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Abstract: Photoacoustic imaging has been a focus of research for clinical applications owing
to its ability for deep visualization with optical absorption contrast. However, there are
various technical challenges remaining for this technique to find its place in clinics. One of
the challenges is the occurrence of reflection artifacts. The reflection artifacts may lead to
image misinterpretation. Here we propose a new method using multiple wavelengths for
identifying and removing the reflection artifacts. By imaging the sample with multiple
wavelengths, the spectral response of the features in the photoacoustic image is obtained. We
assume that the spectral response of the reflection artifact is better correlated with the proper
image feature of its corresponding absorber than with other features in the image. Based on
this, the reflection artifacts can be identified and removed. Here, we experimentally
demonstrated the potential of this method for real-time identification and correction of
reflection artifacts in photoacoustic images in phantoms as well as in vivo using a handheld
photoacoustic imaging probe.
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1. Introduction

In the last decade, significant progress has been made for translating photoacoustic imaging
(PAI) into clinics [1]. This technique uses the photoacoustic (PA) effect, where materials
absorb short pulsed light and generate ultrasound (US) waves. The US waves can be detected
using US transducers for reconstructing the absorbing structures. Since in tissue the US waves
experience order of magnitude less scattering compared to light, much deeper information can
be reconstructed compared to purely optical imaging techniques. Therefore, PAI provides
optical absorption contrast and has the ability to image deeper than purely optical imaging
techniques at ultrasonic resolution. Exploiting these properties, current research is focusing
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on investigating its clinical applications such as imaging of breast cancer [2, 3], theumatoid
arthritis [4, 5], and atherosclerosis [6]. Additionally, multispectral PAI strengthens the
advantages of this technique for screening and monitoring human diseases, for instance by
examining the oxygen saturation of hemoglobin (sO,) in the lesion [3] or characterizing
different tissues [6].

Recent research has focused on developing compact and affordable PAI systems.
Integrating the laser source, especially a low cost laser source [7], into commercial handheld
US probes for clinical use of PAI systems was proposed [7—12]. However, one of the major
drawbacks of using a linear US transducer array is the occurrence of reflection artifacts (RAs)
due to its limited view angle. As photoacoustically generated US waves propagate in all
directions, the US waves propagating away from the US transducer array can be reflected
towards the US transducer array by acoustic heterogeneities such as bone and tendon causing
RAs in the acquired photoacoustic image. The RAs appear at larger depths than the real
absorbers leading to misinterpretation of the acquired images. For clinical usage, real-time
correction of the RAs in PAI is of fundamental importance.

RAs are also called in-plane artifacts, one of two types of artifacts (clutter) in PAIL. The
other type is out-of-plane artifact [13]. The term “plane” represents the imaging plane defined
by the US transducer array. Since the laser beam excites a large volume, absorbers which are
not in the imaging plane absorb the light and generate signals. If the out-of-plane sensitivity
of the transducers is high enough, these absorbers appear in the acquired image resulting in
out-of-plane artifacts (direct out-of-plane artifacts). If there is an acoustic reflector located
underneath these out-of-plane absorbers, out-of-plane RAs (indirect out-of-plane artifacts)
can be present in the acquired image [13]. In this work, we aim to tackle RAs (in-plane
artifacts).

Several methods for reducing RAs have been presented [14-18]. Deformation
Compensated Averaging (DCA) [14] employs tissue deformation for de-correlating the
artifact by slightly palpating the tissue. This technique requires a well-trained person,
sufficient deformation of tissue and works for easily deformable tissue. Localized vibration
tagging (LOVIT) [15], introduced by Jaeger, uses a similar principle as DCA but using the
acoustic radiation force (ARF) aimed at the artifact in the focal region of the ultrasonic beam
instead of tissue palpation. This is a promising approach to overcome the disadvantages of
DCA. However, it can only reduce artifacts based on the deformation of tissue in the US focal
region. This limits the real-time capability and has safety challenges. Recently, LOVIT has
been further improved by using multiple foci [19]. Another method exploits the acoustic
tissue information by inversion of a linear scatter model using plane wave US measurements
[16]. This method has to match PA and US measurements and requires numerous plane wave
angles limiting itself to real-time performance. Schwab then introduced an advanced
interpolation approach to significantly reduce the required number of plane waves in a linear
scattering medium [20]. Allman introduced a convolutional neural network to remove RAs of
point-like sources with high accuracy [18]. However, since the network is trained with
simulated data, the accuracy might be negatively affected in in vivo situations.

Previously Singh introduced a method, photoacoustic-guided focused ultrasound
(PAFUSion), using focused ultrasound or synthetic backpropagation to mimic PA sources and
thus identify the RAs [17, 21, 22]. This method can efficiently reduce the RAs, however it has
several limitations: mimicking the PA source is limited by the angular aperture of the US
probe; numerous additional US images are needed, challenging real-time artifact reduction;
the PA sources (skin, blood vessels) must be perpendicular to the imaging plane that requires
demanding alignment effort; the PA signal from the source and the mimicked signal by US
must match each other in terms of amplitude and frequency content which might negatively
affect the accuracy of the method.

In this paper, we propose a new method where we exploit the use of multispectral PAI for
identifying and removing RAs. Imaging with multiple wavelengths, PA spectral responses of
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the features in the acquired image can be obtained. Our method is based on the assumption
that RAs are better correlated with the image features of their corresponding original
absorbers than with other features, exposing the suspicious artifacts. In addition, RAs appear
at larger depths and have weaker signals than the original image feature. Combining these
findings can reveal the RAs and remove them.

To test the method, a handheld probe with integrated diode lasers was used for PAI. These
diode lasers emit light at 4 wavelengths (808, 915, 940 and 980 nm). We performed
experiments in phantoms and in vivo. Results show that this is a promising method for
correcting RAs, potentially in real-time.

2. Theory
2.1. Photoacoustic imaging

PAI is an imaging technique using pulsed laser irradiation to generate US waves which are
subsequences of pressure changes due to thermal expansion and relaxation. The generated
initial pressure is described as [23-25]:

p=Tu,® (1)

where ¢, is the absorption coefficient [cm_l], @ is the light fluence [J/cmz], and I" (Griineisen
parameter) is a dimensionless parameter and is defined as T'=fBc*/C,, where B is the
thermal expansion coefficient [K™'], cis the speed of sound [m/s], and C, 1is the isobaric
specific heat [J/kgK].

Light propagating in the tissue is scattered and absorbed. Since scattering and absorption
are strongly dependent on the wavelength, light at different wavelengths reaches different
depths [26, 27]. Therefore, the light fluence inside the tissue depends on both the excitation
wavelength and the position.

The absorption coefficient, u_ , is a wavelength-dependent optical property of the

absorber. The generated initial pressure, p, can be rewritten as a function of the excitation
wavelength and the local position:

p=f(Axp,z2). 2
2.2. Reflection artifacts in photoacoustic imaging

Figure 1 illustrates the principle of RAs in PAIL A part of generated US waves (blue) is
reflected at the acoustic reflector, seen in Fig. 1(a) The reflected US waves (red) propagating
back to the detector resemble a virtual acoustic source, so-called RA, located at a larger
depth. Figure 1(b) is a reconstructed PA image of a phantom representing this situation. The
phantom was made of a black thread placed above a plastic petri dish lid, and demi-water was
used as an acoustic coupling medium. An RA at a larger depth is clearly visible in this image.
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US transducer array
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— generated waves
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Fig. 1. RA in PAL (a) A deep reflector leads to reflecting US waves. (b) An acquired PA

image of a phantom (a black thread placed above a plastic petri dish lid) embedded in demi-
water represents this situation.

In a clinical scenario where there are a few blood vessels located above a tumor. The
tumor can reflect US signals generated from the blood vessels causing RAs surrounding the
tumor. This can negatively affect the ability to assess tumors based on oxygen saturation of
hemoglobin [3, 28].

3. Method

The principle of our method is based on Eq. (2) where the pixel value in the acquired PA
image represents the generated initial pressure as a function of the local light fluence and the
excitation wavelength. Exploiting this principle with multi-wavelength PAI a sequence of PA
images with multiple wavelengths of light is obtained. As all images are of the same region of
interest (ROI), they show the same structure of the sample. Studying the changes of the pixel
values reveals the spectral responses of absorbers in the images. Our method relies on the
following two assumptions:

1. Absorbers with identical optical properties located at different positions give different
spectral responses due to different local light fluence.

2. Both direct and reflected PA signals convey the optical properties of the source.

If the above two assumptions are fulfilled, the spectral response of RAs is identical to the
spectral response of their source (real absorber) and two identical absorbers will not be
misidentified as one reflection artifact of the other. The first assumption is discussed further
at the end of this section.

Figure 2 shows the flowchart of the method. Images of the sample are acquired with
multiple wavelengths. Of the acquired images, the image giving the strongest signal is
selected for segmentation which detects image features. The features extracted from the
segmentation step are applied to all the other images to obtain their spectral response. This
information is then used in the RA correction step to identify and remove RAs. The corrected
image which is a segmented image is further processed through the de-segmentation step to
recover the shape of the remaining features giving the final corrected image.
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Fig. 2. The flowchart of the method.

In the segmentation step, an automatic segmentation algorithm which is based on the
Sobel edge detection algorithm [29] is implemented to detect image features. Computing the
Sobel edge threshold is supported by Matlab.

Figure 3 illustrates this segmentation method. Figure 3(a) is a sample PA image which
represents two blood vessels (upward blue arrows) and their reflection (downward yellow
arrows). Properly segmenting these features is expected. However, applying a threshold can
lead to over-thresholding or under-thresholding. In the case of over-thresholding, weak edges
cannot be detected resulting in feature loss. Figure 3(b) shows an over-thresholding case
where bottom features are not detectable. In contrast, Fig. 3(c) shows an under-thresholding
case. Several features are detected as one single feature in this case.

We avoid over-thresholding by choosing half of the threshold calculated by Matlab. As a
consequence, under-thresholding might happen. We further process the image with a peak-
process. In this process, we find all peaks in the image and then set a part of pixels
surrounding the peaks to zero. Under-thresholding is significantly improved after this step
giving separate features, seen in Fig. 3(d). It might lead to over-segmentation in which one
absorber is segmented into a number of features. However, since these features are parts of
one absorber, they share the spectral response of the absorber.
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Fig. 3. An example of the segmentation process. (a) The original image showing two blood
vessels (upward blue arrows) and their reflection (downward yellow arrows). (b) An over-
thresholding segmented image. (¢) An under-thresholding segmented image. (d) The under-
thresholding and peak-processed segmented image.

To obtain features spectral response, the detected features from the segmentation step are
applied to all other images. Of each feature the maximum pixel value is taken from all
images, giving that feature’s spectral response. Spectral responses of all features are then
compared to each other using the Pearson correlation coefficient [30]:

cov(4,B)
O-Ao-B

P(4,B) = (€)

where A and B are spectral responses of two features, cov(4,B) is the covariance of A and
B, 0, and o, are the standard deviation of A and B respectively.
In the identifying and removing RAs step, a threshold, p,, , is then applied to separate

high correlation coefficients from all correlation coefficients. Features with spectral responses
with correlations exceeding p, are grouped together as suspicious RAs. In addition, RAs

appear at a larger depth and have a weaker signal than the corresponding real absorber due to
longer propagation and attenuation. An extra condition is used to identify RAs, that RAs must
be deeper than their real absorber at least Az_. , which is described at the end of this section.

Features in the each group are analyzed based on these conditions to identify RAs and thus
remove them.

RAs are removed by setting the pixel values of the RA features to zero. Figure 4(a) is the
corrected image of Fig. 3(a). Features 8, 9, and 11 detected in Fig. 3(d) are removed.
However, this corrected image is a segmented image. To recover the shape of the remaining
features, the de-segmentation step is applied. All pixels surrounding the remaining peaks
which were removed in the peak-process are recovered giving the final corrected image, seen
in Fig. 4(b).



Research Article Vol. 9, No. 10 | 1 Oct 2018 | BIOMEDICAL OPTICS EXPRESS 4620 I

Biomedical Optics EXPRESS

Fig. 4. An example of correcting RAs in PA images. (a) The corrected image of Fig. 3(a). (b)
The final corrected image.

Segmentation benefits image feature analysis, however, a properly segmented image
might be not obtained. Therefore, another approach without segmentation is also
implemented for analyzing images. In this approach, each pixel of the image is considered as
an object to study the spectral responses. Particularly, spectral resporises of all pixels, rather
than features, are correlated to each other. The analysis based on the correlation coefficient is
the same as the analysis used for segmented features.

A comparison of the method with and without segmentation will be presented in the
experimental results section, and further discussed in the discussion section.

In a highly scattering medium, a local region can have light fluence nearly homogeneous,
thus two identical absorbers in that region might have the same spectral responses, giving a
correlation coefficient exceeding p,, . As a consequence, assumption 1 is not appropriate. To

avoid this, a minimum distance Az, in the depth between the two features is used as an

extra condition to assess that whether one feature is an RA of the other one or two separate
absorbers with the same spectral response. The value of Az_, is related to the value of p,, .

n

In other words, Az . defines a region below a PA image feature where no other image

features are assessed as its RAs. In addition, if one absorber is over-segmented, one segment
would be considered as an RA. This can be avoided with Az, . To determine this Az, ,

measurements were performed and will be reported in the experimental results section, and
discussed further in the discussion section.

4. Setup

min *

Experiments were carried out using a handheld PAI probe, depicted in Fig. 5. The handheld
probe is connected to a commercial ultrasound scanner MyLabOne (Esaote Europe BV, The
Netherlands) for the acquisition of US and PA images. The scanner can acquire data at a
maximum sampling frequency of 50 MHz with 12 bit digitization. This device was used in
research mode so that raw data could be acquired in an external PC for offline processing.
The US transducer array in the handheld probe has a center frequency of 7.5 MHz with a
bandwidth of 100%. It comprises 128 elements with a pitch of 0.3 mm. For our study the
central 64 elements were used. Diode lasers integrated into the handheld probe emit light at 4
different wavelengths (808, 915, 940, and 980 nm) at a repetition rate of up to 10 kHz.
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Fig. 5. Photo and schematic drawing of the handheld probe.

Table 1 presents specifications of the diode lasers working at the repetition rate of 1 kHz.
In addition, the angles at the output are 53.1, 55.6, 47.8, and 50.3 degrees at 808, 915, 940,
and 980 nm, respectively, due to diode lasers placed at different stacks and a prism at the light
output. These differences between wavelengths add to the light fluence variation of these
wavelengths.

Table 1. Lasers specifications at a repetition rate of 1 kHz.

volngh )i e e v
808 0.96 84.2 1.04
915 0.98 88 1.01
940 0.89 98.9 0.95
980 0.82 94.2 0.87

Offline processing of data was done on a PC (Intel Core i7 3.41 GHz, 8 GB of RAM)
running Matlab R2016b.

5. Experimental results

To demonstrate the feasibility of the method, we performed experiments in phantoms as well
as in vivo. The PA image reconstruction was done using a Fourier transform based
reconstruction algorithm [31].

In each experiment, 4 laser pulses of 4 different wavelengths followed by 1 US pulse were
sent repeatedly for 100 times. 4 PA images at 4 different wavelengths and 1 US image were
then acquired by averaging signal over 100 pulses. The diode lasers were run at a repetition
rate of 1 kHz. The US image was used to verify the location of absorbers and corresponding
RAs.

5.1. Phantoms

A phantom was made of two black threads, with the diameter of 200-250 wum , and a petri
dish lid (Greiner Bio-One GmbH, Germany) as an acoustic reflector, with thickness of 750
MUm , seen in Fig. 6(a). A schematic drawing of a cross-section of the phantom is shown in

Fig. 6(b). The lid was positioned underneath one black thread as an acoustic reflector. The
phantom was mounted on a mount (CP02/M, Thorlabs, Germany) to fixate it in a solution of
3.5% Intralipid 20% (Fresenius Kabi, The Netherlands) in demi-water. This solution served
as an acoustic coupling medium as well as an optically scattering background. The reduced

scattering coefficient of the solution was estimated as £, =6 cm™' at the wavelength of 900
nm based on [32]. Figure 6(c) shows a combined PA and US image illustrating a cross-
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section of this phantom. The gray color part is the US image showing two surfaces of the lid
which reflect US waves. The hot color part is the PA image where two black threads are
visualized at expected positions relative to the lid. Underneath the lid were some more
features. As there was no absorbers underneath the lid, these features were RAs of the black
thread above the lid. In the PA image, there is a long “tail” of the absorber above the lid
which perhaps is a reconstruction artifact.

4 PA images of the ROI corresponding to 4 wavelengths are shown in Fig. 6(d). The
intensity of the reflections was not strong. The explanation might be that the acoustic
reflectivity of the petri dish lid in that coupling medium was not high. On the other hand, in
the US image’s case, the US transducer array generated higher pressure compared to PA
signal resulting in high intensity of the reflector in the acquired US image. The image
acquired at a 940 nm wavelength had the strongest signal therefore this image was selected
for segmentation.

PA+US image

b) c)
black thread—, g g 8
/ an
tridishlid ©
» petridish 1 12
8 10 12 14
y [mm]
d) A =808nm A=915nm
10
E 8 8 E 8 6
E 6 £
< 10 < 10 #
a 4 a
) o) 2
T 12 2 T 12
8 10 12 14 8 10 12 14
y [mm] y [mm]
A =940nm A =980nm
5
E 8 E 8 4
£ £ 3
< 10 < 10
a a 2
() [}
T 12 T 12 1
8 10 12 14 8 10 12 14
y [mm] y [mm]

Fig. 6. (a) A phantom used for experiments. (b) A schematic cross-section of the phantom (c)
Combined PA and US image. (d) 4 PA images acquired at 4 wavelengths (808, 915, 940, and
980 nm).

Figure 7(a) shows the segmented image acquired at 940nm with numbered features (see
also Fig. 15, Appendix 1). The spectral response of several features is shown in Fig. 7(b) (the
spectral response was normalized with the maximum value).
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Fig. 7. Image analysis of a phantom experiment. (a) Segmented image with numbered features,
and all pixels in a feature being assigned the maximum value of that feature. (b) Maximum
normalized spectral responses of the features.

Two black threads made of the same materials have identical optical absorption
properties. However, from Fig. 7(b), the difference in the spectral response of these two
absorbers is observable (feature 57 for one thread and features 24 and 26 for another thread).
This matches with the first assumption described in the method section. On the other hand,
spectral responses of feature 57 and its RAs, features 54 and 58, are highly identical. In other
words, optical properties of the absorber were conserved in the US waves in spite of
reflection confirming the second assumption.

Of the obtained spectral responses mutual correlations are calculated to determine
“similarity” of the responses. Table 2 shows the correlation coefficients of these responses.
The correlation coefficients between feature 57 and features 52, 54, 58, and 64 are high (close
to 1) and these features appear at larger depths than feature 57 with a lower signal revealing
that they are RAs of feature 57. The correlation coefficients of feature 57 and features 24 and
26 are 0.937 and 0.848 respectively. A threshold p, in between 0.94 and 0.97 would be

sufficient to separate features 24 and 26 from features 52, 54, 58 and 64. Feature 51, which is
likely an RA of feature 57, however has a low correlation coefficient. This can be explained
as the intensity of feature 51 is close to the background, that would highly affect the spectral
response and thus the correlation.

Table 2. Correlation coefficients of obtained spectral responses in the phantom
experiment (see also Data File 1).

Feature 24 26 51 52 54 57 58 64
24 1 0.979 0.843 0.974 0.898 0.937 0.901 0.928
26 0.979 1 0.932 0.912 0.791 0.848 0.798 0.846
51 0.843 0.932 1 0.702 0.532 0.618 0.557 0.643
52 0.974 0912 0.702 1 0.963 0.978 0.952 0.951
54 0.898 0.791 0.532 0.963 1 0.994 0.995 0.977
57 0.937 0.848 0.618 0.978 0.994 1 0.995 0.99
58 0.901 0.798 0.557 0.952 0.995 0.995 1 0.992
64 0.928 0.846 0.643 0.951 0.977 0.99 0.992 1

In this experiment, p, = 0.95 was applied identifying features 52, 54, 58 and 64 as RAs.

These features were subsequently removed from the image giving a corrected segmented
image, Fig. 8(a). This corrected image was then de-segmented to obtain the final corrected
image, seen in Fig. 8(b). Feature 51 was not removed. However, as this feature is close to the
noise level, it does not considerably affect the interpretation of the image. Figure 8(c) shows a
comparison of the acquired PA image and the final corrected image.


https://doi.org/10.6084/m9.figshare.6621593
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Fig. 8. Processing features in an acquired PA image of the phantom. (a) The corrected
segmented image. (b) The final corrected image after de-segmentation. (¢) A comparison of
the acquired PA image and the final corrected image.

5.2. In vivo

We also assessed the method with in vivo experiments. Our experiments focused on fingers
where bones are close underneath the skin giving clear RAs. Fingers were placed ~7 mm
underneath the probe and demi-water was used as the US coupling medium.

Figure 9(a) shows an in vivo PA image of a cross-section of a healthy volunteer’s finger.
Figure 9(d) is a photo depicting the experimental configuration. Acquired PA and US images
are represented in Fig. 9(a) and Fig. 9(b) respectively. The US image is compared with Fig.
9(c), adapted from [33], revealing the periosteum and bone. In the PA image, features beneath
the periosteum and bone are therefore disclosed as RAs of the skin and blood vessels.
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Fig. 9. RAs in in vivo PAL Acquired PA (a) and US (b) images of a finger. (¢c) An image
adapted from “Sobotta: Atlas of human anatomy” [33] shows a cross-section of a finger. (d) A
photo of an in vivo imaging experiment.

The finger was imaged with 4 wavelengths and the acquired images were processed and
analyzed the same as described in the phantoms section. The processed image with numbered
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features (see also Fig. 16, Appendix 2) and several spectral responses are shown in Fig. 10.
Features 56 and 63, 77 and 62, 32 and 50 have similar spectral responses (the correlation
coefficient of these pairs is higher than 0.99), validating the second assumption.

spectral responses

normalized pixel value [a.u]

915 940 980
wavelength [nm]

Fig. 10. Image analysis of an in vivo experiment. (a) A segmented image with numbered
features. (b) Spectral responses of the features.

The spectral responses of features 32 and 56 are observably different from each other as
they represent different chromophores (melanin and blood). Interestingly, features 56 and 77
representing two blood vessels also have different spectral responses. This might be a result
of different sO, in these blood vessels, or of different local spectra of the excitation light.

It is worth noting that feature 50 which is an RA of the skin has higher intensity than
features 18 and 124 which are two blood vessels. Increasing the segmentation threshold to
remove feature 50 will also remove features 18 and 124 leading to losing real features.

Figure 11 shows acquired and corrected images where all RAs were identified and
removed.

Acquired PA image Corrected PA image
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depth [mm]

6 10 14 6 10 14
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Fig. 11. Correcting RAs in an in vivo imaging experiment. (a) An acquired PA image of a
finger. (b) The corrected image.

p, = 0.95 was used in this experiment (see Data File 2 for a complete correlation
coefficient table).
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5.3. Minimum vertical distance Az

As mentioned in the method section, in a region having nearly homogeneous light fluence,
two identical absorbers with a vertical distance (along depth) less than Az_, might have the

n

same spectral responses, giving a correlation exceeding p,, , which results in failure of
assumption 1 formulated in section Method. The method, therefore, might misidentify and
miscorrect one absorber as an RA of the other one.

To evaluate the correlation as a function of Az, we performed several experiments
comparing the spectral responses of two identical absorbers in a medium mimicking tissue
optical properties. The medium was a solution of 2% Intralipid 20% with estimated . = 3.5

cm™' at the wavelength of 900 nm [32], 10~ volume fraction of India ink (Royal Talens, The
Netherlands), and 4x10™* volume fraction of black ecoline (Royal Talens, The Netherlands) in
Milli-Q water. The absorption coefficient of this solution (without Intralipid) was 0.599,
0.456, 0.534, and 0.776 cm™" at the wavelength of 808, 915, 940, and 980 nm respectively,
measured using a photo-spectrometer (UV-2600, Shimadzu, The Netherlands). Two black
suture wires (USP 3/0, diameter of 0.24 mm, Vetsuture Nylon, The Netherlands) mimicking
two identical absorbers were used. These two wires were embedded in the solution, one was
fixated and the other one was attached to a motorized translation stage (MTSS50A-Z8,
Thorlabs, Germany) to adjust the vertical distance Az between the two wires.

At each Az, PA images were acquired using the four wavelengths. Images were then
processed to calculate the correlation coefficient of spectral responses of the two wires. The
measurement was repeated 4 times at each distance Az. The average, maximum and
minimum values are shown in Fig. 12(a) presenting the behavior of the correlation coefficient
with the distance. Figure 12(b) shows spectral responses of the two wires of a measurement at
Az, =0.68 mm and a measurement at Az, = 2.1 mm. The correlation coefficients at Az, and

Az, in these measurements were 0.9916 and 0.9126 respectively.
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Fig. 12. (a) Correlation coefficient of spectral responses of two identical absorbers versus their
vertical distance. (b) Spectral responses of the two suture wires at two different distances AZ1

=0.68 mm and A22 =2.1 mm.

For a threshold of the correlation coefficient of 0.95, Az . is 1.7 mm. The vertical error

bar in Fig. 12(a) is large. The reason for this might be that the correlation coefficient of
spectral responses was calculated with only 4 wavelengths. For the Pearson correlation
coefficient, 3 data points can give a meaningful coefficient. However, a small number of data
points would affect the confidence interval [34].
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5.4. Comparison of the method with and without segmentation

Two approaches for analyzing acquired images were mentioned in the method section, with
and without segmentation.

For the method without segmentation, the spectral response of each pixel of the image is
compared to all other pixels. Figure 13(a) shows again the in vivo image presented in the in
vivo section. Figure 13(b) illustrates a pixel (the top red pixel) in the skin. The spectral
response of this pixel is compared to all other pixels at least 2 mm below it, giving the
correlation coefficient map. Red color indicates the correlation coefficient above 0.95. Figure
13(c) depicts identified RAs (yellow pixels, except the considered pixel) of the PA signal in
the considered pixel.

Fig. 13. RA identification of the method without segmentation in an in vivo image. (a) An in
vivo PA image. (b) The correlation coefficient map of a pixel in the skin with others at least 2
mm below the considered pixel (values above 0.95 are colored red). (c) Identified RAs (yellow
pixels) of the considered pixel.

Figure 14 shows the results using the two approaches. The top images are an acquired PA
image, the corrected image with segmentation, and the corrected image without segmentation
of the phantom. The bottom images are images in vivo in the same order.

Acquired PA image Corrected image with segmentation  Corrected image without segmentation
20

)
)

15

1

depth [mm]
>

depth [mm]

depth [mm]
=

N

12

8 10 12 14
y [mm]

Corrected image with segmentation

8 5
———————

12

16

20 1

e)
0

6 10 14

N
»

w

depth[mm]
>
depth[mm])

[N

N
o

6 10 14
y [mm] y [mm]

Fig. 14. Comparison of the method with and without segmentation. (a), (b), (¢) An acquired
PA image, the corrected image with segmentation, and the corrected image without
segmentation of the phantom, respectively. (d), (e), and (f) An acquired PA image, the
corrected image with segmentation, and the corrected image without segmentation in vivo,
respectively.
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In the corrected images without segmentation, the absorber in the bottom left corner of the
phantom was observably shrunk. This could be due to the small amount of data points for the
Pearson correlation coefficient.

The “tail” of the absorber in the top right corner of the phantom is likely a reconstruction
artifact. A part of it was removed in the corrected image without segmentation. The reason is
that the removed pixels in the “tail” were identified as RAs of the absorber.

The threshold for the method without segmentation was applied the same as the threshold
for the method with segmentation (0.95). However, Az_, was set as 2 mm for compensating

the size of features.
6. Discussion

In in vivo imaging, the RAs of the blood vessels look like excess vessels and could be
erroneously recognized as angiogenesis or hyper-vascularization, hallmarks of various
diseases such as cancer or rheumatoid arthritis. With not much experience of RAs,
misdiagnosis might happen. Simple solutions such as thresholding or limiting the imaging
depth may be able to remove RAs in cases that the RAs are not accompanied by real image
features with the same amplitude or depth range. If such image features exist, however, these
simple solutions are not appropriate.

Compared to previously reported methods for reducing RAs, the proposed method offers
significant advantages. First of all, the method works automatically and performing it does
not require experience or training of the users, as is the case with DCA or PAFUSion in
which the users have to hold the probe perpendicularly to the acoustic reflectors. Secondly, no
US image is needed. Acquiring US images with multiple plane wave angles is more time
consuming and comes at a higher processing expense. Thirdly, as the method does not need
US images to detect RAs, matching features between PA and US images (as in PAFUSion) is
not necessary resulting in detected RAs being completely removed in this proposed method.
Fourthly, unlike deep learning, the method does not require training with various generated
PA distribution sizes and geometries, and acoustic characteristic of the sample which might
be unknown in in vivo imaging. Finally, the proposed method enhances the advantages of
multispectral PAI

Out-of-plane artifacts (direct and indirect out-plane-artifacts) can appear in the acquired
PA images, especially artifacts caused by the skin. PAFUSion does not work for indirect out-
of-plane artifacts. In contrast, they can be treated under the proposed method if the direct out-
of-plane artifacts also appear in the image. However, both methods cannot handle direct out-
of-plane artifacts. Another method for these artifacts is needed. Our future work will focus on
a complete method combining this proposed method and a new method for out-of-plane
artifacts.

The proposed method exploits the variance of light distribution of different wavelengths.
In other words, the local illumination spectrum needs to be different at different depths for the
method to work. In a scenario that the absorption and scattering spectrum is flat, resulting in a
similar illumination spectrum at different depths, this method will not work. However, this is
not likely in clinical imaging where the absorption coefficient varies with wavelength and
various tissues [26].

Az_. , which defines a region below an original PA feature where the method will not

correct its RAs, is the main limitation of this method. In our experiments demonstrating the
method, Az, was 1.7 mm corresponding to the threshold of the correlation coefficient of
0.95. However, this value is not a critical limitation in clinically relevant scenarios. In in vivo
imaging, with different layers of tissue such as skin and muscle, optical heterogeneity would
be stronger resulting in a smaller Az_, than in this study. Additionally, Az_, can be further

min

reduced by selecting wavelengths at which light fluence varies strongly along the depth.
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The proposed method uses PA information from the acquired PA images with multiple
wavelengths. In principle, one PA image can be reconstructed from one laser pulse per
excitation wavelength, therefore the variability in laser pulses is not a limiting factor for the
principle of the proposed mothed. In our experiments, to improve the signal to noise ratio, we
performed averaging over 100 laser pulses per excitation wavelength. In this case, pulse to
pulse variation in beam shape and pointing stability might impede the performance of our
method. However, our results show that this is not the case in our probe.

In this method, pixel values in the acquired image are considered to represent the
generated initial pressure. However, the reconstruction algorithm can produce image artifacts
itself and thus affect the method. We did not observe strong effect of reconstruction artifacts
in our work. Nevertheless, an appropriate reconstruction algorithm should be considered.

The method might not be able to identify an RA if it appears at the same position with
another absorber or another RA. In that case, they appear as one single feature and therefore,
the spectral response of this feature will not highly correlate with the RA’s real absorber.
Another approach such as PAFUSion is needed to identify the RAs.

A small number of data points might affect the Pearson correlation coefficient [34]. The
relation between the number of wavelengths and the efficacy of our method will be
investigated in the future work.

Our method is a post-processing method. Therefore, compared to pure PAI, it costs more
calculation and thus reduces the frame rate. However, for images with the size of 512x 64
pixels (~25 mm depth), correcting with and without segmentation take ~0.2 seconds and ~2-3
seconds running in Matlab, respectively, showing the potential of the method running in real-
time. For the method without segmentation, if the memory of the computing device is
sufficient (~12 GB for this case) vectorizing data can be accomplished reducing time
consumption significantly. Since the imaging depth capability of this handheld probe is ~10
mm, the size of images can be reduced resulting in less expensive calculation. Nevertheless, a
GPU can be utilized for further acceleration of the method, especially without segmentation.

7. Conclusion

The proposed method can identify and remove in plane reflection artifacts (RAs) in PAI
exploiting local light fluence variation between multiple wavelengths. Experiments in
phantoms and in vivo were performed for a proof of concept, using 4 wavelengths: 808, 915,
940 and 980 nm. Results show the potential of the method for correcting RAs in real-time
with no separate ultrasound images needed. In addition, experiments were carried out using a
compact PAI system suitable for clinical use, demonstrating the practical applicability of this
method for medical use.

Appendix 1: Phantom’s segmented image

Fig. 15. Segmented image of the phantom with all features numbered.
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Appendix 2: Segmented in vivo image

Fig. 16. Segmented in vivo image with all features numbered.
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