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Abstract: Photoacoustic imaging has been a focus of research for clinical applications owing 
to its ability for deep visualization with optical absorption contrast. However, there are 
various technical challenges remaining for this technique to find its place in clinics. One of 
the challenges is the occurrence of reflection artifacts. The reflection artifacts may lead to 
image misinterpretation. Here we propose a new method using multiple wavelengths for 
identifying and removing the reflection artifacts. By imaging the sample with multiple 
wavelengths, the spectral response of the features in the photoacoustic image is obtained. We 
assume that the spectral response of the reflection artifact is better correlated with the proper 
image feature of its corresponding absorber than with other features in the image. Based on 
this, the reflection artifacts can be identified and removed. Here, we experimentally 
demonstrated the potential of this method for real-time identification and correction of 
reflection artifacts in photoacoustic images in phantoms as well as in vivo using a handheld 
photoacoustic imaging probe. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 

In the last decade, significant progress has been made for translating photoacoustic imaging 
(PAI) into clinics [1]. This technique uses the photoacoustic (PA) effect, where materials 
absorb short pulsed light and generate ultrasound (US) waves. The US waves can be detected 
using US transducers for reconstructing the absorbing structures. Since in tissue the US waves 
experience order of magnitude less scattering compared to light, much deeper information can 
be reconstructed compared to purely optical imaging techniques. Therefore, PAI provides 
optical absorption contrast and has the ability to image deeper than purely optical imaging 
techniques at ultrasonic resolution. Exploiting these properties, current research is focusing 
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on investigating its clinical applications such as imaging of breast cancer [2, 3], rheumatoid 
arthritis [4, 5], and atherosclerosis [6]. Additionally, multispectral PAI strengthens the 
advantages of this technique for screening and monitoring human diseases, for instance by 
examining the oxygen saturation of hemoglobin (sO2) in the lesion [3] or characterizing 
different tissues [6]. 

Recent research has focused on developing compact and affordable PAI systems. 
Integrating the laser source, especially a low cost laser source [7], into commercial handheld 
US probes for clinical use of PAI systems was proposed [7–12]. However, one of the major 
drawbacks of using a linear US transducer array is the occurrence of reflection artifacts (RAs) 
due to its limited view angle. As photoacoustically generated US waves propagate in all 
directions, the US waves propagating away from the US transducer array can be reflected 
towards the US transducer array by acoustic heterogeneities such as bone and tendon causing 
RAs in the acquired photoacoustic image. The RAs appear at larger depths than the real 
absorbers leading to misinterpretation of the acquired images. For clinical usage, real-time 
correction of the RAs in PAI is of fundamental importance. 

RAs are also called in-plane artifacts, one of two types of artifacts (clutter) in PAI. The 
other type is out-of-plane artifact [13]. The term “plane” represents the imaging plane defined 
by the US transducer array. Since the laser beam excites a large volume, absorbers which are 
not in the imaging plane absorb the light and generate signals. If the out-of-plane sensitivity 
of the transducers is high enough, these absorbers appear in the acquired image resulting in 
out-of-plane artifacts (direct out-of-plane artifacts). If there is an acoustic reflector located 
underneath these out-of-plane absorbers, out-of-plane RAs (indirect out-of-plane artifacts) 
can be present in the acquired image [13]. In this work, we aim to tackle RAs (in-plane 
artifacts). 

Several methods for reducing RAs have been presented [14–18]. Deformation 
Compensated Averaging (DCA) [14] employs tissue deformation for de-correlating the 
artifact by slightly palpating the tissue. This technique requires a well-trained person, 
sufficient deformation of tissue and works for easily deformable tissue. Localized vibration 
tagging (LOVIT) [15], introduced by Jaeger, uses a similar principle as DCA but using the 
acoustic radiation force (ARF) aimed at the artifact in the focal region of the ultrasonic beam 
instead of tissue palpation. This is a promising approach to overcome the disadvantages of 
DCA. However, it can only reduce artifacts based on the deformation of tissue in the US focal 
region. This limits the real-time capability and has safety challenges. Recently, LOVIT has 
been further improved by using multiple foci [19]. Another method exploits the acoustic 
tissue information by inversion of a linear scatter model using plane wave US measurements 
[16]. This method has to match PA and US measurements and requires numerous plane wave 
angles limiting itself to real-time performance. Schwab then introduced an advanced 
interpolation approach to significantly reduce the required number of plane waves in a linear 
scattering medium [20]. Allman introduced a convolutional neural network to remove RAs of 
point-like sources with high accuracy [18]. However, since the network is trained with 
simulated data, the accuracy might be negatively affected in in vivo situations. 

Previously Singh introduced a method, photoacoustic-guided focused ultrasound 
(PAFUSion), using focused ultrasound or synthetic backpropagation to mimic PA sources and 
thus identify the RAs [17, 21, 22]. This method can efficiently reduce the RAs, however it has 
several limitations: mimicking the PA source is limited by the angular aperture of the US 
probe; numerous additional US images are needed, challenging real-time artifact reduction; 
the PA sources (skin, blood vessels) must be perpendicular to the imaging plane that requires 
demanding alignment effort; the PA signal from the source and the mimicked signal by US 
must match each other in terms of amplitude and frequency content which might negatively 
affect the accuracy of the method. 

In this paper, we propose a new method where we exploit the use of multispectral PAI for 
identifying and removing RAs. Imaging with multiple wavelengths, PA spectral responses of 
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the features in the acquired image can be obtained. Our method is based on the assumption 
that RAs are better correlated with the image features of their corresponding original 
absorbers than with other features, exposing the suspicious artifacts. In addition, RAs appear 
at larger depths and have weaker signals than the original image feature. Combining these 
findings can reveal the RAs and remove them. 

To test the method, a handheld probe with integrated diode lasers was used for PAI. These 
diode lasers emit light at 4 wavelengths (808, 915, 940 and 980 nm). We performed 
experiments in phantoms and in vivo. Results show that this is a promising method for 
correcting RAs, potentially in real-time. 

2. Theory 

2.1. Photoacoustic imaging 

PAI is an imaging technique using pulsed laser irradiation to generate US waves which are 
subsequences of pressure changes due to thermal expansion and relaxation. The generated 
initial pressure is described as [23–25]: 

 ap μ= Γ Φ  (1) 

where aμ is the absorption coefficient [cm−1], Φ is the light fluence [J/cm2], and Γ (Grüneisen 

parameter) is a dimensionless parameter and is defined as 2 / Pc CβΓ = , where β  is the 

thermal expansion coefficient [K−1], c is the speed of sound [m/s], and PC  is the isobaric 

specific heat [J/kgK]. 
Light propagating in the tissue is scattered and absorbed. Since scattering and absorption 

are strongly dependent on the wavelength, light at different wavelengths reaches different 
depths [26, 27]. Therefore, the light fluence inside the tissue depends on both the excitation 
wavelength and the position. 

The absorption coefficient, aμ , is a wavelength-dependent optical property of the 

absorber. The generated initial pressure, p , can be rewritten as a function of the excitation 

wavelength and the local position: 

 ( , , , ).p f x y zλ=  (2) 

2.2. Reflection artifacts in photoacoustic imaging 

Figure 1 illustrates the principle of RAs in PAI. A part of generated US waves (blue) is 
reflected at the acoustic reflector, seen in Fig. 1(a) The reflected US waves (red) propagating 
back to the detector resemble a virtual acoustic source, so-called RA, located at a larger 
depth. Figure 1(b) is a reconstructed PA image of a phantom representing this situation. The 
phantom was made of a black thread placed above a plastic petri dish lid, and demi-water was 
used as an acoustic coupling medium. An RA at a larger depth is clearly visible in this image. 
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In the corrected images without segmentation, the absorber in the bottom left corner of the 
phantom was observably shrunk. This could be due to the small amount of data points for the 
Pearson correlation coefficient. 

The “tail” of the absorber in the top right corner of the phantom is likely a reconstruction 
artifact. A part of it was removed in the corrected image without segmentation. The reason is 
that the removed pixels in the “tail” were identified as RAs of the absorber. 

The threshold for the method without segmentation was applied the same as the threshold 
for the method with segmentation (0.95). However, minzΔ  was set as 2 mm for compensating 

the size of features. 

6. Discussion 

In in vivo imaging, the RAs of the blood vessels look like excess vessels and could be 
erroneously recognized as angiogenesis or hyper-vascularization, hallmarks of various 
diseases such as cancer or rheumatoid arthritis. With not much experience of RAs, 
misdiagnosis might happen. Simple solutions such as thresholding or limiting the imaging 
depth may be able to remove RAs in cases that the RAs are not accompanied by real image 
features with the same amplitude or depth range. If such image features exist, however, these 
simple solutions are not appropriate. 

Compared to previously reported methods for reducing RAs, the proposed method offers 
significant advantages. First of all, the method works automatically and performing it does 
not require experience or training of the users, as is the case with DCA or PAFUSion in 
which the users have to hold the probe perpendicularly to the acoustic reflectors. Secondly, no 
US image is needed. Acquiring US images with multiple plane wave angles is more time 
consuming and comes at a higher processing expense. Thirdly, as the method does not need 
US images to detect RAs, matching features between PA and US images (as in PAFUSion) is 
not necessary resulting in detected RAs being completely removed in this proposed method. 
Fourthly, unlike deep learning, the method does not require training with various generated 
PA distribution sizes and geometries, and acoustic characteristic of the sample which might 
be unknown in in vivo imaging. Finally, the proposed method enhances the advantages of 
multispectral PAI. 

Out-of-plane artifacts (direct and indirect out-plane-artifacts) can appear in the acquired 
PA images, especially artifacts caused by the skin. PAFUSion does not work for indirect out-
of-plane artifacts. In contrast, they can be treated under the proposed method if the direct out-
of-plane artifacts also appear in the image. However, both methods cannot handle direct out-
of-plane artifacts. Another method for these artifacts is needed. Our future work will focus on 
a complete method combining this proposed method and a new method for out-of-plane 
artifacts. 

The proposed method exploits the variance of light distribution of different wavelengths. 
In other words, the local illumination spectrum needs to be different at different depths for the 
method to work. In a scenario that the absorption and scattering spectrum is flat, resulting in a 
similar illumination spectrum at different depths, this method will not work. However, this is 
not likely in clinical imaging where the absorption coefficient varies with wavelength and 
various tissues [26]. 

minzΔ , which defines a region below an original PA feature where the method will not 

correct its RAs, is the main limitation of this method. In our experiments demonstrating the 
method, minzΔ was 1.7 mm corresponding to the threshold of the correlation coefficient of 

0.95. However, this value is not a critical limitation in clinically relevant scenarios. In in vivo 
imaging, with different layers of tissue such as skin and muscle, optical heterogeneity would 
be stronger resulting in a smaller minzΔ  than in this study. Additionally, minzΔ  can be further 

reduced by selecting wavelengths at which light fluence varies strongly along the depth. 
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