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Abstract

A weighted graph is a graph in which each edge is assigned a non-negative number, called the
weight. The weight of a path (cycle) is the sum of the weights of its edges. The weighted degree
of a vertex is the sum of the weights of the edges incident with the vertex. A usual (unweighted)
graph can be considered as a weighted graph with constant weight 1. In this paper, it is proved
that for a 2-connected weighted graph, if every vertex has weighted degree at least d, then for
any given vertex y, either y is contained in a cycle with weight at least 2d or every heaviest
cycle is a Hamilton cycle. This result is a common generalization of Grotschel’s theorem and
Bondy—Fan’s theorem assuring the existence of a cycle with weight at least 2d on the same
condition. Also, as a tool for proving this result, we show a result concerning heavy paths
joining two specific vertices and passing through one given vertex. (©) 2000 Elsevier Science
B.V. All rights reserved.
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1. Terminology and notation

We use Bondy and Murty [2] for terminology and notation not defined here and
consider finite simple graphs only.

Let G=(V,E) be a simple graph. G is called a weighted graph if each edge e
is assigned a non-negative number w(e), called the weight of e. For any subgraph
H of G,V(H) and E(H) denote the sets of vertices and edges of H, respectively.
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The weight of H is defined by

wH)= Y w(e).

ecE(H)

A cycle is called optimal if it is a cycle with maximum weight among all cycles of
G. For each vertex v €V, Ny(v) denotes the set, and dy(v) the number, of vertices in
H that are adjacent to v. We define the weighted degree of v in H by

dy)y= > w(vh).

h € Ny(v)

When no confusion occurs, we will denote Ng(v), dg(v) and d(v) by N(v), d(v) and
d"(v), respectively. An (x,z)-path is a path connecting the two vertices x and z. For
a given vertex y of G, an (x,z)-path is called an (x, y,z)-path if it passes through the
vertex y. A cycle is called a y-cycle if it passes through the vertex y. If x and z are
two vertices on a path P, P[x,z] denotes the segment of P from x to z. Let C be a
cycle in G with a fixed orientation. For any two vertices x and z on C, by C[x,z] we
denote the segment of C from x to z determined by this orientation. If H is a subgraph
of G, by G — H we denote the induced subgraph G[V(G)\V(H)].

An unweighted graph can be regarded as a weighted graph in which each edge e is
assigned weight w(e) = 1. Thus, in an unweighted graph, d"(v) =d(v) for every vertex
v, and an optimal cycle is simply a longest cycle.

2. Heavy paths in weighted graphs

The following two theorems are on the existence of long paths. It is easy to see that
Theorem B generalizes Theorem A.

Theorem A (Erdos and Gallai [5]). Let G be a 2-connected graph and d an integer.
Let x and z be two distinct vertices of G. If d(v) =d for all ve V(G)\{x,z}, then
G contains an (x,z)-path of length at least d.

Theorem B (Enomoto [4]). Let G be a 2-connected graph and d an integer. Let x
and z be two distinct vertices of G. Suppose that d(v) = d for all ve V(G)\{x,z}.

(1) Then for any given vertex y of G, G contains an (x, y,z)-path of length at
least d.

(2) If for some vertex y € V(G)\{x,z}, G contains no (x,y,z)-path of length more
than d, then the connected component H, of G—x—z that contains y is isomorphic
to Ky—y and V(H,) CN(x)NN(z). If y €{x,z}, then the assertion holds for any
connected component of G —x — z.
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Bondy and Fan generalized Theorem A to weighted graphs as follows:

Theorem 1 (Bondy and Fan [1]). Let G be a 2-connected weighted graph and d
a real number. Let x and z be two distinct vertices of G. If d"(v) =d for all
veV(G)\{x,z}, then G contains an (x,z)-path of weight at least d.

In this section, we prove the following analogue of Theorem B for weighted graphs.
This result also generalizes Theorem 1.

Theorem 2. Let G be a 2-connected weighted graph and d a real number. Let x and
z be two distinct vertices of G. Suppose that d*(v) = d for all ve V(G)\{x,z}.

(1) Then for any given vertex y of G, G contains an (x,y,z)-path of weight at
least d.

(2) If w(e) >0 for all e E(G) and for some vertex y € V(G)\{x,z}, G contains
no (x, y,z)-path of weight more than d, then (a) the connected component H, of
G — x —z that contains y is complete; (b) V(H,) CN(x)NN(z); (c) w(xv) = o,
w(zv) =0, for all ve V(H,) and w(uv)=, for all u,vcV(H,) so that o, +
By(|[V(H)| —1)+a.=d. If ye{x,z}, then the assertion holds for any connected
component of G —x — z.

Proof. If y € {x,z}, then the result in (1) follows from Theorem 1; The assertions in
(2) can be proved by choosing any connected component of G —x —z as H, in the
following proof. So we may assume that y & {x,z}.

Let |V(G)| =n. We use induction on n. If n=3, let y be the third vertex other than
x and z, then the path xyz is an (x, y,z)-path of weight d"(y) > d.

Suppose now n >4 and the theorem is true for all graphs on k vertices with
3<k<n-—1.Let G=G — z be the graph obtained by deleting z from G. We
consider two cases:

Case 1: G' is 2-connected.

(1) Since G is 2-connected, we can choose z’' € N(z)\{x} such that

w(zz") = max{w(zv): v€ N(z)\{x}}.
Then for all v € V(G")\{x},
C()y=d"(v) — w(zv) = d — w(zZ').

By the induction hypothesis, for any given vertex y € V(G')\{x}, G’ contains an
(x, y,z")-path Q of weight at least d —w(zz"). Then the path P = Qz’z is an (x, y,z)-path
of weight at least d.

(2) If for some vertex y € V(G)\{x,z}, G contains no (x, y,z)-path of weight more
than d, then the maximum weight of an (x, y,z’)-path in G’ is exactly d’ =d — w(zz").
Moreover, by the induction hypothesis, G’ has the described structure. Let H; be the
connected component of G' — x — z’ that contains y. (If y =2/, take any connected



330 S. Zhang et al. | Discrete Mathematics 223 (2000) 327-336

component of G' —x —z' as H}.) Thus, H), is complete, V'(H}) C Ng/(x) N Ng:(z") and
G’ is weighted so that
w(xv)=oy, w(z'v)=c, forallveV(H))
and
w(uv) =, for all u,v € V(H)),
where
o+ B(VH) - 1)+ o, =d".
If ve V(H)), then d¢,(v)=d'. Thus
w(zo)=d"(v) — dg,(v) > d — d' =w(zZ").

Since w(zz') > 0, we have that zv € E(G). Moreover, by the choice of zZ/, it is clear
that w(zv) =w(zz") for all ve V(Hy). 1t follows that any vertex in V' (H})U {z} could
have been selected as the vertex z'. This implies that of, = ..

Suppose that there exists another connected component H* of G’ — x — z/. By the
induction hypothesis, then there must be an (x,z’)-path of weight at least d — w(zz')
in G[V(H*)U {x,z'}]. On the other hand, there is a (z, y,z")-path of weight w(zz') +
ByIV(H))| in G[V(H)) U {z,z'}]. Combining these two paths, we get an (x, y,z)-path
of weight at least d + B, |V(H})| > d, which contradicts the assumption. Hence
G—x—z=G[V(H))U{z'}] and

wxz') = d"(Z") —w(zz") = B, | V(H)))|
=>d—w(z') - ﬁ/y | V(H;)|
= d' — B, | V(H))
/ / !/ / / !/
= a + B (VHDI = 1)+ oz — B | V(HY)
= ol
Furthermore, by the assumption that G contains no (x,z)-path of weight more than
d we know that w(xz’') < o. So xz/ € E(G) and w(xz')=o;. Now let H, denote the
connected component of G — x — z that contains y and set o, =w(zz'), o, = and
By =P, Then H, is complete, V'(H,) CN(x) N N(z) and G is weighted so that
w(xv) = oy, w(zv)=o, forallveV(H,)
and
w(uv)=p, forallu,veV(H,),
where

%+ By([V(Hy)| — 1) + o, =d.

Case 2: G’ is not 2-connected.
(1) Since G is 2-connected, G’ must be connected. We shall frequently make use
of the following claim.
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Claim. Suppose B is an end-block of G’ and b is the unique cut-vertex of G’ contained
in B. Let B’ be the subgraph of G induced by V(B)U{z}. Then for any given vertex
y of B', B’ contains a (b, y,z)-path P’ of weight at least d.

Proof. If zb € E(G), then B’ is 2-connected and for all v € V(B')\{b,z}, we have
dg(v)=d"(v) = d.

By the induction hypothesis, for any given vertex y of B/, B’ contains a (b, y,z)-path
P’ of weight at least d.

If zb € E(G), add zb to B’ and set w(zb)=0. Applying the induction hypothesis to
the resulting graph, we know that for any given vertex y of B’, the resulting graph
contains a (b, y,z)-path of weight at least d. If d > 0, then P’ # zb, since w(zb)=0.
If d =0, then we can choose P’ in B’ such that P’ # zb, since all we need is that
w(P') = d. This shows that we always have a (b, y,z)-path P’ in B’ of weight at least d.

Case 2.1: y is contained in a block of G’ with two or more cut-vertices. Choose an
end-block B in G’ with cut-vertex b such that there is an (x, y,b)-path Q in G'—(B—b).
Let B’ be the subgraph of G induced by V(B) U {z}. By the above claim, we have
that there is a (b,z)-path P’ in B’ of weight at least d. Combining these two paths Q
and P’, we get an (x, y,z)-path of weight at least d.

Case 2.2: y is contained in an end-block B of G’ with a cut-vertex b and x € V(B).
Let B’ be the subgraph of G induced by V(B) U {z}. It is easy to see that there
exists an (x,b)-path Q in G’ — (B — b). By the above claim we have that there is a
(b, y,z)-path P’ in B’ of weight at least d. Combining these two paths Q and P’, we
get an (x, y,z)-path of weight at least d.

Case 2.3: y and x are contained in an end-block By of G'. If x is the unique
cut-vertex of Bj, let B} be the subgraph of G induced by V(B;) U {z}. Then from
the above claim we know that there is an (x, y,z)-path P| in B| of weight at least d.
Otherwise, since G’ has at least two distinct end-blocks, we can choose an end-block
B, in G’ other than B;. Let b, be the unique cut-vertex of G’ contained in B, and
B), be the subgraph of G induced by V(B;)U {z}. Then there is a (bp,z)-path P} in
B), of weight at least d by the above claim, and there is also an (x, y,b;)-path Q in
G’ — (B, — by). Combining these two paths Q and P}, we get an (x, y,z)-path of weight
at least d.

(2) From the above proof, we need only consider the case in which y is contained
in an end-block By of G’ with x as its unique cut-vertex. In this case, the result follows
from the induction hypothesis by considering the graph G[V(B;) U {z}].

This completes the proof. [

3. Heavy cycles in weighted graphs

There are many results on the existence of long cycles. The following two theorems
are known.
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Theorem C (Dirac [3]). Let G be a 2-connected graph and d an integer. If d(v) = d
for every vertex v in G, then G contains either a cycle of length at least 2d or a
Hamilton cycle.

Theorem D (Grotschel [6]). Let G be a 2-connected graph and d an integer. If
d(v) = d for every vertex v in G, then for any given vertex y of G, G contains
either a y-cycle of length at least 2d or a Hamilton cycle.

It is clear that Theorem D is a generalization of Theorem C.
Bondy and Fan generalized Theorem C to weighted graphs as follows:

Theorem 3 (Bondy and Fan [1]). Let G be a 2-connected weighted graph and d
a real number. If d¥(v) = d for every vertex v in G, then either G contains a cycle
of weight at least 2d or every optimal cycle is a Hamilton cycle.

The aim of this section is to give a generalization of Theorem D to weighted graphs.

Theorem 4. Let G be a 2-connected weighted graph and d a real number. If d"(v) = d
for every vertex v in G, then for any given vertex y of G, either G contains a y-cycle
of weight at least 2d or every optimal cycle in G is a Hamilton cycle.

This theorem also generalizes Theorem 3.
Before proving the above theorem, we need the following result.

Theorem 5. Let C be an optimal cycle in a weighted graph G. Suppose that there is
an (x, y,z)-path P in G—C such that |Nc(x)| = 1, |[Nc(z)| = 1 and |[Nc(x)UNc(z)| = 2.
Define

X:Nc(x)\Nc(Z), Z:Nc(Z)\Nc(x) and Y =Nc(x) N Ne(z).
If |Y|=1 and either X =0 or Z=10, then there exists a y-cycle C' in G such that

w(C") = @ + min{d{(x),d(z)} + w(P).

Otherwise, there exist | (I = 4) y-cycles Cy,C,,...,C; in G such that

1
Z w(C;) = (I = 2)w(C) + 2dy(x) + 2dy(z) + 4dy(x) + 4d;(z) + Iw(P).
i=1

Proof. If |Y|=1 and either X ={) or Z =), we have two cases. In the case |¥|=1 and
X =0, we can assume that ¥ ={a;} and Z=1{ay,...,a;}. Without loss of generality,
we suppose that the segment C[a,,a;] is of weight at least w(C)/2. So the cycle
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C' =xPza,Clay,a;]ayx is a y-cycle of weight

w(C") = M + w(xa) + w(zaz) + w(P)

> W( ) | min{d%(x), d%(z)} + w(P).
The case |Y|=1 and Z =1 can be discussed by the same argument.

Otherwise, let A=X UY UZ and suppose that 4 ={ay,ay,...,a;}, where g; are in
order around C. For each pair of vertices (a;,a;+1), we shall construct two new cycles
from C by replacing the segment Cl[a;,a;+] with two (a;,a;1)-paths. These two paths
are defined according to four cases:

(1) aj,a;+1 €Y. The two paths are
a;xPza; | and a;zPxa; .
(2) a; €Y and a;;; € X or Z. The two paths are
a;zPxa;,, and a;xa;,, or aixPza;,\ and a;za;. .
If ;1 €Y and a; €X or Z, the paths are defined in the same way.
(3)a;eX and a1 €Z or a;€Z and a;;) € X. The two paths are two copies of
aixPza;y or a;zPxa;,,.
(4) aj,a;. €X or a;,a;11 € Z. The two paths are two copies of
aixai;; Or  @;za;.q.

In each case, we have defined two paths to replace the segment Cla;,a; 1] and hence
formed two cycles. Since there are k pairs of vertices (a;,a;11) (i=1,...,k), we obtain
2k cycles. In these cycles, every edge of C is traversed 2k — 2 times; every edge from
x or z to Y is traversed twice, every edge from x to X is traversed four times and,
similarly, every edge from z to Z is traversed four times. Now suppose that the path
P is traversed / times (we determine / later). Then the weight sum of these 2k cycles
is
2(k — Dw(C) + 2d¥(x) + 2dy(z) + 4d% (x) + 4d(z) + Iw(P).

Without loss of generality, we can denote the / cycles which pass through the path P
(also pass through the vertex y) by Ci,C,,...,C;. Since C is an optimal cycle, those
2k — I cycles other than Cj,C,,...,C; have weight at most w(C). Hence, we get the
following inequality:
1

D w(C) = (1= 2)w(C) + 2dY(x) + 2dy(2) + 4dy(x) + 4dy(z) + Iw(P).

i=1
Now we determine /. If |Y|>2, then it is not difficult to see that [ >2|Y|; if
|Y|=1, X # 0, and Z # 0, then [ >4; if |Y|=0, then noting that |[Nc(x)| > 1 and
[Nc(z)| = 1, we have that X # () and Z # (), and [ > 4. Therefore for all the cases we
have that / > 4. [J
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Proof of Theorem 4. Suppose that there exists an optimal cycle C in G which is not
a Hamilton cycle. From Theorem 3 we have that w(C) = 2d. If y is contained in
the cycle C, then we are done. Otherwise, let H be the component of G — C which
contains y. We consider two cases:

Case 1: H is nonseparable.

Case 1.1: V(H)={y}. Suppose that Nc(y)={ai,as,...,a;}(k = 2), where q; are
in order around C. For each pair of vertices (a;,a;.1), we shall construct a y-cycle C;
from C by replacing the segments C[a;, a;11] with the path a;ya;;;. Since there are k
pairs of vertices (a;,a;11)(i=1,2,...,k), we obtain k cycles, and,

k
> w(C)

i=1

(k= Lw(C)+2de(y)

A\

2k — 1)d +2d
= 2kd.

Then, among these k cycles there must be a y-cycle C’' with weight at least 2d.
Case 1.2: |V(H)| = 2. Choose distinct vertices x and z in H such that

(1) |Nc(x)| = 1, [Nc(z)] = 1, and
(2) di(x) = d(z) > d(v) for all ve V(H)\{x,z).

Case 1.2.1: |Nc(x) U Nc(z)| = 2. By the choice of x and z, we have
dy(0)=d"(v) — d¢(v) = max{0,d — d{(z)} for all ve V(H)\{x}.

If |[V(H)|=2, it is easy to find an (x,y,z)-path P in H of weight at least
max{0,d—d}(z)}. Otherwise, applying Theorem 2 to H, we can choose an (x, y,z)-path
P in H such that

w(P) = max{0,d — d}(z)}.

Now denote Nc(x)\Nc(z), Ne(x) N Ne(z) and Ne(z)\Nc(x) by X, Y and Z, respec-
tively. If |[Y|=1 and X =0 or Z=10, then by Theorem 5 we know that there is a
y-cycle C’ in G such that

w(C') = & + min{d%(x),d{(z)} + w(P) = 2d

Otherwise, from Theorem 5 we know that G contains /(/ = 4) y-cycles Cy,Cs,...,C;
such that
1
Z w(C;) = (I —2)w(C) + 2dy(x) +2dy(z) + 4d¥(x) + 4d;(z) + Iw(P)
i=1
= (I =2WwW(C)+2di(x)+2d¢E(z) + 2dy(x) + 2d5(z) + Iw(P)
= (I —=2)W(C) 4+ 4d{(z) + Imax{0,d — d{(z)}
> 2ld.

Then, among these / y-cycles in G there must be one with weight at least 2d.
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Case 1.2.2: Nc(x)=Nc(z)={a}. Since G is 2-connected, there exists a vertex
beV(C)\{a} which is adjacent to some vertex u € V(H)\{x,z}. By the choice of
x and z, we have

n)=d"(v) —dp(v) =d —di(x) forallve V(H).
Applying Theorem 2 to H, we have an (x, y,u)-path Q in H of weight
w(Q) = d —de(x) =d — w(xa),

then the path axQub is of weight at least d. It is easy to see that we can form a
y-cycle of weight at least 2d.

Case 2: H is separable.

Case 2.1: y is contained in a block of H with two or more cut-vertices. Let B; and
B; be two distinct end-blocks of H, and let b; be the unique cut-vertex of H contained
in B; (i=1,2). For i=1,2, we choose x; € V(B;)\{b;} such that
(1) [Nc(x;)| = 1, and
(2) d¥(x;) = di(v) for all ve V(B)\{b;}.

It follows that

5 (V) =d"(v) —d¢g(v) = max{0,d — d¢(x;)} for all ve V(B)\{b:}, (i=1,2).
Applying Theorem 2 to B; we obtain an (x;,b;)-path P; in B; of weight
w(P;) = max{0,d — d(x;)}.

If [Nc(x1)UNc(x;)| = 2, then let P be an (xj, y,x;)-path in H of maximum weight.
Then

w(P) = w(Py) + w(P2) = max{0,d — min{d¢(x;), d¢(x2)}}

Denote Nc(X1 )\Nc(xZ),Nc()Q)\Nc(xl) and Nc(xl) ﬂNc(XQ) by XI,XZ and Y, re-
spectively. If |[Y|=1 and X; =0 or X, =, then by Theorem 5 we know that there is
a y-cycle C’ in G such that

w(C') = %C) + min{d{(x1),d(x2)} +w(P) = 2d.

Otherwise, from Theorem 5 we know that G contains /(/ > 4) y-cycles Cy,Cs,...,C;
such that

/
D w(Ci) = (1= 2)w(C) + 2d¥(x1) + 2d}(x)
i=1
+4dy (x1) + 4dY, (x2) + Iw(P)
> 2(I — 2)d + 4min{d%(x,),d(x2)}
+Imax{0,d — min{d(x1),dp(x2)}}
> 21d.

So, among these / y-cycles there must be one with weight at least 2d.
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If Ne(x1)=Nc(x2)={a}, let O be a (b1, y,by)-path in H. The weight of ax;P;b; is
at least d, then the cycle ax,P,b,0b,Prx;a has weight at least 2d.

Case 2.2: y is contained in an end-block By of H. Choose another end-block B,
of H and let b; be the unique cut-vertex of H contained in B; (i=1,2). For i=1,2,
choose x; € V(B;)\{b;} such that

(1) |Nc(x;)| = 1, and
(2) d¥(x;) = d¥(v) for all ve V(B)\{b:}.

Applying Theorem 2 to B; and B,, we obtain an (xj,y,b;)-path P; in B
of weight at least max{0,d — d}’(x;)}, and an (x,b,)-path P, in B, of weight at
least max{0,d — d{(x»)}. It is also easy to know that there is a (by,b,)-path O in
H — (B; — b)) — (By — by). So the path P=P;0P, is an (xy, y,x;)-path with weight.

w(P) = w(Py) + w(Py) = max{0,d — min{d{(x;),d¢(x2)}}.

If |Nc(x1) N Ne(xp)| = 2, using the similar argument in Case 2.1, we can get a
y-cycle of weight at least 2d.

If Nc(x1)=Nc(xp)={a}, there exists a vertex b€ V(C)\{a} which is adjacent to
some vertex u € V(H)\{x1,x2}.

If ueV(By) and u= by, the path bbPixja is of weight at least d; If u # by, we
can choose a (u, y,by)-path Q, then the path P =>buQb,P>x,a is of weight at least d.
So in both cases we can form a y-cycle of weight at least 2d.

If u¢ V(B,), we can choose a (bj,u)-path Q in H — (B; — by), and therefore the
path P =ax,P1b;Qub is of weight at least d. It is easy to form a y-cycle with weight
at least 2d.

The proof is now complete. [
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