings/2004/seoul/choi.pdf.

[14] R. Neisse, R. L. Vianna, L. Z. Granville, M. J. B. Almeida, and L. M. R.
Tarouco, “Implementation and Bandwidth Consumption Evaluation of
SNMP to Web Services Gateways,” in Proceedings of NOMS2004, 2004.

[15] “Zlib homepage,” http://www.zlib.org.
[16] G. Pavlou, P. Flegkas, and S. Gouveris, “Performance Evaluation of

Web Services as Management Technology,” Presentation at the 15th
IRTF-NMRG meeting, January 2004.

[17] G. Pavlou, P. Flegkas, S. Gouveris, and A. Liotta, “On Management
Technologies and the Potential of Web Services,” IEEE Communica-
tions, vol. 42, no. 7, pp. 58–67, July 2004.

[18] T. Drevers, R. van de Meent, and A. Pras, “Prototyping Web Services
based Network Monitoring,” in Proceedings of 10th Open European
Summer School School and IFIP WG 6.3 Workshop (EUNICE 2004),
June 2004, pp. 135–142.

[19] R. v. Engelen, “gSOAP web services toolkit,” http://www.cs.fsu.
edu/∼engelen/soap.html.

[20] R. v. Engelen and K. A. Gallivany, “The gSOAP Toolkit for Web
Services and Peer-To-Peer Computing Networks,” in Proceedings of
IEEE Cluster Computing and the GRID 2002, 2002, pp. 128–135.

[21] “Homepage of the EOS WG,” http://www.ietf.org/html.
charters/OLD/eos-charter.html.

[22] J. Case et al., “A Simple Network Management Protocol (SNMP),” May
1990, IETF RFC 1157.

[23] J. Case et al., “Introduction to Community-based SNMPv2,” January
1996, IETF RFC 1901.

[24] R. Presuhn et al., “Version 2 of the Protocol Operations for the Simple
Network Management Protocol (SNMP),” December 2002, IETF RFC
3416.

[25] International Organization for Standardization, “Information processing
systems - Open Systems Interconnection, Specification of Abstract
Syntax Notation One (ASN.1),” December 1987, International Standard
8824.

[26] International Organization for Standardization, “Information processing
systems - Open Systems Interconnection, Specification of Basic En-
coding Rules for Abstract Notation One (ASN.1),” December 1987,
International Standard 8825.

[27] Lawrence Berkeley National Laboratory Network Research, “TCP-
Dump: the Protocol Packet Capture and Dumper Program,” 2003,
http://www.tcpdump.org/.

[28] J. van Sloten, A. Pras, and M. van Sinderen, “On the standardisation
of Web service management operations,” in Proceedings of 10th Open
European Summer School School and IFIP WG 6.3 Workshop (EUNICE
2004), June 2004, pp. 143–150.

Aiko Pras (a.pras@utwente.nl) is associate professor at the University of
Twente (UT), the Netherlands. From this university he received in 1995
a Ph.D. degree for the thesis: “network management architectures.” His
current research interests include network management technologies, Web

http://www.w3.org/2000/xp/Group/%00
http://www.w3.org/2000/xp/Group/%00
http://www.w3.org/2002/ws/desc/%00
http://www.w3.org/2002/ws/desc/%00
http://www.ibr.cs.tu-bs.de/projects/nmrg/%00
http://www.ibr.cs.tu-bs.de/projects/nmrg/%00
http://www.ibr.cs.tu-bs.de/projects/nmrg/meetings/2004/seoul/choi.pdf%00
http://www.ibr.cs.tu-bs.de/projects/nmrg/meetings/2004/seoul/choi.pdf%00
http://www.zlib.org%00
http://www.cs.fsu.edu/~engelen/soap.html%00
http://www.cs.fsu.edu/~engelen/soap.html%00
http://www.ietf.org/html.charters/OLD/eos-charter.html%00
http://www.ietf.org/html.charters/OLD/eos-charter.html%00
http://www.tcpdump.org/%00

PRAS et al.: COMPARING THE PERFORMANCE OF SNMP AND WEB SERVICES-BASED MANAGEMENT 11

Services, network measurements and accounting. He is member of the IRTF
NMRG, technical co-chair of the Ninth IFIP/IEEE International Symposium
on Integrated Network Management (IM 2005), and TPC member of many
international conferences in the area of management.

Thomas Drevers (thomas@drevers.nl) has recently completed his M.Sc.
study at the UT. His M.Sc. thesis is called: “Performance of Web services-
based network monitoring”. He has presented the results of his work at the
14th meeting of the IRTF NMRG, and at the EUNICE 2004 Summer school.

Remco van de Meent (r.vandemeent@utwente.nl) received his M.Sc. in
Computer Science from the University of Twente, the Netherlands, in 2001.
He currently is working towards his Ph.D. at the department of Electrical Engi-
neering, Mathematics and Computer Science at the University of Twente. His
research interests include Internet traffic measurements and traffic modeling,
network provisioning and network management.

Dick Quartel (d.a.c.quartel@utwente.nl) is an assistant professor at the
University of Twente (UT), the Netherlands. From this university he received
in 1998 a Ph.D. degree for the thesis: “Action relations - Basic design
concepts for behaviour modelling and refinement”. His current research
interests include architectural modelling, service-oriented design, service-
oriented computing technologies, and context-aware services.

