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Abstract

A weighted graph is a graph in which each edge is assigned a non-negative number, called the
weight. The weight of a path (cycle) is the sum of the weights of its edges. The weighted degree
of a vertex is the sum of the weights of the edges incident with the vertex. A usual (unweighted)
graph can be considered as a weighted graph with constant weight 1. In this paper, it is proved
that for a 2-connected weighted graph, if every vertex has weighted degree at least d, then for
any given vertex y, either y is contained in a cycle with weight at least 2d or every heaviest
cycle is a Hamilton cycle. This result is a common generalization of Gr�otschel’s theorem and
Bondy–Fan’s theorem assuring the existence of a cycle with weight at least 2d on the same
condition. Also, as a tool for proving this result, we show a result concerning heavy paths
joining two speci�c vertices and passing through one given vertex. c© 2000 Elsevier Science
B.V. All rights reserved.
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1. Terminology and notation

We use Bondy and Murty [2] for terminology and notation not de�ned here and
consider �nite simple graphs only.
Let G=(V; E) be a simple graph. G is called a weighted graph if each edge e

is assigned a non-negative number w(e), called the weight of e. For any subgraph
H of G; V (H) and E(H) denote the sets of vertices and edges of H , respectively.
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The weight of H is de�ned by

w(H)=
∑

e∈ E(H)
w(e):

A cycle is called optimal if it is a cycle with maximum weight among all cycles of
G. For each vertex v∈V; NH (v) denotes the set, and dH (v) the number, of vertices in
H that are adjacent to v. We de�ne the weighted degree of v in H by

dwH (v)=
∑

h∈NH (v)
w(vh):

When no confusion occurs, we will denote NG(v); dG(v) and dwG(v) by N (v); d(v) and
dw(v), respectively. An (x; z)-path is a path connecting the two vertices x and z. For
a given vertex y of G, an (x; z)-path is called an (x; y; z)-path if it passes through the
vertex y. A cycle is called a y-cycle if it passes through the vertex y. If x and z are
two vertices on a path P, P[x; z] denotes the segment of P from x to z. Let C be a
cycle in G with a �xed orientation. For any two vertices x and z on C, by C[x; z] we
denote the segment of C from x to z determined by this orientation. If H is a subgraph
of G, by G − H we denote the induced subgraph G[V (G)\V (H)].
An unweighted graph can be regarded as a weighted graph in which each edge e is

assigned weight w(e)= 1. Thus, in an unweighted graph, dw(v)=d(v) for every vertex
v, and an optimal cycle is simply a longest cycle.

2. Heavy paths in weighted graphs

The following two theorems are on the existence of long paths. It is easy to see that
Theorem B generalizes Theorem A.

Theorem A (Erdős and Gallai [5]). Let G be a 2-connected graph and d an integer.
Let x and z be two distinct vertices of G. If d(v)¿d for all v∈V (G)\{x; z}; then
G contains an (x; z)-path of length at least d.

Theorem B (Enomoto [4]). Let G be a 2-connected graph and d an integer. Let x
and z be two distinct vertices of G. Suppose that d(v)¿d for all v∈V (G)\{x; z}.

(1) Then for any given vertex y of G; G contains an (x; y; z)-path of length at
least d.

(2) If for some vertex y∈V (G)\{x; z}; G contains no (x; y; z)-path of length more
than d; then the connected component Hy of G−x−z that contains y is isomorphic
to Kd−1 and V (Hy)⊆N (x)∩N (z). If y∈{x; z}; then the assertion holds for any
connected component of G − x − z.
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Bondy and Fan generalized Theorem A to weighted graphs as follows:

Theorem 1 (Bondy and Fan [1]). Let G be a 2-connected weighted graph and d
a real number. Let x and z be two distinct vertices of G. If dw(v)¿d for all
v∈V (G)\{x; z}; then G contains an (x; z)-path of weight at least d.

In this section, we prove the following analogue of Theorem B for weighted graphs.
This result also generalizes Theorem 1.

Theorem 2. Let G be a 2-connected weighted graph and d a real number. Let x and
z be two distinct vertices of G. Suppose that dw(v)¿d for all v∈V (G)\{x; z}.
(1) Then for any given vertex y of G; G contains an (x; y; z)-path of weight at

least d.
(2) If w(e)¿ 0 for all e∈E(G) and for some vertex y∈V (G)\{x; z}; G contains

no (x; y; z)-path of weight more than d; then (a) the connected component Hy of
G − x− z that contains y is complete; (b) V (Hy)⊆N (x) ∩ N (z); (c) w(xv)= �x;
w(zv)= �z for all v∈V (Hy) and w(uv)= �y for all u; v∈V (Hy) so that �x +
�y(|V (Hy)|−1)+�z =d. If y∈{x; z}; then the assertion holds for any connected
component of G − x − z.

Proof. If y∈{x; z}, then the result in (1) follows from Theorem 1; The assertions in
(2) can be proved by choosing any connected component of G − x − z as Hy in the
following proof. So we may assume that y 6∈ {x; z}.
Let |V (G)|= n. We use induction on n. If n=3, let y be the third vertex other than

x and z, then the path xyz is an (x; y; z)-path of weight dw(y)¿d.
Suppose now n¿ 4 and the theorem is true for all graphs on k vertices with

36 k6 n − 1. Let G′=G − z be the graph obtained by deleting z from G. We
consider two cases:
Case 1: G′ is 2-connected.
(1) Since G is 2-connected, we can choose z′ ∈N (z)\{x} such that
w(zz′)=max{w(zv): v∈N (z)\{x}}:

Then for all v∈V (G′)\{x},
dwG′(v)=dw(v)− w(zv)¿d− w(zz′):

By the induction hypothesis, for any given vertex y∈V (G′)\{x}; G′ contains an
(x; y; z′)-path Q of weight at least d−w(zz′). Then the path P=Qz′z is an (x; y; z)-path
of weight at least d.
(2) If for some vertex y∈V (G)\{x; z}; G contains no (x; y; z)-path of weight more

than d, then the maximum weight of an (x; y; z′)-path in G′ is exactly d′=d−w(zz′).
Moreover, by the induction hypothesis, G′ has the described structure. Let H ′

y be the
connected component of G′ − x − z′ that contains y. (If y= z′, take any connected
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component of G′− x− z′ as H ′
y.) Thus, H

′
y is complete, V (H

′
y)⊆NG′(x)∩NG′(z′) and

G′ is weighted so that

w(xv)= �′x; w(z′v)= �′z′ for all v∈V (H ′
y)

and

w(uv)= �′y for all u; v∈V (H ′
y);

where

�′x + �
′
y(|V (H ′

y)| − 1) + �′z′ =d′:
If v∈V (H ′

y), then d
w
G′(v)=d′. Thus

w(zv)=dw(v)− dwG′(v)¿d− d′=w(zz′):
Since w(zz′)¿ 0, we have that zv∈E(G). Moreover, by the choice of z′, it is clear

that w(zv)=w(zz′) for all v∈V (H ′
y). It follows that any vertex in V (H

′
y)∪ {z} could

have been selected as the vertex z′. This implies that �′z′ = �
′
y.

Suppose that there exists another connected component H∗ of G′ − x − z′. By the
induction hypothesis, then there must be an (x; z′)-path of weight at least d − w(zz′)
in G[V (H∗) ∪ {x; z′}]. On the other hand, there is a (z; y; z′)-path of weight w(zz′) +
�′y|V (H ′

y)| in G[V (H ′
y) ∪ {z; z′}]. Combining these two paths, we get an (x; y; z)-path

of weight at least d + �′y |V (H ′
y)|¿d, which contradicts the assumption. Hence

G − x − z=G[V (H ′
y) ∪ {z′}] and

w(xz′) = dw(z′)− w(zz′)− �′y |V (H ′
y)|

¿ d− w(zz′)− �′y |V (H ′
y)|

= d′ − �′y |V (H ′
y)|

= �′x + �
′
y(|V (H ′

y)| − 1) + �′z′ − �′y |V (H ′
y)|

= �′x:

Furthermore, by the assumption that G contains no (x; z)-path of weight more than
d we know that w(xz′)6 �′x. So xz

′ ∈E(G) and w(xz′)= �′x. Now let Hy denote the
connected component of G − x − z that contains y and set �z =w(zz′), �x = �′x and
�y = �′y. Then Hy is complete, V (Hy)⊆N (x) ∩ N (z) and G is weighted so that

w(xv)= �x; w(zv)= �z for all v∈V (Hy)
and

w(uv)= �y for all u; v∈V (Hy);
where

�x + �y(|V (Hy)| − 1) + �z =d:
Case 2: G′ is not 2-connected.
(1) Since G is 2-connected, G′ must be connected. We shall frequently make use

of the following claim.
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Claim. Suppose B is an end-block of G′ and b is the unique cut-vertex of G′ contained
in B. Let B′ be the subgraph of G induced by V (B)∪{z}. Then for any given vertex
y of B′, B′ contains a (b; y; z)-path P′ of weight at least d.

Proof. If zb∈E(G), then B′ is 2-connected and for all v∈V (B′)\{b; z}, we have
dwB′(v)=d

w(v)¿d:

By the induction hypothesis, for any given vertex y of B′, B′ contains a (b; y; z)-path
P′ of weight at least d.
If zb 6∈E(G), add zb to B′ and set w(zb)= 0. Applying the induction hypothesis to

the resulting graph, we know that for any given vertex y of B′, the resulting graph
contains a (b; y; z)-path of weight at least d. If d¿ 0, then P′ 6= zb, since w(zb)= 0.
If d=0, then we can choose P′ in B′ such that P′ 6= zb, since all we need is that
w(P′)¿d. This shows that we always have a (b; y; z)-path P′ in B′ of weight at least d.
Case 2.1: y is contained in a block of G′ with two or more cut-vertices. Choose an

end-block B in G′ with cut-vertex b such that there is an (x; y; b)-path Q in G′−(B−b).
Let B′ be the subgraph of G induced by V (B) ∪ {z}. By the above claim, we have
that there is a (b; z)-path P′ in B′ of weight at least d. Combining these two paths Q
and P′, we get an (x; y; z)-path of weight at least d.
Case 2.2: y is contained in an end-block B of G′ with a cut-vertex b and x 6∈V (B).

Let B′ be the subgraph of G induced by V (B) ∪ {z}. It is easy to see that there
exists an (x; b)-path Q in G′ − (B − b). By the above claim we have that there is a
(b; y; z)-path P′ in B′ of weight at least d. Combining these two paths Q and P′, we
get an (x; y; z)-path of weight at least d.
Case 2.3: y and x are contained in an end-block B1 of G′. If x is the unique

cut-vertex of B1, let B′1 be the subgraph of G induced by V (B1) ∪ {z}. Then from
the above claim we know that there is an (x; y; z)-path P′

1 in B
′
1 of weight at least d.

Otherwise, since G′ has at least two distinct end-blocks, we can choose an end-block
B2 in G′ other than B1. Let b2 be the unique cut-vertex of G′ contained in B2 and
B′2 be the subgraph of G induced by V (B2) ∪ {z}. Then there is a (b2; z)-path P′

2 in
B′2 of weight at least d by the above claim, and there is also an (x; y; b2)-path Q in
G′−(B2−b2). Combining these two paths Q and P′

2, we get an (x; y; z)-path of weight
at least d.
(2) From the above proof, we need only consider the case in which y is contained

in an end-block B1 of G′ with x as its unique cut-vertex. In this case, the result follows
from the induction hypothesis by considering the graph G[V (B1) ∪ {z}].
This completes the proof.

3. Heavy cycles in weighted graphs

There are many results on the existence of long cycles. The following two theorems
are known.
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Theorem C (Dirac [3]). Let G be a 2-connected graph and d an integer. If d(v)¿d
for every vertex v in G; then G contains either a cycle of length at least 2d or a
Hamilton cycle.

Theorem D (Gr�otschel [6]). Let G be a 2-connected graph and d an integer. If
d(v)¿d for every vertex v in G; then for any given vertex y of G; G contains
either a y-cycle of length at least 2d or a Hamilton cycle.

It is clear that Theorem D is a generalization of Theorem C.
Bondy and Fan generalized Theorem C to weighted graphs as follows:

Theorem 3 (Bondy and Fan [1]). Let G be a 2-connected weighted graph and d
a real number. If dw(v)¿d for every vertex v in G; then either G contains a cycle
of weight at least 2d or every optimal cycle is a Hamilton cycle.

The aim of this section is to give a generalization of Theorem D to weighted graphs.

Theorem 4. Let G be a 2-connected weighted graph and d a real number. If dw(v)¿d
for every vertex v in G; then for any given vertex y of G; either G contains a y-cycle
of weight at least 2d or every optimal cycle in G is a Hamilton cycle.

This theorem also generalizes Theorem 3.
Before proving the above theorem, we need the following result.

Theorem 5. Let C be an optimal cycle in a weighted graph G. Suppose that there is
an (x; y; z)-path P in G−C such that |NC(x)|¿ 1; |NC(z)|¿ 1 and |NC(x)∪NC(z)|¿ 2.
De�ne

X =NC(x)\NC(z); Z =NC(z)\NC(x) and Y =NC(x) ∩ NC(z):

If |Y |=1 and either X = ∅ or Z = ∅; then there exists a y-cycle C′ in G such that

w(C′)¿
w(C)
2

+ min{dwC(x); dwC(z)}+ w(P):

Otherwise; there exist l (l¿ 4) y-cycles C1; C2; : : : ; Cl in G such that

l∑

i= 1

w(Ci)¿ (l− 2)w(C) + 2dwY (x) + 2dwY (z) + 4dwX (x) + 4dwZ (z) + lw(P):

Proof. If |Y |=1 and either X = ∅ or Z = ∅, we have two cases. In the case |Y |=1 and
X = ∅, we can assume that Y = {a1} and Z = {a2; : : : ; ak}. Without loss of generality,
we suppose that the segment C[a2; a1] is of weight at least w(C)=2. So the cycle
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C′= xPza2C[a2; a1]a1x is a y-cycle of weight

w(C′) ¿
w(C)
2

+ w(xa1) + w(za2) + w(P)

¿
w(C)
2

+ min{dwC(x); dwC(z)}+ w(P):
The case |Y |=1 and Z = ∅ can be discussed by the same argument.
Otherwise, let A=X ∪ Y ∪ Z and suppose that A= {a1; a2; : : : ; ak}, where ai are in

order around C. For each pair of vertices (ai; ai+1), we shall construct two new cycles
from C by replacing the segment C[ai; ai+1] with two (ai; ai+1)-paths. These two paths
are de�ned according to four cases:

(1) ai; ai+1 ∈Y . The two paths are
aixPzai+1 and aizPxai+1:

(2) ai ∈Y and ai+1 ∈X or Z . The two paths are

aizPxai+1 and aixai+1; or aixPzai+1 and aizai+1:

If ai+1 ∈Y and ai ∈X or Z , the paths are de�ned in the same way.

(3) ai ∈X and ai+1 ∈Z or ai ∈Z and ai+1 ∈X . The two paths are two copies of
aixPzai+1 or aizPxai+1:

(4) ai; ai+1 ∈X or ai; ai+1 ∈Z . The two paths are two copies of
aixai+1 or aizai+1:

In each case, we have de�ned two paths to replace the segment C[ai; ai+1] and hence
formed two cycles. Since there are k pairs of vertices (ai; ai+1) (i=1; : : : ; k), we obtain
2k cycles. In these cycles, every edge of C is traversed 2k− 2 times; every edge from
x or z to Y is traversed twice, every edge from x to X is traversed four times and,
similarly, every edge from z to Z is traversed four times. Now suppose that the path
P is traversed l times (we determine l later). Then the weight sum of these 2k cycles
is

2(k − 1)w(C) + 2dwY (x) + 2dwY (z) + 4dwX (x) + 4dwZ (z) + lw(P):
Without loss of generality, we can denote the l cycles which pass through the path P
(also pass through the vertex y) by C1; C2; : : : ; Cl. Since C is an optimal cycle, those
2k − l cycles other than C1; C2; : : : ; Cl have weight at most w(C). Hence, we get the
following inequality:

l∑

i= 1

w(Ci)¿ (l− 2)w(C) + 2dwY (x) + 2dwY (z) + 4dwX (x) + 4dwZ (z) + lw(P):

Now we determine l. If |Y |¿ 2, then it is not di�cult to see that l¿ 2|Y |; if
|Y |=1; X 6= ∅, and Z 6= ∅, then l¿ 4; if |Y |=0, then noting that |NC(x)|¿ 1 and
|NC(z)|¿ 1, we have that X 6= ∅ and Z 6= ∅, and l¿ 4. Therefore for all the cases we
have that l¿ 4.
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Proof of Theorem 4. Suppose that there exists an optimal cycle C in G which is not
a Hamilton cycle. From Theorem 3 we have that w(C)¿ 2d. If y is contained in
the cycle C, then we are done. Otherwise, let H be the component of G − C which
contains y. We consider two cases:
Case 1: H is nonseparable.
Case 1.1: V (H)= {y}. Suppose that NC(y)= {a1; a2; : : : ; ak}(k¿ 2), where ai are

in order around C. For each pair of vertices (ai; ai+1), we shall construct a y-cycle Ci
from C by replacing the segments C[ai; ai+1] with the path aiyai+1. Since there are k
pairs of vertices (ai; ai+1)(i=1; 2; : : : ; k), we obtain k cycles, and,

k∑

i= 1

w(Ci) = (k − 1)w(C) + 2dwC(y)

¿ 2(k − 1)d+ 2d
= 2kd:

Then, among these k cycles there must be a y-cycle C′ with weight at least 2d.
Case 1.2: |V (H)|¿ 2: Choose distinct vertices x and z in H such that

(1) |NC(x)|¿ 1; |NC(z)|¿ 1; and
(2) dwC(x)¿dwC(z)¿dwC(v) for all v∈V (H)\{x; z}.
Case 1.2.1: |NC(x) ∪ NC(z)|¿ 2: By the choice of x and z, we have

dwH (v)=d
w(v)− dwC(v)¿max{0; d− dwC(z)} for all v∈V (H)\{x}:

If |V (H)|=2, it is easy to �nd an (x; y; z)-path P in H of weight at least
max{0; d−dwC(z)}. Otherwise, applying Theorem 2 to H , we can choose an (x; y; z)-path
P in H such that

w(P)¿max{0; d− dwC(z)}:
Now denote NC(x)\NC(z); NC(x) ∩ NC(z) and NC(z)\NC(x) by X; Y and Z , respec-

tively. If |Y |=1 and X = ∅ or Z = ∅, then by Theorem 5 we know that there is a
y-cycle C′ in G such that

w(C′)¿
w(C)
2

+ min{dwC(x); dwC(z)}+ w(P)¿ 2d:

Otherwise, from Theorem 5 we know that G contains l(l¿ 4) y-cycles C1; C2; : : : ; Cl
such that

l∑

i= 1

w(Ci) ¿ (l− 2)w(C) + 2dwY (x) + 2dwY (z) + 4dwX (x) + 4dwZ (z) + lw(P)

= (l− 2)w(C) + 2dwC(x) + 2dwC(z) + 2dwX (x) + 2dwZ (z) + lw(P)
= (l− 2)w(C) + 4dwC(z) + lmax{0; d− dwC(z)}
¿ 2ld:

Then, among these l y-cycles in G there must be one with weight at least 2d.
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Case 1.2.2: NC(x)=NC(z)= {a}. Since G is 2-connected, there exists a vertex
b∈V (C)\{a} which is adjacent to some vertex u∈V (H)\{x; z}. By the choice of
x and z, we have

dwH (v)=d
w(v)− dwC(v)¿d− dwC(x) for all v∈V (H):

Applying Theorem 2 to H , we have an (x; y; u)-path Q in H of weight

w(Q)¿d− dwC(x)=d− w(xa);
then the path axQub is of weight at least d. It is easy to see that we can form a
y-cycle of weight at least 2d.
Case 2: H is separable.
Case 2.1: y is contained in a block of H with two or more cut-vertices. Let B1 and

B2 be two distinct end-blocks of H , and let bi be the unique cut-vertex of H contained
in Bi (i=1; 2). For i=1; 2; we choose xi ∈V (Bi)\{bi} such that
(1) |NC(xi)|¿ 1; and
(2) dwC(xi)¿dwC(v) for all v∈V (Bi)\{bi}.
It follows that

dwBi(v)=d
w(v)− dwC(v)¿max{0; d− dwC(xi)} for all v∈V (Bi)\{bi}; (i=1; 2):

Applying Theorem 2 to Bi we obtain an (xi; bi)-path Pi in Bi of weight

w(Pi)¿max{0; d− dwC(xi)}:
If |NC(x1)∪NC(x2)|¿ 2, then let P be an (x1; y; x2)-path in H of maximum weight.

Then

w(P)¿w(P1) + w(P2)¿max{0; d−min{dwC(x1); dwC(x2)}}:
Denote NC(x1)\NC(x2); NC(x2)\NC(x1) and NC(x1) ∩ NC(x2) by X1; X2 and Y , re-

spectively. If |Y |=1 and X1 = ∅ or X2 = ∅, then by Theorem 5 we know that there is
a y-cycle C′ in G such that

w(C′)¿
w(C)
2

+ min{dwC(x1); dwC(x2)}+ w(P)¿ 2d:

Otherwise, from Theorem 5 we know that G contains l(l¿ 4) y-cycles C1; C2; : : : ; Cl
such that

l∑

i= 1

w(Ci) ¿ (l− 2)w(C) + 2dwY (x1) + 2dwY (x2)

+4dwX1 (x1) + 4d
w
X2 (x2) + lw(P)

¿ 2(l− 2)d+ 4min{dwC(x1); dwC(x2)}
+lmax{0; d−min{dwC(x1); dwC(x2)}}

¿ 2ld:

So, among these l y-cycles there must be one with weight at least 2d.
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If NC(x1)=NC(x2)= {a}, let Q be a (b1; y; b2)-path in H . The weight of axiPibi is
at least d, then the cycle ax1P1b1Qb2P2x2a has weight at least 2d.
Case 2.2: y is contained in an end-block B1 of H . Choose another end-block B2

of H and let bi be the unique cut-vertex of H contained in Bi (i=1; 2). For i=1; 2;
choose xi ∈V (Bi)\{bi} such that
(1) |NC(xi)|¿ 1, and
(2) dwC(xi)¿dwC(v) for all v∈V (Bi)\{bi}.
Applying Theorem 2 to B1 and B2, we obtain an (x1; y; b1)-path P1 in B1

of weight at least max{0; d − dwC(x1)}, and an (x2; b2)-path P2 in B2 of weight at
least max{0; d − dwC(x2)}. It is also easy to know that there is a (b1; b2)-path Q in
H − (B1 − b1)− (B2 − b2). So the path P=P1QP2 is an (x1; y; x2)-path with weight.

w(P)¿w(P1) + w(P2)¿max{0; d−min{dwC(x1); dwC(x2)}}:
If |NC(x1) ∩ NC(x2)|¿ 2, using the similar argument in Case 2.1, we can get a

y-cycle of weight at least 2d.
If NC(x1)=NC(x2)= {a}, there exists a vertex b∈V (C)\{a} which is adjacent to

some vertex u∈V (H)\{x1; x2}.
If u∈V (B1) and u= b1, the path bb1P1x1a is of weight at least d; If u 6= b1, we

can choose a (u; y; b2)-path Q, then the path P= buQb2P2x2a is of weight at least d.
So in both cases we can form a y-cycle of weight at least 2d.
If u 6∈V (B1), we can choose a (b1; u)-path Q in H − (B1 − b1), and therefore the

path P= ax1P1b1Qub is of weight at least d. It is easy to form a y-cycle with weight
at least 2d.
The proof is now complete.
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