

DISCRETE MATHEMATICS

Discrete Mathematics 223 (2000) 327-336

www.elsevier.com/locate/disc

Heavy paths and cycles in weighted graphs \(\frac{1}{2} \)

Shenggui Zhang^{a, *}, Xueliang Li^a, Hajo Broersma^b

^a Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China

Received 6 October 1998; revised 2 October 1999; accepted 11 October 1999

Abstract

A weighted graph is a graph in which each edge is assigned a non-negative number, called the weight. The weight of a path (cycle) is the sum of the weights of its edges. The weighted degree of a vertex is the sum of the weights of the edges incident with the vertex. A usual (unweighted) graph can be considered as a weighted graph with constant weight 1. In this paper, it is proved that for a 2-connected weighted graph, if every vertex has weighted degree at least d, then for any given vertex y, either y is contained in a cycle with weight at least 2d or every heaviest cycle is a Hamilton cycle. This result is a common generalization of Grötschel's theorem and Bondy-Fan's theorem assuring the existence of a cycle with weight at least 2d on the same condition. Also, as a tool for proving this result, we show a result concerning heavy paths joining two specific vertices and passing through one given vertex. © 2000 Elsevier Science B.V. All rights reserved.

MSC: 05C45; 05C38; 05C35

Keywords: Weighted graph; (Long, optimal, Hamilton) cycle; Weighted degree

1. Terminology and notation

We use Bondy and Murty [2] for terminology and notation not defined here and consider finite simple graphs only.

Let G = (V, E) be a simple graph. G is called a weighted graph if each edge e is assigned a non-negative number w(e), called the weight of e. For any subgraph H of G, V(H) and E(H) denote the sets of vertices and edges of H, respectively.

E-mail address: sgzhang_npu@263.net (S. Zhang).

0012-365X/00/\$ - see front matter © 2000 Elsevier Science B.V. All rights reserved.

PII: S0012-365X(99)00413-6

^bFaculty of Applied Mathematics, University of Twente, P.O. Box 217, 7500 AE, Enschede, Netherlands

[†] This research was carried out while the first author was visiting the Faculty of Applied Mathematics, University of Twente.

^{*} Corresponding author.

The weight of H is defined by

$$w(H) = \sum_{e \in E(H)} w(e).$$

A cycle is called *optimal* if it is a cycle with maximum weight among all cycles of G. For each vertex $v \in V$, $N_H(v)$ denotes the set, and $d_H(v)$ the number, of vertices in H that are adjacent to v. We define the *weighted degree* of v in H by

$$d_H^w(v) = \sum_{h \in N_H(v)} w(vh).$$

When no confusion occurs, we will denote $N_G(v)$, $d_G(v)$ and $d_G^w(v)$ by N(v), d(v) and $d^w(v)$, respectively. An (x,z)-path is a path connecting the two vertices x and z. For a given vertex y of G, an (x,z)-path is called an (x,y,z)-path if it passes through the vertex y. A cycle is called a y-cycle if it passes through the vertex y. If x and z are two vertices on a path P, P[x,z] denotes the segment of P from x to z. Let C be a cycle in G with a fixed orientation. For any two vertices x and y on y or y, by y denote the segment of y from y to y determined by this orientation. If y is a subgraph of y, by y and y we denote the induced subgraph y for y from y to y determined by this orientation. If y is a subgraph of y, by y and y we denote the induced subgraph y for y from y to y determined by this orientation.

An unweighted graph can be regarded as a weighted graph in which each edge e is assigned weight w(e) = 1. Thus, in an unweighted graph, $d^w(v) = d(v)$ for every vertex v, and an optimal cycle is simply a longest cycle.

2. Heavy paths in weighted graphs

The following two theorems are on the existence of long paths. It is easy to see that Theorem B generalizes Theorem A.

Theorem A (Erdős and Gallai [5]). Let G be a 2-connected graph and d an integer. Let x and z be two distinct vertices of G. If $d(v) \ge d$ for all $v \in V(G) \setminus \{x, z\}$, then G contains an (x, z)-path of length at least d.

Theorem B (Enomoto [4]). Let G be a 2-connected graph and d an integer. Let x and z be two distinct vertices of G. Suppose that $d(v) \ge d$ for all $v \in V(G) \setminus \{x, z\}$.

- (1) Then for any given vertex y of G, G contains an (x, y, z)-path of length at least d.
- (2) If for some vertex $y \in V(G) \setminus \{x,z\}$, G contains no (x,y,z)-path of length more than d, then the connected component H_y of G-x-z that contains y is isomorphic to K_{d-1} and $V(H_y) \subseteq N(x) \cap N(z)$. If $y \in \{x,z\}$, then the assertion holds for any connected component of G-x-z.

Bondy and Fan generalized Theorem A to weighted graphs as follows:

Theorem 1 (Bondy and Fan [1]). Let G be a 2-connected weighted graph and d a real number. Let x and z be two distinct vertices of G. If $d^w(v) \ge d$ for all $v \in V(G) \setminus \{x,z\}$, then G contains an (x,z)-path of weight at least d.

In this section, we prove the following analogue of Theorem B for weighted graphs. This result also generalizes Theorem 1.

Theorem 2. Let G be a 2-connected weighted graph and d a real number. Let x and z be two distinct vertices of G. Suppose that $d^w(v) \ge d$ for all $v \in V(G) \setminus \{x, z\}$.

- (1) Then for any given vertex y of G, G contains an (x, y, z)-path of weight at least d.
- (2) If w(e) > 0 for all $e \in E(G)$ and for some vertex $y \in V(G) \setminus \{x, z\}$, G contains no (x, y, z)-path of weight more than d, then (a) the connected component H_y of G x z that contains y is complete; (b) $V(H_y) \subseteq N(x) \cap N(z)$; (c) $w(xv) = \alpha_x$, $w(zv) = \alpha_z$ for all $v \in V(H_y)$ and $w(uv) = \beta_y$ for all $u, v \in V(H_y)$ so that $\alpha_x + \beta_y(|V(H_y)| 1) + \alpha_z = d$. If $y \in \{x, z\}$, then the assertion holds for any connected component of G x z.

Proof. If $y \in \{x, z\}$, then the result in (1) follows from Theorem 1; The assertions in (2) can be proved by choosing any connected component of G - x - z as H_y in the following proof. So we may assume that $y \notin \{x, z\}$.

Let |V(G)| = n. We use induction on n. If n = 3, let y be the third vertex other than x and z, then the path xyz is an (x, y, z)-path of weight $d^w(y) \ge d$.

Suppose now $n \ge 4$ and the theorem is true for all graphs on k vertices with $3 \le k \le n-1$. Let G' = G - z be the graph obtained by deleting z from G. We consider two cases:

Case 1: G' is 2-connected.

(1) Since G is 2-connected, we can choose $z' \in N(z) \setminus \{x\}$ such that

$$w(zz') = \max\{w(zv): v \in N(z) \setminus \{x\}\}.$$

Then for all $v \in V(G') \setminus \{x\}$,

$$d_{G'}^{w}(v) = d^{w}(v) - w(zv) \ge d - w(zz').$$

By the induction hypothesis, for any given vertex $y \in V(G') \setminus \{x\}$, G' contains an (x, y, z')-path Q of weight at least d - w(zz'). Then the path P = Qz'z is an (x, y, z)-path of weight at least d.

(2) If for some vertex $y \in V(G) \setminus \{x,z\}$, G contains no (x,y,z)-path of weight more than d, then the maximum weight of an (x,y,z')-path in G' is exactly d'=d-w(zz'). Moreover, by the induction hypothesis, G' has the described structure. Let H'_y be the connected component of G'-x-z' that contains y. (If y=z', take any connected

component of G'-x-z' as H'_y .) Thus, H'_y is complete, $V(H'_y) \subseteq N_{G'}(x) \cap N_{G'}(z')$ and G' is weighted so that

$$w(xv) = \alpha'_x$$
, $w(z'v) = \alpha'_{z'}$ for all $v \in V(H'_v)$

and

$$w(uv) = \beta'_v$$
 for all $u, v \in V(H'_v)$,

where

$$\alpha'_x + \beta'_v(|V(H'_v)| - 1) + \alpha'_{z'} = d'.$$

If $v \in V(H'_v)$, then $d^w_{G'}(v) = d'$. Thus

$$w(zv) = d^w(v) - d^w_{G'}(v) \ge d - d' = w(zz').$$

Since w(zz') > 0, we have that $zv \in E(G)$. Moreover, by the choice of z', it is clear that w(zv) = w(zz') for all $v \in V(H'_y)$. It follows that any vertex in $V(H'_y) \cup \{z\}$ could have been selected as the vertex z'. This implies that $\alpha'_{z'} = \beta'_v$.

Suppose that there exists another connected component H^* of G'-x-z'. By the induction hypothesis, then there must be an (x,z')-path of weight at least d-w(zz') in $G[V(H^*) \cup \{x,z'\}]$. On the other hand, there is a (z,y,z')-path of weight $w(zz') + \beta'_y |V(H'_y)|$ in $G[V(H'_y) \cup \{z,z'\}]$. Combining these two paths, we get an (x,y,z)-path of weight at least $d+\beta'_y |V(H'_y)| > d$, which contradicts the assumption. Hence $G-x-z=G[V(H'_y) \cup \{z'\}]$ and

$$w(xz') = d^{w}(z') - w(zz') - \beta'_{y} | V(H'_{y})|$$

$$\geq d - w(zz') - \beta'_{y} | V(H'_{y})|$$

$$= d' - \beta'_{y} | V(H'_{y})|$$

$$= \alpha'_{x} + \beta'_{y} (|V(H'_{y})| - 1) + \alpha'_{z'} - \beta'_{y} | V(H'_{y})|$$

$$= \alpha'_{x}.$$

Furthermore, by the assumption that G contains no (x,z)-path of weight more than d we know that $w(xz') \leq \alpha'_x$. So $xz' \in E(G)$ and $w(xz') = \alpha'_x$. Now let H_y denote the connected component of G - x - z that contains y and set $\alpha_z = w(zz')$, $\alpha_x = \alpha'_x$ and $\beta_y = \beta'_y$. Then H_y is complete, $V(H_y) \subseteq N(x) \cap N(z)$ and G is weighted so that

$$w(xv) = \alpha_x, \quad w(zv) = \alpha_z \quad \text{for all } v \in V(H_y)$$

and

$$w(uv) = \beta_y$$
 for all $u, v \in V(H_y)$,

where

$$\alpha_x + \beta_y(|V(H_y)| - 1) + \alpha_z = d.$$

Case 2: G' is not 2-connected.

(1) Since G is 2-connected, G' must be connected. We shall frequently make use of the following claim.

Claim. Suppose B is an end-block of G' and b is the unique cut-vertex of G' contained in B. Let B' be the subgraph of G induced by $V(B) \cup \{z\}$. Then for any given vertex y of B', B' contains a (b, y, z)-path P' of weight at least d.

Proof. If $zb \in E(G)$, then B' is 2-connected and for all $v \in V(B') \setminus \{b, z\}$, we have $d_{B'}^w(v) = d^w(v) \ge d$.

By the induction hypothesis, for any given vertex y of B', B' contains a (b, y, z)-path P' of weight at least d.

If $zb \notin E(G)$, add zb to B' and set w(zb) = 0. Applying the induction hypothesis to the resulting graph, we know that for any given vertex y of B', the resulting graph contains a (b, y, z)-path of weight at least d. If d > 0, then $P' \neq zb$, since w(zb) = 0. If d = 0, then we can choose P' in B' such that $P' \neq zb$, since all we need is that $w(P') \geqslant d$. This shows that we always have a (b, y, z)-path P' in B' of weight at least d.

Case 2.1: y is contained in a block of G' with two or more cut-vertices. Choose an end-block B in G' with cut-vertex b such that there is an (x, y, b)-path Q in G' - (B - b). Let B' be the subgraph of G induced by $V(B) \cup \{z\}$. By the above claim, we have that there is a (b, z)-path P' in B' of weight at least d. Combining these two paths Q and P', we get an (x, y, z)-path of weight at least d.

Case 2.2: y is contained in an end-block B of G' with a cut-vertex b and $x \notin V(B)$. Let B' be the subgraph of G induced by $V(B) \cup \{z\}$. It is easy to see that there exists an (x,b)-path Q in G'-(B-b). By the above claim we have that there is a (b,y,z)-path P' in B' of weight at least d. Combining these two paths Q and P', we get an (x,y,z)-path of weight at least d.

Case 2.3: y and x are contained in an end-block B_1 of G'. If x is the unique cut-vertex of B_1 , let B'_1 be the subgraph of G induced by $V(B_1) \cup \{z\}$. Then from the above claim we know that there is an (x, y, z)-path P'_1 in B'_1 of weight at least d. Otherwise, since G' has at least two distinct end-blocks, we can choose an end-block B_2 in G' other than B_1 . Let b_2 be the unique cut-vertex of G' contained in B_2 and B'_2 be the subgraph of G induced by $V(B_2) \cup \{z\}$. Then there is a (b_2, z) -path P'_2 in B'_2 of weight at least G by the above claim, and there is also an (x, y, b_2) -path G' in $G' - (B_2 - b_2)$. Combining these two paths G and G', we get an G' weight at least G'.

(2) From the above proof, we need only consider the case in which y is contained in an end-block B_1 of G' with x as its unique cut-vertex. In this case, the result follows from the induction hypothesis by considering the graph $G[V(B_1) \cup \{z\}]$.

This completes the proof. \Box

3. Heavy cycles in weighted graphs

There are many results on the existence of long cycles. The following two theorems are known.

Theorem C (Dirac [3]). Let G be a 2-connected graph and d an integer. If $d(v) \ge d$ for every vertex v in G, then G contains either a cycle of length at least 2d or a Hamilton cycle.

Theorem D (Grötschel [6]). Let G be a 2-connected graph and d an integer. If $d(v) \ge d$ for every vertex v in G, then for any given vertex y of G, G contains either a y-cycle of length at least 2d or a Hamilton cycle.

It is clear that Theorem D is a generalization of Theorem C. Bondy and Fan generalized Theorem C to weighted graphs as follows:

Theorem 3 (Bondy and Fan [1]). Let G be a 2-connected weighted graph and d a real number. If $d^w(v) \ge d$ for every vertex v in G, then either G contains a cycle of weight at least 2d or every optimal cycle is a Hamilton cycle.

The aim of this section is to give a generalization of Theorem D to weighted graphs.

Theorem 4. Let G be a 2-connected weighted graph and d a real number. If $d^w(v) \ge d$ for every vertex v in G, then for any given vertex y of G, either G contains a y-cycle of weight at least 2d or every optimal cycle in G is a Hamilton cycle.

This theorem also generalizes Theorem 3.

Before proving the above theorem, we need the following result.

Theorem 5. Let C be an optimal cycle in a weighted graph G. Suppose that there is an (x, y, z)-path P in G-C such that $|N_C(x)| \ge 1$, $|N_C(z)| \ge 1$ and $|N_C(x) \cup N_C(z)| \ge 2$. Define

$$X = N_C(x) \setminus N_C(z)$$
, $Z = N_C(z) \setminus N_C(x)$ and $Y = N_C(x) \cap N_C(z)$.

If |Y| = 1 and either $X = \emptyset$ or $Z = \emptyset$, then there exists a y-cycle C' in G such that

$$w(C') \geqslant \frac{w(C)}{2} + \min\{d_C^w(x), d_C^w(z)\} + w(P).$$

Otherwise, there exist l ($l \ge 4$) y-cycles $C_1, C_2, ..., C_l$ in G such that

$$\sum_{i=1}^{l} w(C_i) \ge (l-2)w(C) + 2d_Y^w(x) + 2d_Y^w(z) + 4d_X^w(x) + 4d_Z^w(z) + lw(P).$$

Proof. If |Y| = 1 and either $X = \emptyset$ or $Z = \emptyset$, we have two cases. In the case |Y| = 1 and $X = \emptyset$, we can assume that $Y = \{a_1\}$ and $Z = \{a_2, \dots, a_k\}$. Without loss of generality, we suppose that the segment $C[a_2, a_1]$ is of weight at least w(C)/2. So the cycle

 $C' = xPza_2C[a_2, a_1]a_1x$ is a y-cycle of weight

$$w(C') \ge \frac{w(C)}{2} + w(xa_1) + w(za_2) + w(P)$$

$$\ge \frac{w(C)}{2} + \min\{d_C^w(x), d_C^w(z)\} + w(P).$$

The case |Y| = 1 and $Z = \emptyset$ can be discussed by the same argument.

Otherwise, let $A = X \cup Y \cup Z$ and suppose that $A = \{a_1, a_2, \dots, a_k\}$, where a_i are in order around C. For each pair of vertices (a_i, a_{i+1}) , we shall construct two new cycles from C by replacing the segment $C[a_i, a_{i+1}]$ with two (a_i, a_{i+1}) -paths. These two paths are defined according to four cases:

- (1) $a_i, a_{i+1} \in Y$. The two paths are $a_i x P z a_{i+1}$ and $a_i z P x a_{i+1}$.
- (2) $a_i \in Y$ and $a_{i+1} \in X$ or Z. The two paths are $a_i z P x a_{i+1}$ and $a_i x a_{i+1}$, or $a_i x P z a_{i+1}$ and $a_i z a_{i+1}$.

If $a_{i+1} \in Y$ and $a_i \in X$ or Z, the paths are defined in the same way.

- (3) $a_i \in X$ and $a_{i+1} \in Z$ or $a_i \in Z$ and $a_{i+1} \in X$. The two paths are two copies of $a_i x P z a_{i+1}$ or $a_i z P x a_{i+1}$.
- (4) $a_i, a_{i+1} \in X$ or $a_i, a_{i+1} \in Z$. The two paths are two copies of $a_i x a_{i+1}$ or $a_i z a_{i+1}$.

In each case, we have defined two paths to replace the segment $C[a_i, a_{i+1}]$ and hence formed two cycles. Since there are k pairs of vertices (a_i, a_{i+1}) (i = 1, ..., k), we obtain 2k cycles. In these cycles, every edge of C is traversed 2k - 2 times; every edge from x or z to Y is traversed twice, every edge from x to x is traversed four times and, similarly, every edge from x to x is traversed four times. Now suppose that the path x is traversed x times (we determine x later). Then the weight sum of these x cycles is

$$2(k-1)w(C) + 2d_Y^w(x) + 2d_Y^w(z) + 4d_X^w(x) + 4d_Z^w(z) + lw(P).$$

Without loss of generality, we can denote the l cycles which pass through the path P (also pass through the vertex y) by C_1, C_2, \ldots, C_l . Since C is an optimal cycle, those 2k - l cycles other than C_1, C_2, \ldots, C_l have weight at most w(C). Hence, we get the following inequality:

$$\sum_{i=1}^{l} w(C_i) \ge (l-2)w(C) + 2d_Y^w(x) + 2d_Y^w(x) + 4d_X^w(x) + 4d_Z^w(x) + lw(P).$$

Now we determine l. If $|Y| \ge 2$, then it is not difficult to see that $l \ge 2|Y|$; if |Y| = 1, $X \ne \emptyset$, and $Z \ne \emptyset$, then $l \ge 4$; if |Y| = 0, then noting that $|N_C(x)| \ge 1$ and $|N_C(z)| \ge 1$, we have that $X \ne \emptyset$ and $Z \ne \emptyset$, and $l \ge 4$. Therefore for all the cases we have that $l \ge 4$. \square

Proof of Theorem 4. Suppose that there exists an optimal cycle C in G which is not a Hamilton cycle. From Theorem 3 we have that $w(C) \ge 2d$. If y is contained in the cycle C, then we are done. Otherwise, let H be the component of G - C which contains y. We consider two cases:

Case 1: H is nonseparable.

Case 1.1: $V(H) = \{y\}$. Suppose that $N_C(y) = \{a_1, a_2, ..., a_k\} (k \ge 2)$, where a_i are in order around C. For each pair of vertices (a_i, a_{i+1}) , we shall construct a y-cycle C_i from C by replacing the segments $C[a_i, a_{i+1}]$ with the path $a_i y a_{i+1}$. Since there are k pairs of vertices $(a_i, a_{i+1})(i = 1, 2, ..., k)$, we obtain k cycles, and,

$$\sum_{i=1}^{k} w(C_i) = (k-1)w(C) + 2d_C^w(y)$$

$$\ge 2(k-1)d + 2d$$

$$= 2kd.$$

Then, among these k cycles there must be a y-cycle C' with weight at least 2d. Case 1.2: $|V(H)| \ge 2$. Choose distinct vertices x and z in H such that

- (1) $|N_C(x)| \ge 1$, $|N_C(z)| \ge 1$, and
- (2) $d_C^w(x) \ge d_C^w(z) \ge d_C^w(v)$ for all $v \in V(H) \setminus \{x, z\}$.

Case 1.2.1: $|N_C(x) \cup N_C(z)| \ge 2$. By the choice of x and z, we have

$$d_H^{\scriptscriptstyle W}(v) = d^{\scriptscriptstyle W}(v) - d_C^{\scriptscriptstyle W}(v) \geqslant \max\{0, d - d_C^{\scriptscriptstyle W}(z)\} \quad \text{for all } v \in V(H) \setminus \{x\}.$$

If |V(H)|=2, it is easy to find an (x,y,z)-path P in H of weight at least $\max\{0,d-d_C^w(z)\}$. Otherwise, applying Theorem 2 to H, we can choose an (x,y,z)-path P in H such that

$$w(P) \geqslant \max\{0, d - d_C^w(z)\}.$$

Now denote $N_C(x)\backslash N_C(z), N_C(x)\cap N_C(z)$ and $N_C(z)\backslash N_C(x)$ by X,Y and Z, respectively. If |Y|=1 and $X=\emptyset$ or $Z=\emptyset$, then by Theorem 5 we know that there is a y-cycle C' in G such that

$$w(C') \geqslant \frac{w(C)}{2} + \min\{d_C^w(x), d_C^w(z)\} + w(P) \geqslant 2d.$$

Otherwise, from Theorem 5 we know that G contains $l(l \ge 4)$ y-cycles C_1, C_2, \ldots, C_l such that

$$\sum_{i=1}^{l} w(C_i) \ge (l-2)w(C) + 2d_Y^w(x) + 2d_Y^w(z) + 4d_X^w(x) + 4d_Z^w(z) + lw(P)$$

$$= (l-2)w(C) + 2d_C^w(x) + 2d_C^w(z) + 2d_X^w(x) + 2d_Z^w(z) + lw(P)$$

$$= (l-2)w(C) + 4d_C^w(z) + l \max\{0, d - d_C^w(z)\}$$

$$\ge 2ld.$$

Then, among these l y-cycles in G there must be one with weight at least 2d.

Case 1.2.2: $N_C(x) = N_C(z) = \{a\}$. Since G is 2-connected, there exists a vertex $b \in V(C) \setminus \{a\}$ which is adjacent to some vertex $u \in V(H) \setminus \{x, z\}$. By the choice of x and z, we have

$$d_H^w(v) = d^w(v) - d_C^w(v) \ge d - d_C^w(x)$$
 for all $v \in V(H)$.

Applying Theorem 2 to H, we have an (x, y, u)-path Q in H of weight

$$w(Q) \geqslant d - d_C^w(x) = d - w(xa),$$

then the path axQub is of weight at least d. It is easy to see that we can form a y-cycle of weight at least 2d.

Case 2: H is separable.

Case 2.1: y is contained in a block of H with two or more cut-vertices. Let B_1 and B_2 be two distinct end-blocks of H, and let b_i be the unique cut-vertex of H contained in B_i (i = 1, 2). For i = 1, 2, we choose $x_i \in V(B_i) \setminus \{b_i\}$ such that

- (1) $|N_C(x_i)| \ge 1$, and
- (2) $d_C^w(x_i) \geqslant d_C^w(v)$ for all $v \in V(B_i) \setminus \{b_i\}$.

It follows that

$$d_{B_i}^w(v) = d^w(v) - d_C^w(v) \ge \max\{0, d - d_C^w(x_i)\}$$
 for all $v \in V(B_i) \setminus \{b_i\}$, $(i = 1, 2)$.

Applying Theorem 2 to B_i we obtain an (x_i, b_i) -path P_i in B_i of weight

$$w(P_i) \geqslant \max\{0, d - d_C^w(x_i)\}.$$

If $|N_C(x_1) \cup N_C(x_2)| \ge 2$, then let P be an (x_1, y, x_2) -path in H of maximum weight. Then

$$w(P) \geqslant w(P_1) + w(P_2) \geqslant \max\{0, d - \min\{d_C^w(x_1), d_C^w(x_2)\}\}.$$

Denote $N_C(x_1)\backslash N_C(x_2), N_C(x_2)\backslash N_C(x_1)$ and $N_C(x_1)\cap N_C(x_2)$ by X_1,X_2 and Y, respectively. If |Y|=1 and $X_1=\emptyset$ or $X_2=\emptyset$, then by Theorem 5 we know that there is a y-cycle C' in G such that

$$w(C') \geqslant \frac{w(C)}{2} + \min\{d_C^w(x_1), d_C^w(x_2)\} + w(P) \geqslant 2d.$$

Otherwise, from Theorem 5 we know that G contains $l(l \ge 4)$ y-cycles C_1, C_2, \ldots, C_l such that

$$\sum_{i=1}^{l} w(C_i) \ge (l-2)w(C) + 2d_Y^w(x_1) + 2d_Y^w(x_2)$$

$$+4d_{X_1}^w(x_1) + 4d_{X_2}^w(x_2) + lw(P)$$

$$\ge 2(l-2)d + 4\min\{d_C^w(x_1), d_C^w(x_2)\}$$

$$+l\max\{0, d - \min\{d_C^w(x_1), d_C^w(x_2)\}\}$$

$$\ge 2ld.$$

So, among these l y-cycles there must be one with weight at least 2d.

If $N_C(x_1) = N_C(x_2) = \{a\}$, let Q be a (b_1, y, b_2) -path in H. The weight of $ax_iP_ib_i$ is at least d, then the cycle $ax_1P_1b_1Qb_2P_2x_2a$ has weight at least 2d.

Case 2.2: y is contained in an end-block B_1 of H. Choose another end-block B_2 of H and let b_i be the unique cut-vertex of H contained in B_i (i = 1, 2). For i = 1, 2, choose $x_i \in V(B_i) \setminus \{b_i\}$ such that

- (1) $|N_C(x_i)| \ge 1$, and
- (2) $d_C^w(x_i) \geqslant d_C^w(v)$ for all $v \in V(B_i) \setminus \{b_i\}$.

Applying Theorem 2 to B_1 and B_2 , we obtain an (x_1, y, b_1) -path P_1 in B_1 of weight at least $\max\{0, d - d_C^w(x_1)\}$, and an (x_2, b_2) -path P_2 in B_2 of weight at least $\max\{0, d - d_C^w(x_2)\}$. It is also easy to know that there is a (b_1, b_2) -path Q in $H - (B_1 - b_1) - (B_2 - b_2)$. So the path $P = P_1 Q P_2$ is an (x_1, y, x_2) -path with weight.

$$w(P) \geqslant w(P_1) + w(P_2) \geqslant \max\{0, d - \min\{d_C^w(x_1), d_C^w(x_2)\}\}.$$

If $|N_C(x_1) \cap N_C(x_2)| \ge 2$, using the similar argument in Case 2.1, we can get a y-cycle of weight at least 2d.

If $N_C(x_1) = N_C(x_2) = \{a\}$, there exists a vertex $b \in V(C) \setminus \{a\}$ which is adjacent to some vertex $u \in V(H) \setminus \{x_1, x_2\}$.

If $u \in V(B_1)$ and $u = b_1$, the path $bb_1P_1x_1a$ is of weight at least d; If $u \neq b_1$, we can choose a (u, y, b_2) -path Q, then the path $P = buQb_2P_2x_2a$ is of weight at least d. So in both cases we can form a y-cycle of weight at least 2d.

If $u \notin V(B_1)$, we can choose a (b_1, u) -path Q in $H - (B_1 - b_1)$, and therefore the path $P = ax_1P_1b_1Qub$ is of weight at least d. It is easy to form a y-cycle with weight at least 2d.

The proof is now complete. \square

Acknowledgements

The first author is very grateful to Professor C. Hoede for his hospitality and help during his visit to the University of Twente.

References

- [1] J.A. Bondy, G. Fan, Optimal paths and cycles in weighted graphs, Ann. Discrete Math. 41 (1989) 53-69.
- [2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan London and Elsevier, New York, 1976.
- [3] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (3) (1952) 69-81.
- [4] H. Enomoto, Long paths and large cycles in finite graphs, J. Graph Theory 8 (1984) 287–301.
- [5] P. Erdős, A. Gallai, On maximal paths and circuits in graphs, Acta Math. Sci. Hung. 10 (1959) 337-356.
- [6] M. Grötschel, Graphs with cycles containing given paths, Ann. Discrete Math. 1 (1977) 233-245.