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Abstract 

The first part of the paper concerns the existence of strongly stabilizing solutions to the standard algebraic Riccati 
equation for a class of infinite-dimensional systems of the form Z(A,B,S V2B*,D), where A is dissipative and all the 
other operators are bounded. These systems are not exponentially stabilizable and so the standard theory is not applicable. 
The second part uses the Riccati equation results to give formulas for normalized coprime factorizations over H ~  for 
positive real transfer functions of the form D + S-I/2B*(sl - A)-nB. 
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Infinite-dimensional systems; Colocated systems 

1. Introduction 

Most o f  the theory for Riccati equations concentrates on the existence of  solutions which are exponentially 
stabilizing. Here we consider systems for which this theory is inapplicable, because they are not exponen- 
tially stabilizable by a bounded feedback. Specifically, we consider systems S(A,B ,S-1 /2B*,B ,D) ,  where A is 
dissipative on a Hilbert space Z, B E ~ ( U , Z ) ,  where U is a Hilbert space and S, D C A°(U) with S = S* 
is coercive. The case S = I ,  D = 0 has been considered in [2, 10, 11]. I f  S = I, these are usually termed 
"colocated" systems and there exists a considerable literature on such systems, see [3]. 

The colocated configuration is often preferred in designing controllers for large-scale flexible systems, 
see [8], and there is considerable interest in their properties, especially robustness properties. In this 
direction, we deduce formulas for normalized coprime factorizations of  the transfer function G(s) = D + 

S J /2B*(sI -  A)-nB,  under the extra assumption that G(s) is positive-real. Since positive-real systems have 
good robustness properties (see [5]), this is not so surprising. The formulas for the normalized coprime fac- 
torizations are not surprising either; they have the same form as for the matrix case, see [12]. The surprising 
feature is that we can only do this under the extra assumption that ( I  + D)  1S 1/2 is strictly positive. In 
order to establish the formulas for the normalized coprime factorizations we need to establish some results 
on Riccati equations. We give conditions for the existence o f  unique, strongly stabilizing solutions o f  the 
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following algebraic Riccati equation: 

(AQ)*Qz + QAQz + QB(RD)-IB*Qz + B S  I /2SDS-1/2B*z  = 0 (1) 

for z E D(A), where AQ = A - B(RD)-ID*S-I/ZB * - B(RD) IB*Q, RD = R + D*D, SD = I + DR-1D * and 
R E 5a(U)  is a coercive operator. 

By strongly stabilizing we mean that the semigroup TQ(t) generated by AQ has the property that TQ(t)z ~ 0 
as t ---+ oc for all z E Z. Similar results were given for the case D = 0 in [2], but he needs to assume that 
A - B B * Q  was dissipative; it is not at all clear when this is satisfied. The basic assumption we need is that 
the output operator has the form S-1/2B*; this is how we show that the system is optimizable and so (1) has 
at least one seif-adjoint solution. Our motivation for considering the general form of  (1) with the feedthrough 
terms D is that we need this form to obtain the formulas for the normalized coprime factorization o f  G(s). 
Doubly coprime factorizations may be used in parameterizing all controllers that stabilize the system in the 
input-output sense (see [14]), and normalized ones yield formulas for controllers that do this robustly (see 
[7]). 

2. Riccati equations 

We begin by considering the existence of  strongly stabilizing, self-adjoint solutions Q E Y ( Z )  to the 
algebraic Riccati equation. 

A*Qz + QAz - QBR-IB*Qz + BS-IB*z  = 0, (2) 

for z E D(A), under the first six of  the following assumptions: 
A1. A is the infinitesimal generator of  a strongly continuous contraction semigroup T(t) on the separable 

Hilbert space Z; 
A2. 
A3. 
A4. 
A5. 
A6. 
A7. 

First 
proofs. 

U is a separable Hilbert space and B 6 5¢(U,Z);  
S = S *  6 ~ ( U )  and is coercive, i.e., (Su, u} >~c]lull 2 for some ~ > 0; 
R -  R* 6 Y ( U )  and is coercive; 
S ( A , - , B * )  is approximately observable; 
A has compact resolvent; 
S(A, B , - )  is approximately controllable. 

we recall several well-known results from the literature, but for completeness we also supply short 

Lemma 1. Suppose that T(t) is a weakly stable Co-semigroup on the Hilbert space Z, i.e, (z, T(t)y} ---+ 0 as 
t --+ ~xD for  all z, y E Z. I f  its infinitesimal generator A has compact resoh:ent, then T(t) is strongly stable, 
i.e., T(t)z --~ 0 as t --~ ~ Jbr all z E Z. 

Proof. (a) We show that T(t) is uniformly bounded in norm for t >~ 0. Since T(t) is weakly stable, we have 
that ]lT(n)zl] <<. Mi uniformly for n = 1,2 . . . .  and applying the uniform boundedness theorem twice, we obtain 
]]T(n)]l ~<M for all n = 1,2 . . . .  Any t > 0 may be written as t = n + 6  for some 0~<6 < 1 and so 

IIT(t)H = IIT(n + 6)11 -< IIT(n)IIIIT(6)II <~MMI max(1,e 6'~) = M2 < 2 ,  

where tlZ(t)ll -< Mle '°'. 
(b) There exists a 2 E R such that ( 2 1 - A )  -1 is compact. Since T(t) is weakly convergent to 0 as n --~ v~, 

we must have ( 2 1 - A ) - I T ( n r ) y  --~ 0 as r ~ ~ for a subsequence nr. The uniform boundedness o f  T(t) 
shows that in fact (21 - A ) - l T ( t ) y  ~ 0 as t --+ exp. Suppose now that x E D(A), i.e., there exists y E Z such 
that x = (21 - A ) - l y .  Then 

T ( t ) x = T ( t ) ( 2 I - A ) - l y = ( 2 1 - A ) - ~ T ( t ) y - - , O  as t - - ,  oc. 
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Finally, since D(A)  is dense in Z, for z c Z and a given c > 0, there exists an x E D(A)  : ] lz-xl] < ~. Thus, 

[ I v ( t )z l l  ~ ] l r ( t ) z -  T(t)xll + I l r ( t ) x l l  ~< I IV( t ) l l l l z  - xll + IIT(t)xql 

~< a42c + I IT(t)xl l  (by part (a))  

and I I r ( t )x l l  --~ o as t -~ ~ proves the result. [ ]  

Lemma 2. Suppose that assumptions AI and A2 hold. The semigroup TB(t) generated by A - BB* is a 
contraction semigroup and for  x ¢ Z there hoM: 

f0  ~ ' Ilxll 2 , (3) ]lB*TB(t)xll2 dt <~ ~ 

f ~ I ]]xll 2 . (4) lIB*Z~(t)xll2 dt <~ ~ 

Proof. (a) T~(t) is a contraction semigroup since A* - BB* and A BB* are dissipative ( - B B *  <~ 0). 
(b) We establish (3) by differentiating IITB(t)x[I 2 with respect to t for x E D(A): 

d 
~ l l T s ( t ) x l l  2 = ((A - BB*)TR(t)x, Ts(t)x) + (TB(t)x,(A - BB*)Ts( t )x)  

= {ATe(t)x, TB(t)x) + (TB(t)x, ATs(t)x}  2]]B*TB(t)x]I 2 

and since T(t)  generates a contraction semigroup, A is dissipative and 

d 
~l lTs( t )x l l  2 + 2llB*Ts(t)xil 2 <. O. 

On integrating, we obtain 

1' IITs(t)xll 2 + 2 118*TB(t)x]l 2 ds ~ [Ixll 2 

which establishes (3) for x E D(A). Since D(A)  is dense in Z, it extends to all x E Z. 
(c) (4) is proved similarly to (3) by differentiating I IT;( t )x l l  2 for x ~ D(A*),  and noting that since Z is a 

Hilbert space, T*(t)  is also a contraction semigroup. [] 

We remark that under extra assumptions A5 and A6, Ts(t) is strongly stable, see [4, 13, 1]. However, we 
do not need this result in our application. 

Lemma 3. Let  A ,qenerate the strong@ continuous Co semigroup T(t) on the Hilbert space Z and let B ,R 
and S satisfy the assumptions A2-A4. I f  the Riccati equation (2) has a strongly stabilizing solution, then 
it is" the only one with this property. 

Proof.  Suppose that Ql and Q2 are both strongly stabilizing solutions o f  (2), i.e., TQ,(t)z ~ 0 as t --, cx~ for 
z E Z, i = 1,2, where A - BB*Q, generates TQ,(t). On rearranging (2) we obtain 

(A - BR IB*QI)*Qlz + QI(A - BR- IB*Q2)z  = - Q 1 B R - I B * Q z z -  BS- tB*z ,  

and 

(A - BR-1B*QI )*Qez + Qz(A - BR-1B*Qz)z  = -Q1BR-1B*Q2z  - BS IB*z. 
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Subtracting gives 

( A - B R  IB*Q1)*(Q1-Q2)z+(QI -Q2) (A  BR IB*Q2)z=O 

which implies that for x, y E D(A) there holds 

d (TQ,(t)y,(Ql - Q2)T~._(t)x) = O. 

Thus, 

(TQ,(t)y,(Qt Q2)TQ,_(t)x) = constant, 

and this constant must be zero, since both Q1 and Q2 are strongly stabilizing. Substituting t = 0 and noting 
that D(A) is dense in Z shows that Ql = Q2. [] 

As we already remarked, the above results have been well known for decades, see [2]. Strangely enough, 
the next result does not seem to be known. 

Theorem 4. Under the assumptions A1-A6,  the algebraic Riccati equation (2) has a unique strongly stabi- 
lizing solution. 

Proof. (a) Consider the following control problem that is associated with (2) and the quadratic cost functional: 

J ( . )  = (llRl 2u(t)lI 2 + IIS-~ 2B*z(t)ll2)dt (5) 

subject to the dynamics 

~(t) = Az(t) + Bu(t), z(O) -- zo. (6) 

Note that with g(t) = -B*z(t),  we obtain d ( t ) -  (A -BB*)z ( t )  and thus z ( t ) =  TB(t)zo, whence 

J ( a )  = IIR 1 2B~T~(t)zolI 2 + I!S 12BXre(t)zoH2dt 

~< ½ [tIR':2112 + IIS -~ :ll21 IIzoll 2 (by ( 3 ) )  

In other words, Z(A,B,S-12B*) is optimizable and from Curtain and Zwart [6, Theorem 6.2.4] we conclude 
that (2) has a solution Q0 = Q~ ~> 0 which satisfies 

~0 :)C L ";' * "~ (Q0x0,x0) = (tIR -B OorQ,,(t)xoil- + InS '2B*r~,(t)xoliZ)dt, (7) 

where A - BR 1B*Qo generates TQ.(t). 
(b) We show that TQ,~(t) is uniformly bounded in norm. Now for x E Z, there holds 

I' TQo(t)x = Tn(t)x + Te(t s)B [B ~ - R-IB*Qo] To.(s)xds 

and so for all x, y £ Z we have that 

f ' Te~(s)x) d~ I(v, TQ,,(t)x)l <~ II.vllllT~(t)xll + (B*T~( t - s )y ,  [B*-R 'B*Qo] , 

[/o 1' [I ' 1 '̀ '2 ~< II)'ill[xll + I IB*T~( t -  s)yi]2 as I](g* -R-'B*Qo)TQ,(S)xli2ds 

(since TB(t ) is a contraction) 
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1 [i/o  1 121 I[yllljxll +  llyll []8*Too(S)x[I 2as + []R-'B*QoTQo(S)xll 2as 

(by (4) and the Minkowski inequality) 

~< I]yl[ I]]xl] + I[Q~/2x]l max [I]R-'/2[],lISl"2]ll] (by (7))  

~< [1 + [IQ~/2[I max []lR-I/2][,]lS1/2]]]] [Ix]l][yl]. 

(c) It remains to show that Too(t ) is weakly stable. Substituting x = Too(t)z in (7) we obtain 

{QoToo(t)z, Too(t)z } = ((QoBR-1B*Qo + BS 1B*)TOo(S)Z, TOo(S)Z } ds 

which converges to 0 as t ~ oc. 
(d) Next we show that ker Q0 = 0. Suppose that there exists a nonzero x such that Qox = 0. Then from 

(7) we deduce 

0 = ([IR-1/2B*OoToo(s)xll 2 + tlg-~/2O*Too(s)xll2)ds 

and so 

But 

B*QoTQo(S)X = B*TQo(S)X : 0 for s ~> 0. 

f0 t TQo(t)x = T ( t ) x -  T ( t -  s)BR-IB*QoTQo(s)xds = T(t)x 

and this implies that B*T(t)x = 0 for t >/0, violating the approximate observability assumption A5. So 
Q0 > 0 .  

(e) From part (c) we have that 

[(T~,(t)x, Ooy)l <~ IIQ~/2ll HQ~/ZTQo(t)xII Ilyl[ ~ o as t --~ ~<~ 

for all x ,  y C Z .  Since Qo is self-adjoint and positive we have that the range of  Qo is dense in Z. Hence, for 
every z E Z and every e > 0 there exists an Qoy such that ]]z-Qoyl[  <~ e. Since from part (b), IITo<,(t)l[ ~< m 
for t >/0, we may conclude that 

[(To,~(t)x,z)[ <~ [(TQo(t)x, (z - Q0y))l + I(Too(t)x, Qoy}l <~ Me + I(T00(t)x, Q0y) l 

and so TQ~(t) is weakly stable. 
(f) Lemmas 1 and 3 complete the proof. [] 

We remark that we do not need to assume that TQo(t ) is a contraction semigroup, as was done in 
[2, p. 339]. Indeed, this need not be the case in general. We give a matrix counterexample. Choose A = 
0,B = I ,  and 

1 ' - 1 6  52 " 

Then 

(1_2) 
(2o = - 2  6 
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solves (2), but 

AQ~ = A -  BR-IB*Qo = 3 
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4) 
-10  

does not generate a contraction semigroup: AQo ÷ A*Qo has a negative and a positive eigenvalue. 
As a corollary of this theorem we have an existence result for the control problem defined by (5), (6). 

Corollary 5. Under the assumptions A1-A6 the control problem with the quadratic cost functional (5) and 
subject to the dynamics (6) has the unique minimizing feedback control given by 

9(t) = -R- :B*Qz( t ) ,  

where Q is the unique, strongly stabilizing solution to (2). The minimum cost equals (Qzo,zo) and the 
closed-loop system operator A - B R - I B * Q  generates a strongly' stable semigroup. 

In a similar manner, it is possible to obtain existence results for the more general algebraic Riccati equation 
for z c D(A) 

(A - BR~ID*S-~/2B*)*Qz + Q(A - BR~ID*S-I/2B*)z 

- Q B R ~  B* Qz + BS-1/2(I + DR-I  D*)-I  S-J/2 B*z = 0, (8) 

where RD = R + D*D. 

Theorem 6. Under assumptions A1-A6, the algebraic Riccati equation (8) has a unique, strongly stabilizing 
solution, i.e., A -BR~ID*S- I /2B  * - B R ~ I B * Q  generates a strongly stable semigroup. 

Proof. (a) As before, we consider the associated control problem with the quadratic cost functional 

J~(u) = (Hy(t)lr 2 + (Ru(t) ,u(t)))dt  (9) 

subject to the dynamics 

£(t) = Az(t) + Bu(t), (10) 

y(t)  = S-I/2B*z(t) + Du(t). (11 ) 

Notice that 

' \ u(s) 

where 

Qi = ~ D.S_I / :B.  = R + D*D 0 RD - F  ' 

S: = $1/2(I + DR-ID*)S 1/2, RD = R + D'D, F = -R~ID*S-I /ZB *. Thus, 

jo Jl(u) = J(u l )  = NS~l/ZB*z(t)ll 2 + ItR~'2u:(t)H 2 dt, (12) 

where u: (t) = u(t) - Fz(t) = u(t) + R~ ID*S-l/ZB*z(t). So, minimizing (9) is equivalent to minimizing J(ul ) 
given by (12) subject to the dynamics 

~(t) = (A - BR~ID*S-t/ZB*)z(t) + Bul(t), z(O) ---- zo. (13) 
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This is similar to the control problem considered in the proof of Theorem 4, except that A := A - 
BR~1D*S-1/eB * need not be dissipative. On examining the proof of Theorem 4 we see that all of the 
arguments extend to this new situation. 

(a) With 

ul (t) = -B*z(t)  + RD 1/2D*S-l/2B*z(t) = -B*z(t)  - FB*z(t), 

we obtain 

J(Hl) = (]lSll/2B*Ts(t)zoll 2 + IIR~'2(/÷ f)B*Ts(t)zoll2)dt < 

and Z'(A, B, Sj-1/2B* ) is optimizable. 
(b) From Curtain and Zwart [6, Theorem 6.2.4], we conclude that (8) has a solution Q0 = Q~/> 0 which 

satisfies 

(Qox, x) = IIRD'/RB*QoTQo(S)X]I 2 + IIS~-1/2B*TQo(S)XI] 2 ds, (14) 

where J - BR~IB*Qo generates "FQo(t). 
(c) Writing 

f~ - BR~I B* Qo = A - BR~I D*S-I/2B * - BR~I B*Qo 

= (A - BB*) + BKtB* + BKeB*Qo, 

we see that using the perturbation formula for the semigroup 7"Qo(t) in terms of TB(t) and the estimates from 
(14), we can prove that T00(t) is uniformly bounded in norm for t ~> 0. The final steps follow just as in the 
proof of Theorem 4 using the approximate observability of S(A, - ,B* )  and the fact that A -BR~ID*S 1/2B* - 
BR~IB*Qo has compact resolvent (as a bounded perturbation of A). [] 

Again, this theorem has implications for an optimal control problem. 

Corollary 7. Under the assumptions A1-A6, the control problem with the quadratic cost functional (9) 
subject to the dynamic constraints (10), (11) has the unique minimizing control given by 

~(t) = -(RD1D*S-I/2B * + R~IB*Q)z(t), 

where Q is the unique, strongly stabilizing solution of(8).  Moreover, the minimum cost equals (Qzo,zo) and 
the closed-loop system has a strongly stable semigroup. 

In Section 3 we shall need results for dual Riccati equations. Of course, these are easily deduced from 
Theorem 6. 

Theorem 8. Under the assumptions A1-A4, A6 and A7, the following algebraic Riccati equation has a 
unique, strongly stabilizing solution (i. e., A - (PBS-1 /2+ BD*)S~ 1S-1/2B * generates a strongly stable semi- 
group): 

(A - BR~ 1D'S- l/2B* )Pz + P(A - BR~ ID*S-U2B* )*z 

-PBS-1/2S~I S-I/2B*Pz + BR~I B*z = 0, (15) 

for z E D(A*), where RD = I +D*D, SD = (I +DR-ID*)  -1. 
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3. Normalized coprime factors 

In this section, we give formulas for normalized doubly coprime factorizations of a transfer matrix G(s) = 
D + S-1/2B*(sI - A ) - I B ,  where A,B,  and S satisfy the assumptions A1-A3, A5-A7, U = Cm,R ~- I and 
D E LiT(U). First we recall some definitions of coprime factorizations over ~ ' H ~ ,  the set of  matrices of 
any size with all components in H ~ ,  the Hardy space of complex-valued functions that are holomorphic and 
bounded on C o = {s E C :Re(s)  > 0}. 

Definition 9. Suppose that there exist matrices M, N, )(, Y E J / H ~  with M square and det(M) ~ 0 on C + 
such that 

G(s) = N ( s ) M ( s )  -1 for s C C~, (16) 

X ( s ) M ( s )  - Y ( s ) N ( s )  = I for s E C~-. (17) 

We say that G = N M - I  is a right-coprime factorization of G over . .#H~.  
Suppose that there exist matrices &C,N,X, Y E J g H ~  with ~7/ square and det(/~t) ~ 0 on Co ~ such that 

G(s)  = M ( s ) - J ~ t ( s )  for s E C o, (18) 

~ l ( s ~ ( s )  - iV(s)Y(s)  = 1 for s E C +. (19) 

We say that G = ~ - 1 ~  is a left-coprime factorization of G over ~ # H ~ .  If, in addition, the following identity 
holds, we say that G = ~¢-1~- = N M  I is a doubly coprime factorization over J / H ~  

2 - f  y 0 

If  (M,N) satisfy conditions (16), (17) and also 

N(jco)*N(jco) + M(jco)*M(jco)  = 1 for co E R, (21) 

we say that G - N M  -1 is a normalized rigbt-coprime factorization. If  (~¢,N) satisfy conditions (18) and 
(19) and also 

N-(jco)N(jco)* + M(jco)M(jco)* = I for uJ E R, (22) 

we say that G = ~ , - l ~  is a normalized left-coprime factorization. I f  (16)-(22) all hold, we say that G = 
~ 4 - 1 N -  N M  -1 is a normalized doubly coprime factorization. 

If  Z(A,B,  C ,D)  is an exponentially stabilizable and exponentially detectable state linear system, then for- 
mulas for normalized doubly coprime factorizations of G(s) = D + C(sI  - A ) - l B  can be given in terms of 
solutions to two algebraic Riccati equations (see Theorem 7.3.11 and Exercise 7.2.9 in [6]). However, our 
class of systems is neither exponentially stabilizable nor detectable and so this result is not applicable to 
our situation. Although it is easy to show that for G(s) = D + S - J / 2 B * ( s I -  A) -1B ,  under our assumptions 
A1-A7, the same formulas still yield the sought factorizations satisfying (16)-(22), it is not easy to show 
that M , N , / Q , N , X ,  Y,X,  Y are in J//H~,. in fact, we do not believe that this is always the case. We have only 
been able to show this for the following special case. 

Definition 10. Let G(s)  be an m x m matrix-valued complex function. G is positive real if it satisfies the 
following conditions: 

(i) G(s)  has real coefficients; 
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(ii) G(s) is holomorphic on Re(s) > 0; 
(iii) G(s)* + G(s) >1 0 on Re(s) >_- 0. 

An example of a positive real system is G(s) = D + B * ( s I - A )  IB under our assumptions and D + D *  >_. O. 
In [5], it is proved that a positive real system has the following coprime factorizations: 

G = / ~ / I -  J ~ : N M  - t , 

where 

N = N : G ( I + G )  1 a n d m : a ~ ¢  ( I + G )  - l .  (23) 

So if our system G ( s ) :  D + S - t , 2 B * ( s I -  A ) - I B  is positive real, it has the coprime factorization: 

M o : ~ l o = ( I + D )  I _ ( I + D ) - I S - I . 2 B , ( s I _ A o )  I B ( I + D )  1, (24) 

No =N0 = D(I + D )  -1 + (I + D )  IS 1"2B*(sl - A o )  IB(l + D )  -I ,  (25) 

where 

Ao = A - B(I  + D) LS-I"2B*. (26) 

We shall also use the following lemma (a simple proof is in [9]). 

Lemma 11. Suppose that U = C ' ,  Y = C". I f  f E L2((0, e c ) ; S ( U ,  Y)), and its Fourier transform . f  E 
L~(( - j~ , j , rx~) ;  S ( U ,  Y)),  then .p ~ ~ # H a .  

Now if f ( t )  = 0 for t ~ 0 the Laplace and Fourier transforms of f are isomorphic and so Lemma 11 also 
holds for the Laplace transform of functions which are zero for t ~< 0. 

Theorem 12. Consider G(s) = D + S l"2B*(sI - A)  IB under the assumptions AI-A7 with U = C m , R  : I 
and D c 5f~(U). 

(a) G has the factorizations G = NM -I = ~I 1~, satiaJ~,ing (16) (22), where 

N(s )  = DRD 1.2 + (SDIS-I .2B , _ DR~IB,  Q)(sl  _ AQ)_IBRDI 2, 

M(s )  = RD ] 2 -- R~I(D*S -1 2B* + B*Q)(sI - AQ)-IBR~) 1'2, 

- I  12 X ( s ) = [ I  + ( S ~ I S - 1 ' 2 B * - D R D 1 B * Q ) ( s I  AQ) I ( P B S - t 2  + B D * ) S  o ]S> , 

Y ( s ) = - R D t ( D * S - I ' Z B  * + B*Q)(sl  AQ) - I (PBS  t 2 + BD,)S~)i 2, 

N ( s ) = S D 1 2 D + S D I ' 2 S  t 2 B * ( s l - A p )  I(BRD 1 - P B S  I'2S~tD), 

M(s)  SD , _ S~)12S-t .2B,(s l  _ A p ) - t ( P B S - 1 2  + BD,)S~)] 

f ( ( s )=R~2-R~) I"2 (D*S  1;2B* + B * Q ) ( s I - A p )  I(BRD 1 - PBS 12S~tD),  

Y(s)  = -RDI"2(D*S-t"2B * + B*Q)(sI  - A p ) - I ( P B S  12 + BD* )S~ 1, 

and Q and P are the unique strongly stabilizing solutions to (8) and (15), respectively, with 

RD = I + D'D,  SD = I + DD*, R = I, 

Ap = A  (PBS -1/2 + BD*)S~IS  ]"2B*, 

AQ = A  - BR~I(D*S-1."2B * + B 'Q) .  

N,M,N,I(-I are in ~ / /H~,  but, in general, X, Y,X, Y will only be in ~//H2. 
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(b) I f  G(s) is positive real, and (I + D ) - I S  12 is strictly positive, then G = N M  -I = f4  I1V Jorms a 
normalized doubly coprime factorization o f  G over , . #Ha .  

Proof. (a.1) That M,N, f 4 , N ,  etc., satisfy (16) (22) follows exactly as in [6, Theorem 7.3.11 and Exercise 
7.29]; it is just linear algebra and it makes use of the two Riccati equations (8) and (15). 

(a.2) We show that N , M  are elements of o,~H~. (21) shows that M and N are in ~#L~(-je~,j~:J). Now 
from (7) we deduce that 

/0 ]IB*TQ(t)zH 2 dt < o c , ,  I]B*QTQ(t)zI[ 2 dt < ,~x~, 

and so the inverse Laplace transforms of N , M , X  and Y without the constant term are in L2((0, oc); 5°(U)),  
U = C m. Lemma 11 shows that N, M E ~g/'H~. 

(a.3) (22) shows that N and M E J L c ( - j ~ o , j ~ ) .  A dual argument shows that 

/o /o ~ I]B*T~(t)zH2dt < o c , ,  ]]B*PT~(t)z]]2dt < cx~, 

and thus the inverse Laplace transform of 3~ and M are in L2((0,:x3); cS(U)), U = C m. Lemma 11 now 
shows that A),M ¢ ~#H~ .  

(b.l)  We show that G --- N M - t  is a coprime factorization by establishing that it is related to the known 
coprime factorization G = NoM~ -1 by a factor which is invertible over ~,#H~. We define 

K = M 0 ~M = (I + G ) M  = M + N ¢ ~ H ~ .  

We find an explicit expression for 

KR~ 'z = (I + D + S- l '2B*(s l  - A ) - I B ) ( I  - RDI(D*S-12B * + B*Q)(s l  - AQ) - IB )  

= ( I  + D ) - ( I  + D)R~I(D*S-I /ZB * + B * Q ) ( s I -  AQ) IB + S - t  2 B * ( s I -  A)  -I 

× [sl - AQ - BRDI(D*S-k'2B * + B*Q)] (sI - AQ) - IB  

= ( I + D ) - ( I + D ) R ~ I ( D * S - t / Z B * + B * Q ) ( s I  A Q ) - I B + S  1 2 B * ( s I - A Q ) - I B .  

Now we invert (I + D)-IKRID 2 to obtain 

RDU2K-I( I  + D) = I + [RDt(D*S-1/2B * + B ' Q )  - (I + D)  tS-I/2B* 1 (sl - A)-IB, 

where 

=AQ + BRD~(D*S-I/2B * + B ' Q )  - B(I  + D)-~S- I /ZB * 

= - A - B ( I + D )  1S-I 2B*. 

To prove that K - l  E ,.//H:~ we note that, under our assumptions, B(I  + D ) - t S - t / 2 B  * = BFF*B* for an 
invertible F. By Lemma 2 (applied to BF),  f ~  IlF*B*T~F(t)xll2dt < vc and since F* is invertible, this 
shows that the inverse Laplace transform of K -I  is in L2((0, vc) ;Lf(cm)) .  Next we show that K -1 C 
~'L~c(-j~o,j~o; S ( c m ) )  and apply Lemma 11 to deduce that K i E ~#Hoc. Now ( N , M )  are normalized and 
SO 

N(jro)*N(j~J) + M(j~o)*M(jc~) = I for ~o E R 
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and 

K(j(~) *N(jc'J)*N(je))K(jto)-I  + K(j,9)-*M(jco)*M(jto)K(jto)-l 

= K ( j o )  *K(jto) - l .  

Thus, 

No(jo)*No(jo~) + M0(joO*M0(jto) = K(j~o)-*K(jco) -L , 

and since No, M0 E , g H ~ ,  we see that K -  I E ,:/[L~. So by Lemma 11, K and K -  I C ~¢/H~. The proof for 
(M, f ' )  follows using a similar argument. Define L = 2I¢ + N E J / H ~ ,  and show that L - l  ~ ~,#H~. Thus, 
with 

21 = - l ? l  = K  -1 and Xt = - Y 1 = L  -I ,  

we obtain a normalized doubly coprime factorization. [] 

In fact, we have proved some interesting properties of positive real systems. 

Corollary 13. Suppose that G ( s ) =  B * ( s I - A ) - t  B is positive real and that assumptions A1-A7 are satisfied 
with U = C m, S = I and D = O. Then the following transfer matrices are in J / H ~ :  

B * ( s I - A s )  IB, B * Q ( s I - A B )  IB, 

B * ( s I - A s ) - I P B ,  B * ( s I - A Q )  IB, 

B*Q(sI - A Q ) - t B ,  B*(sI - A ? ) - I P B  

and 

B*(sl - Ap ) - IB ,  

where Q and P are the solutions o f  the Riccati equations (8) and (15), respectively and As = A -  BB*,AQ = 
A - BB* Q, Ap = A - PBB*. 

We remark that the extra conditions in b of Theorem 12 hold in the following special cases: 
(i) D = O, S l"2B*(sl - A ) - I B + B * ( Y I  - A * ) - I B S  - ,.2 >~0 in Re(s) > 0; 

(ii) D = 621, S-I/2B*(sI  - A ) - I B  + B*(YI - A * ) - I B S  -1'2 >>, 0 in Re(s) > 0; 
(iii) S = ~22I, D * + D ~> 0. 
It is interesting to conclude with the remark that we have also found a spectral factorization without 

assuming the above extra conditions. 

Corollary 14. Consider the state linear system Z(AB, B ,S  1'2B*, 0) under the assumptions A1-A6 with R = I 
and AB = A - BB*. Then 

F(jo~)) = I - B*(joJI + A*B)-I BS- I  B*(jcoI - AB)-I  B (27) 

has the spectral factorization 

r(jco) = W(jo))* W(jco) for  o) E R, (28) 

where 

W(s) = I + B*Q(sl  - A s ) - I B  (29) 

with W and W - l  holomorphic in C +, and Q is the unique stabilizing solution o f  (2). 
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Proof .  It is easi ly verif ied that (28)  holds using the Riccati  equat ion (2). Note  that 

W ( s )  l =_ 1 - B * Q ( s l  - A + BB* + B B * Q ) - I B  

and that W ( s )  - I  E H : ~ ( L a ( U ) )  fol lows f rom Theorem 12 with D = 0,RD = 1, for then W(s)  -1 = M ( s ) .  [] 
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