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The MCGA (Multiple Cubic Gradient 
Approximation) Method for the Analysis of Raman 
Spectra 

F. F. M. de Mul," H. B. G. ten Have, C. Otto and J. Greve 
Department of Applied Physics, University of Twente, P.O. Box 217,7500 AE Enschede, The Netherlands 

An easily accessible interactive method for the analysis of Raman spectra consisting of many overlapping peaks is 
presented. A combination of a three- or four-dimensional grid and gradient searching is applied. The method can 
handle spectra with up to about 50 lines, based on a broad background. Analytical and user-defined or tabulated 
basic functions can be included. The merits of the method are discussed with both artificial and real spectra. 

INTRODUCTION 

In recent years, much work has been done on the 
analysis and quantitative interpretation of spectra (for 
reviews, see Refs 1-5). Peak-fitting procedures normally 
apply simple functions (Gaussians, Lorentzians, 
Voightians) for the spectrum bands. However, in prac- 
tice this turns out not to be satisfactory in all cases, 
since the background in the spectrum usually cannot be 
approximated using a simple polynomial and frequently 
different bands in the spectrum are coupled through the 
intensity, the width or the position of the bands. What 
one needs is a fitting procedure that is able to handle 
spectra, in which, apart from the simple basic functions, 
tabulated functions, user-defined functions or even parts 
of other spectra can also be used as the consisting 
functions. An example is found in the analysis of the 
complicated spectra from biological molecules, e.g. 
chromosomes, which contain the rich spectra of all con- 
stituents (proteins, DNA). Since no procedure in the lit- 
erature seemed to meet our demands, it was decided to 
develop a suitable fitting procedure. This method is 
called 'multiple cubic gradient approximation,' since it 
deals with three-dimensional grid and gradient methods 
to search the optimum combination of parameters. 

The second section contains necessary basic mathe- 
matics. In the third section we propose a straightfor- 
ward, efficient and fast procedure for the analysis of 
complicated spectra in terms of separated bands and a 
well defined background : the method of 'cubic gradient 
approximation.' That section also deals with the com- 
puter realization of the peak-fitting procedures, together 
with a number of useful measures to reduce computer 
time and resulting errors. In the next two sections some 
examples are given of the analysis of spectra of varying 
composition, both artificial and real spectra, and of the 
influence of the proper definition of the background 
level. In the final section some conclusions concerning 
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the proposed method and its range of application are 
drawn. 

~~~ ~ 

BASIC THEORETICAL CONSIDERATIONS 

Normally Lorentzian or Gaussian functions are used as 
the basic spectral functions. Measurements in con- 
densed phases indicate that Lorentzian broadening 
effects are generally more Combinations of 
Lorentzians and Gaussians can also be used: linear 
combinations, of Lorentzians and Gaussians can also be 
used: linear combinations, product or the 
Voigt convolution f ~ n c t i o n : ' ~  l6 

dv' 
cz + (v' - b)2 

where v is the frequency and a, b and c are adjustable 
constants. Other functions, less frequently used, are 
inverse  polynomial^^^^*^' and combinations of basic 
functions.' 

The mathematical route from a noisy spectrum, con- 
sisting of broad overlapping bands to the original vibra- 
tional spectrum consists in noise filtering, 
deconvolution, background subtraction and peak 
finding and fitting: 
1. Noise.filtering. Apart from the photon noise in the 

signal and the background," the noise is produced 
mainly by the detector and subsequent electronics. A 
convenient treatment is the Savitsky-Golay multi- 
point averaging m e t h ~ d . ' ' ~ ~ ~  

2. Deconvolution of the instrumental resolution. This can 
be based on several methods: using Fourier trans- 
forms,2 *-*' orthogonal polynomials26 or probability 
distributions used for some classes of ill-posed prob- 
lems, i.e. problems having no unambiguous solution. 
Recent versions of these methods are the maximum 
entropy method (MEM) and the Baysian deconvolu- 
t i ~ n . ~ '  3' The latter method of deconvolution, 
applied in this work, will be described briefly in the 
subsection Deconvolution. 

Received I July 1989 
Accepted (revised) 20 July 19W 



726 F. F. M. de MUL, H. B. G. ten HAVE, C. OTTO AND J. GREVE 

Background subtraction and Rayleigh-line correction. 
A generally used form for the baseline is given by’ 

(2) 

where a , ,  b and c are adjustable constants. Pearson3’ 
has developed a method to obtain a satisfactory 
polynomial initial approximation of the background 
of the spectrum. With this method any smoothly 
varying artefact can be removed, provided that the 
artefact is noticeably broader than the broadest 
cluster of overlapping spectral bands. This method 
has been adopted in this work. For some other 
studies concerning this point, see the papers by Pitha 
and Jones (first order, and no exponential term)” 
and Gans and Gill (second order, exponential term).’ 
Wartell et al.” use polynomials up to the seventh 
order. 
Peak-search. The centre positions of the bands can 
be approximated using differentiation of the spec- 
trum. Most frequently used are first and second 
derivatives. The detectability limits with these deriv- 
atives have been examined by Vandeginste and De 
Galan.33 Some authors even use fourth and higher 
order  derivative^.^^ With each successive derivation 
the relative noise level of the resulting spectrum 
 double^,'^ so it is not always justified to obtain infor- 
mation from derivatives of order >2. It should be 
noted that a bad estimate of the background (for 
instance an estimation with too steep slopes) may 
result in a severe displacement of the zero points in 
the derivative spectrum of the measured spectrum 
and therefore in the positions of the original peaks in 
the spectrum also. We concluded from many simula- 
tions that an inspection by the user is still necessary 
between the peak-search procedures and the peak- 
fitting process (see Ref. 4). 
Peak-Jtting procedures. A number of methods have 
been developed for this problem (for reviews, see Refs 
4, 5 and 10). Normally these methods are based on 
minimization of 

y = c &xi)  + b exp (cx) 
i 

N 

(3) 
i = l  

where N is the number of points in the spectrum, 
yobs, is the observed spectrum at position xi  and ycalc 
the calculated spectrum.35 In photon counting 
experiments the standard deviation dabs. is conve- 
niently approximated using Poisson statistics with 

i = & (4) 

Yca lc (x i )  = Ybandj(xi)  + Ybackgr (Xi )  (5 )  

The function ycalc(x) can be expressed as 
n 

j =  1 

wherej runs over the number n of bands assumed to 
be part of the spectrum. The functions Yband(Xi )  and 
ybackgr(xi) denote basic spectral functions and the 
function fitting the background, respectively. 
For the derivation of the desired parameter values by 

parameter space searching for the xz minimum by scan- 
ning over the parameters in a directed or a non-directed 
(randomized) way. The analytical methods try to linear- 
ize the x2 equation by linearizing the fit functions. Gans 
[ 5 ]  gave a comprehensive review of the applicability of 
numerical methods for different situations. Which 
method is to be preferred for spectral analysis has been 
examined by other  worker^.'^.^^*^^ Fr om arguments of 
accessibility and flexibility we choose a combined grid 
and gradient search. 

MULTIPLE CUBIC GRADIENT 
APPROXIMATION 

The approximation procedure 

For the procedure of peak fitting the following assump- 
tions have been made: 
1. The centre positions of the bands in the spectrum are 

approximately known. 
2. The spectrum consists of: 

(a) Gaussian or Lorentzian functions for the peaks, 
or user-defined or tabulated functions for over- 
lapping peaks or combination bands; 

(b) a Gaussian or a Lorentzian function centred at 
zero wavenumbers for the Rayleigh line ; 

(c) a Gaussian or a Lorentzian function for the fluo- 
rescence, if present; 

(d) a polynomial up to the fifth degree for the back- 
ground (six parameters). 

Based on these constraints we want a fitting procedure 
that: 
(a) will offer us the opportunity to interpret the fitted 

spectrum, the fit and the difference spectrum 
(= measured spectrum - calculated spectrum) 
during all stages of the fitting process, and the possi- 
bility of interfering by inserting or deleting bands or 
peaks, or altering the value of individual param- 
eters; 

(b) is able to fit complete spectra, say up to 50 (partly 
overlapping) bands based upon a broad back- 
ground; 

(c) will run on personal computers in reasonable times. 
The method chosen is a combination of grid and gra- 

dient search, combined with an analytical method to 
resolve the background. For every single band j a set of 
kj parameters Pi, is defined. In every iteration step each 
of these parameters is optimized by the cubic gradient 
search method. For every parameter an individual step 
size SP, is kept in memory (for convenience we shall 
omit the subscript j ) .  The best fit is calculated from the 
least-squares results of the fit when applying all possible 
parameter permutations that can be performed with the 
k parameters, when kept constant or when enlarged or 
decreased by the corresponding step size (Pi - SPi ,  P i ,  
Pi + 6Pi; see Fig. 1). This method gives 3’ possible 

minimization of x’, B e ~ i n g t o n ~ ~  distinguished two cate- parameter combinations (e.g. position, intensity and 
gories of methods : searching-parameter space methods width). Hence for Lorentzian or Gaussian functions 
(grid search or gradient search) and approximate 33 = 27 parameter combinations are possible for every 
analytical methods (parabolic expansion or x’ band. For tabulated functions mostly the intensity and 
linearization). The first method takes a walk through the position act as parameters only. The procedures can 
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Figure 1. The cubic gradient approximation for one peak (three variables, position, amplitude and width: dP = actual step size). 

easily be expanded for four-parameter functions (e.g. 
Voigt functions). 

The reason for choosing this method of iteration, 
although computer time c~nsuming,”,~’ is its relatively 
simple way of handling the data, the easy way of inspec- 
tion of results between cycles, the possibility of avoiding 
being trapped in local minima and the opportunity to 
intervene in the approximation process between two 
successive cycles. In addition, modest amounts of com- 
puter memory are needed, thus making the method 
available for desk-top minicomputers, commonly 
applied in spectroscopy. With such a computer the time 
needed for fitting a 40-peak spectrum, after insertion of 
the proper parameters, is only a few minutes. The x2  
values that can be obtained with this method are com- 
parable to those of other, more analytical tech- 
n ique~ .~ .~ . ”  

The background is fitted by a polynomial f~nction.~’ 
Points in the digitized spectrum fix,) (xi = spectrum 
point i) are considered to belong to the background if 
situated within kvo, of the x-axis. Here v is a positive 
constant and 0, is the ‘baseline standard deviation’: 

1 [y’(vi)h(uab - I f i v i )  111 

where vi runs over the wavenumbers, u is a positive con- 
stant and h(z) is the Heaviside function: h(z) = 1 if z > 0 
and h(z) = 0 if z < 0. d b  will converge to a well defined 
value if the right constants are chosen. For spectra 
similar to Raman spectra, Pearson31 found as a good 
choice u = 4 and 2 d u d 3. Sharp-peaked signals which 
extend beyond the background noise level will be reject- 
ed. A smooth function (in our case a polynomial) is 
fitted to the background noise band (- v(TI, < y(vJ < 
+ w b )  and subtracted from the input spectrum. The 
resulting spectrum can be used for the next fit cycle. 

Including functions for the Rayleigh wing (e.g. a Lor- 
entzian centred at v = 0) and for the fluorescence (e.g. a 
broad Lorentzian centred at v = vfl), we obtain a caicu- 

lated spectrum consisting of m + 2 bands and a back- 
ground function (a polynomial function of degree r)  : 

m 

Ycalc = 1 yband, + YRayleigh + yfluor + Ybackg (7) 
j =  1 

In the actual calculations we limited m + 2 to 50 and I 
to 5 .  In every iteration step the (rn + 2 + 1) sets of vari- 
ables are optimized once and independently of each 
other by an adapted gradient search method. After each 
optimization of the parameters of a peak function, the 
corresponding step sizes are recalculated. In case the 
new optimum parameter value equals the value of the 
previous grid cycle, the step size is decreased with a pre- 
defined factor and stored in memory for use in the next 
grid cycle. 

During the fitting procedure only the difference spec- 
trum (= observed spectrum - calculated spectrum), the 
observed spectrum and the parameters of the com- 
ponents of the calculated spectrum have to be kept in 
memory. In case the procedure is started with a fit of 
the background, the difference spectrum is initially 
given by 

(8) 0 1 , k  Y%t’ = Yobs - Ycalc 

Here the first superscript indicates the number of pre- 
vious fit cycles performed completely (i.e. for all consti- 
tuting functions). The second is 1 or 0 depending on 
whether the background was optimized during or after 
the actual fit cycle, and the third superscript k (k = l-n; 
n = m + 2) indicates the number of peaks optimized 
already during the actual fit. 

Before the parameters of a peak can be optimized, the 
‘old’ peak function itself has to be calculated and added 
to the difference spectrum. After the peak parameters 
have been optimized, the new peak function is calcu- 
lated and subtracted from the difference spectrum. For 
the pth peak, y,, in the qth cycle this results in 

where y:a;,l.l”’ is given by Eqn (7) after q - 1 cycles 
have been completed. 

y 4 - 1 , 0 , P =  rest yobs - y 4 - ’ *  calc 1, + (Y;-’ - ~ p ?  (9) 
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After optimization of all n peaks, the difference spec- 
trum will become 

y q - l ,  0,  n - y q - l ,  1 . n  

Subsequently a background optimization is performed, 
which results in 

resl - Yobs - calc + (y",-' - Yp') (lo) 
p = l  

y q - l ,  1 . n  = yobs - p-1, 1 , n  
rest calc 

n 

+ c (Y",-' - Y P 9  + ( Y G ,  - Y L , )  (11) 
p =  1 

This can be written as 

(12) q - 1 9 1 , n  = 4 0 , O  = 
Yrest Y r k t  yobs - Y:,?" 

by which the new difference spectrum can be used for 
the next iteration step. The advantage of this method is 
that, once the first ycalc has been obtained, after each 
step in each cycle the difference spectrum is calculated 
by adding the 'old' function and subtracting the new 
one (for all constituent functions): 

n 

This procedure is repeated until xz is reduced to a satis- 
factory value. It should be noted that the procedure is 
done peak by peak. After each peak fit in each cycle the 
difference spectrum can be inspected and the param- 
eters can be changed, if necessary. If the difference spec- 
trum had been calculated once in each cycle after the 
optimization of all parameter values of all peaks, prob- 
lems of divergence could easily occur and as a result the 
difference spectrum would show strong oscillations. 

MODIFICATIONS OF THE 
APPROXIMATION PROCEDURE 

The procedure outlined above has to be modified for 
several reasons : 
1. The possibility of becoming stuck in a non-absolute 

or local minimum is the major problem with gra- 
dient search methods. To overcome this problem the 
step sizes have to be recalculated, once a (local) 
minimum has been reached, to larger values, corre- 
sponding to those in a previous cycle. Two possible 
solutions for the recalculation procedure were tested. 
A first possibility is to use the step sizes that were 
used in the first fit cycle as the new step sizes. Sec- 
ondly, it is possible to recalculate the step sizes to the 
values that were used by the fitting procedure just 
before the previous recalculation took place. Figure 2 
shows the results of a fit with and without the help of 
the two recalculation procedures. It shows that a 
large gain can be made if a recalculation procedure is 
used. Figure 2 shows that the second procedure 
(curves 111) gives the best results. This is due to the 
fact that if the first procedure is used, the step sizes 
are too enlarged. This is illustrated by the small step- 
like plateaux in the curves 11. 

As a result of these tests, the step sizes are recalcu- 
lated in the grid cycle every time the computer 

1 I I I I 
1 1 0  2 0 30  

no. of cycles 

Figure 2. Effect of intermediate step size recalculation: (I) fit 
without recalculaton; ( 1 1 )  fit with recalculation to initial values (a, 
b, c);  (I l l)  fit with recalculation to previous values (d, e, f); the 
recalculation is performed if the actual xz  is reduced by a factor of 
0.75 (a, d). 0.50 (b, e) or 0.25 (c. f). 

program is able to decrease ,y2 to 0.75 of the value it 
had during the previous recalculation (this value was 
found as the optimum for Lorentzian lines; in fact 
values between 0.25 and about 0.8 will work). 

2. In order to prevent values for the peak-function 
parameters which are physically unrealistic, some 
constraints are incorporated in the program. No 
negative parameter values are allowed. 

3. For efficiency reasons, the optimization of the 
parameter values is limited to a k 60 interval around 
the previous estimate of each peak-centre position. 

4. Because most information of a band in the spectrum 
is concentrated in the measured points at the 
expected centre of the band, a modified x2 criterion is 
used, in which the difference spectrum is multiplied 
by a window function peaking at the calculated peak 
centre position. The form of the window function is 
given by 

where vo j  is the estimated centre position of band j .  
After this multiplication, the fit criterion value is cal- 
culated in the same way as normally x 2  is calculated. 

5. The first difference spectrum and the most recent dif- 
ference spectrum are kept in memory and can be dis- 
played on a monitor. Hence it is possible to inspect 
the changes in the difference spectrum while it 
reduces towards the noise spectrum, which ideally 
should be left after the fit is completed. Every single 
point of the difference spectrum can be followed 
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during the fit. This makes it possible to see in what 
regions of the spectrum the fit is troublesome, poss- 
ibly owing to a bad or wrong first estimate (for 
instance, too few bands). 
The order in which the different bands are fitted is 
important. The bands with the highest amplitudes 
are fitted first, because for these bands the most reli- 
able information is available regarding position, 
width and amplitude. A small peak next to a large 
neighbouring peak in an overlapping band will tend 
to fit a part of its large neighbour more readily than 
the large neighbour will tend to do with the small 
peak. If the larger one is fitted first in each iteration 
cycle, the risk of the small peak being fitted at the 
expense of intensity belonging to the large neighbour 
is diminished. Especially when dealing with compli- 
cated spectra with many lines with often very differ- 
ent intensities, it turns out to be worthwhile to keep 
the positions of the peaks fixed at the values initially 
inserted, at least for a number of cycles, until a satis- 
factory fit with the amplitudes and the line widths as 
the only varying parameters is obtained. 
Generally what is available for the parameters of the 
bands are approximate values for the centre position 
only, so the full width at half maximum intensity 
(FWHM) and the amplitude have to be estimated. 
This estimation can be done by the user (subjective) 
or by a programmed algorithm (the drawback is that 
errors in unexpected or unpredictable situations can 
occur). Both kinds of input are made possible in the 
program. To start the fit close to an expected x2 
minimum, the peak-function parameters FWHM 
and amplitude can be estimated from the measured 
spectrum. Therefore, at first the background is esti- 
mated by the algorithm described [Eqn (6) ] .  After 
subtraction of the background, the expected peak 
positions are imported by the program. As a first 
approximation of the amplitude the values measured 
at the given positions, corrected for background, are 
taken. To obtain the FWHM values of the peaks 
constituting a multi-peaked band the program 
searches for the width at a suitably chosen percent- 
age X %  of the amplitude, i.e. the width of the inter- 
val (not necessarily symmetrical) around the 
estimated centre of the band, comprising points with 
measured intensities of more than X% of the esti- 
mated band amplitude. The first FWHM approx- 
imation is the width of the interval found, divided by 
the number of peak-centre positions (imported in the 
program) expected within the interval. The individual 
amplitudes are recalculated, based on the approx- 
imations found for the width of the peak functions 
and the measured amplitudes at the estimated peak- 
centre positions. Empirically and with help of a tri- 
angular model we found that X > 80% gives good 
results (see the next section). 

Initial approximation of peak widths 

The fitting procedure starts with the input of the 
number of peaks, estimated ‘with a spectroscopists view’ 
or using spectrum derivatives together with a reason- 
able initial guess (to be discussed later) of the spectral 
position of each peak. The computer program has to 

calculate the first estimations of the peak amplitude and 
of the peak width. 

In order to investigate the applicability of the pro- 
cedure already discussed in the previous section (point 
7) for broad overlapping bands consisting of two or 
more peaks, a number of test spectra were analysed. 
The test spectra consisted of peaks of various ampli- 
tude, width and spectral separation. For convenience 
these peaks were chosen to be triangular instead of 
Lorentzian, since in this case the width of a single 
Lorentzian is satisfactorily approximated using a 
triangular function, provided that the approximation is 
based on the upper part of the Lorentzian (relative 
amplitude > 80%). This is illustrated in Fig. 3(a) and 
(b), where for a Lorentzian and a triangular peak the 
width, approximated using the width at a level of X %  
of the intensity in the presumed peak position, is com- 
pared with the real width. The results for various com- 
binations of triangular peaks are displayed in Fig. 3(c) 
and (d). With these figures it was assumed that TI, 
T2 < 1 p 2  - p1 I < rl + T2 , (Ti and pi are the width and 
position, respectively, of peak i ;  thus allowing overlap). 
Then it can be shown that the width of each peak 
equally can be approximated by r‘, with 

2r’ = (r, + p2xi - x) + xy - r,(x - 1) 

rl 
r* X’012 - Y )  - Pl, for Y > P2 _ -  

where X’ = X A J A ,  (Ai = amplitude of peak i )  and y is 
the running variable, and with similar expressions for 
other y values. At the start of the fitting procedure y is 
chosen as the estimated position of the supposed 
highest peak in the band. It is seen that with this pro- 

A I I 

/ I  i r . ~ \  1 I 1 I I 1 
r y  o 2n  40 6 0  a o  i n n  

. ,  

r 0 

x x i n n  
Figure 3. Approximation of the widths of two overlapping peaks 
using triangular line shapes. P denotes the estimated peak posi- 
tion; r is the real FWHM and r‘ the estimated FWHM, using a 
fraction X of the intensity at P. Parameter: y p .  Values of y p :  (a) 
Lorentzian line: a l ,  r; a2. r/2; a3, r/4; a4, 0; ( b )  triangular peak: 
bl ,  r; b2, r/2; b3, r/4; b4, 0; (c) and (d) two overlapping tri- 
angular peaks: cl ,  5r/4; c2, r and -r/2; c3, 3r/4; c4, r/2 and 0; 
d l .  1.5r and -r; d2. 1.4r and -om;  d3, i . 2 r  and -OM; d4, 
1.1 r and -0.2r;  d5. r and 0. 
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cedure a reasonable guess of the widths of the peaks is 
obtained. AS will be discussed later, in the case of over- 
lapping bands the central positions should be initially 
guessed within 10% of the width, and therefore in the 
region where -r/lO 5 (x or y )  5 +r/10, where r is 
the FWHM and x and y are the running spectral vari- 
ables of both peaks. The figure shows the ratio of the 
estimated width r' and the real width us. the relative 
amplitude X (as a percentage of the band amplitude) 
that the data points should have at least in order to be 
contained in the calculation. From the figures the 
optimum value of X may be derived. 

Error calculation for the resulting parameters 

The commonly used methods for the estimation of the 
errors in the parameter values resulting from the fitting 
procedure are a variation of the initial parameter values 
(see, e.g., Ref. 32) and a variation of the final parameter 
values by varying the resulting step sizes. The first 
method can give rise to large, unrealistic, values of the 
relative errors in the  parameter^,^' up to 20%. Some 
problems with this method are a lack of convergence 
and the possibility of 'excursions' of peaks to very broad 
bands, adding to the background. 

The second method, adopted in this work, consists of 
subsequently varying the parameters P i  over a fairly 
large region. This is achieved by adding +2"cil to P , ,  
where n = 1,2, . . . , P ,  is the final value of the parameter 
Pi after completion of the fitting procedure and Eif is the 
corresponding final step size. By repetitive scanning of 
the Pi axis in this way, keeping the other parameters 
constant, the value of Pi with minimum xz (Pi,,J can be 
found [Fig. qa)]. Then the estimation of the error in Pi 
is given by 

APi = I Pi, - P ,  I (15) 
This method contains some inherent traps. Two of 
those are illustrated in Fig. 4 :  (a) a mismatch of the final 
step size to the actual x2 curve and (b) the disturbing 
effect of non-independent parameters as with overlap- 
ping bands. Therefore, this method will work only close 
to the absolute minimum value of the xz function. 

Deconvolution 

Of the methods available for the deconvolution of 
spectra we adopted3' the method based on the postu- 
late of Bayes, as described by Kennett and co- 

I a - 

- 2  I1 2 2 R 
(P-P , , ) /E  

Figure 4. Erroneous calculation of the error in the variable P, 
caused by: (a) a mismatch of the scan procedure; (b) mutual 
dependence of parameters. S is the optimum parameter corn- 
binations and s' is the minimum found with (a). The error in Pi is 
I Q,' - S I rather than IS,' - S I. 

 worker^.^'-^' For convenience we shall give here a 
short account of this method. The essence of the postu- 
late is the statement 

in which P(A)  and P(A I B) denote a priori and a poste- 
riori probabilities, respectively : 

P(B) = c P(B I M a )  (17) 
a 

Writing M (Mi, i = 1, . . . , N ,  N = number of points) for 
the measured spectrum, 0 for the original spectrum and 
C for the convolution matrix, one can write 

P(Mj)  = 1 P(MjI Oi) . P(0,) 

and 

k 

where the probabilities P(ai) (a is an arbitrary spectrum) 
are given by 

P ( U i )  = U i / X  uj 
i i  

and since M = C . 0, it is seen that P(Mi  1 Oj)  = C i j  and 
P(OJ = c j P ( O i  I M j )  . P(Mj) .  Therefore, 

The terms P(Ok) are not known on the beforehand and 
have to be estimated. A suitable procedure is an iter- 
ative relationship: 

k 

m being the number of iterations. Writing out the prob- 
abilities, one finds 

k 

With this relationship the original spectrum may be 
approximated iteratively. However, a problem arises 
upon implementation of this algorithm: a spectrum of 
N points requires about N4 multiplications per iteration 
cycle. This amount is reduced by the rather diagonal 
character of the @-matrix, since mostly the broadening 
function extends over a limited number (say - M ,  . . . , 
+ M )  of spectral points only. Then the summations over 
j and k extend over i - M ,  ..., i + M and j - M ,  ..., 
j + M ,  respectively. The number of multiplications is 
now reduced to N(4M + 1). Some corrections at the 
borders of the spectrum are necessary. 

Over- or superdeconvolution. A problem often encoun- 
tered when applying Eqn (21) is caused by the lack of a 
proper stop mechanism: with test spectra it was seen 
that the iterative process is indeed effective in repro- 
ducing the original spectra, but the process will not stop 
by itself when the original spectrum is repr~duced.~' A 
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further sharpening of peaks is obtained. This effect 
mainly originates from the fact that the deconvolution 
process will handle spectral regions with a low value for 
the slope more effectively (on a time scale basis) than 
steep regions. The deconvolution of the peak region of a 
spectral band is completed only after the completion of 
the deconvolution of the wings. When using a uniform 
deconvolution procedure for all points in the spectrum, 
the wings are then easily over-deconvoluted. 

However, when in Eqn (21) Oi") is replaced by O!", it 
turns out that with the test spectra investigated the iter- 
ation procedure leads to a convergent result, lying 
between M and 0 (dependent on the shape of the 
spectrum). It may therefore be expected that a suitable 
mechanism of damping the convergence and avoiding 
superresolution may consist of replacing O p  of Eqn 
(21) by 

(1 - 6)OI") + do!') with 0 < d < 1 (22) 
where d is dependent on the actual degree of con- 
vergence obtained during the process. It can be shown 
that a suitable damping is obtained with 

respectively, where do is a properly chosen damping 
factor and q the overall accuracy to be pursued. The 
deconvolution process is stopped after the iteration 
cycle in which the number of points in the spectrum, 
upon which damping is applied, for the first time 
exceeds a limiting value of d , N ,  where d,  is an error 
limit given by the minimum value of 3 and do/q and N 
is the number of points in the spectrum. 

Typical values are q = lo-' and do = 0.1, so d ,  = 0.1. 
In Fig. 5 some results of the deconvolution procedure, 
including the effect of over-deconvolution, are shown. 

Realization 

The computer program is written in Pascal, in modular 
form, for MS-DOS. In addition to the proper fitting 
procedures, a number of procedures concerning the 
handling of data files (i.e. intensity and spectral region 
corrections, procedures for calculations and plot and 
print routines) have been added. 

TESTS OF THE PROCEDURES WITH 
ARTIFICIAL SPECTRA 

\ 

700 400 600 80 0 

w a ~ e n ~ r s  j an-1 

Figure 5. Over-deconvolution. Example of the damping pro- 
cedure. The wavenumber axis can be re-scaled. (a) The original 
spectrum (artificial: Lorentzian lines at 0 cm-' and at indicated 
positions); (b) convolved with a Lorentzian function (FWHM = 20 
cm-'); (c) deconvolution without damping, after 10 cycles 
(incomplete) ; (d) as in (c), after 20  cycles (over-deconvolution) ; 
(e) = (a); (f) deconvolution with damping with 100% original 
spectrum [d= 1 in Eqn (22)]: automatic stop k' criterion) after 
10 cycles; (9) = (a); (h) deconvolution with mixed damping [Eqn 
(22) : d = 0.11 : automatic stop after 40 cycles, showing a close 
resemblance to the original spectrum (noteable differences in the 
top intensity of the highest lines at about 400 and 700 cm-' : -6 
and -10 a.u. respectively; differences in the peak positions and 
widths ~ 2 % ) ;  (i), (j) forced continuation of the deconvolution 
process with a damping as in (h), showing increasing loss of 
sharpness in the peaks. 

In order to investigate the quality and the shortcomings 
of the method, a number of tests were performed. This 
section deals with the treatment of artificial spectra and 
'real' spectra are discussed in the next section. 

A comparison with literature data is difficult since the 
various studies differed in methods, initial parameter 
values, maximum likelihood criteria or noise contribu- 
tion. Maddams4 and Gans' gave critical reviews and 
Pitha and Jones" compared different methods concern- 
ing the necessary computing time. 

The artificial spectra used consisted of one, two or 
three Lorentzian lines, smooth or noisy. The noise was 
Poisson noise, calculated for a default mean value of 

lo4 (with a standard deviation of lo2), using the Stirling 
approximation for n! to reduce the computing time. 
Each point yi in the smooth spectrum is corrected for 
the noise contribution, calculated by multiplying the 
noise level ui (0: = yi) with the proper probability 
factor resulting from a random choice in the Poisson 
spectrum. 

With the artificial spectra consisting of two or more 
peaks, the effects of a variation of a number of param- 
eters were studied, such as the relative positions, ampli- 
tudes and widths of the peaks and the error estimations 
of those parameters as a function of the number of 
cycles, as compared with the actual values of those 
parameters chosen at the beginning of the fitting pro- 
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cedure, which generally differ from the exact values. 
Also the error estimation in the parameters will differ 
from the exact losses. 

It is convenient to use the following notation: 

Zi = exact parameter value of peak i (X = P, A or 
F for the position, the amplitude or the full 
width at half maximum, respectively); 

X i  = approximated parameter value after the fitting 
procedure ; 

Xi' = approximated parameter value at the start of 
the fitting procedure; 

6Xi = the error in X i ,  estimated after the fitting pro- 
cedure; 

AXi = the exact error in Xi: A X i  = Xi - xi. 
The distance between two peaks has been normalized to 
D, with D = dFj/Fi, where d is the real distance and 
F j / F i  2 1. 

The errors APi  and AFi were normalized to Fi and 
the error AAi was normalized to A i .  The peak positions 
at the beginning of the fit were treated in a relative way 
by normalization of the distance between the exact posi- 
tion and the first estimate to the width of the peak, i.e. 

Of the large number of spectra only a few examples 
will be discussed here. In Fig. 6 a survey is given of the 
results of the fit of two overlapping peaks (the param- 
eters x2, AP,, A A , ,  AF,) as a function of the initial 
error in the position of one of the peaks (dP,), with the 
amplitude ratio A , / A ,  and the initial position error of 
the other peak (dP,) as the parameters. The broken 
lines in Fig. 6 are merely drawn to guide the eye. 
Smooth spectra with no noise were used here. From 
Fig. 6 it is seen that an increase in dP, generally results 
in a worse fit. However, a negative value for dP, 
improves the fit, provided that I dP, I < 1 dP, 1. This can 
be shown to be caused by the better first estimate of the 
combined spectrum : the latter spectrum resembles the 
exact spectrum more closely. This is also the reason 

dPi = (Pi  - Pi')/Fi. 

0 20 10 
d P 2  1 9, 

why the plots in the asymmetric case @,/A ,  < 1) seem 
to be shifted to higher dP, values as compared with the 
plots in the symmetric case (A , /A ,  = I), revealing 
minima at about dP, w + 10%. 

From these and similar plots it can be concluded that 
in order to obtain errors in the parameters of both 
peaks below 5%, it is necessary that dP, and dP, are 
limited to -10% < dP, < 0% and 0 < dP, < lo%, in 
which it is assumed that peak 1 is at the negative side of 
peak 2, and A J A ,  = 1. When A, /A ,  is increased, the 
above range of dP may also be increased. 

In Fig. 7 some results are shown concerning fits as a 
function of the initial guess for the distance between the 
positions of the bands. In the plots the effect of Poisson 
noise is also indicated: (alHa4) for smooth spectra and 
(blHb4) for noisy spectra. Comparing Figs 7(al) and 
(bl), it is seen that with smooth spectra different values 
of the amplitude ratio only slightly influence the final 
result, whereas with noisy spectra a reliable result can 
be obtained only for large d values. With both types of 
spectra the best results can be expected when D w 0.75, 
whereas with Poisson noise only D values larger than 1 
give error results < 2%. 

These and similar figures can be used for the estima- 
tion of accuracies in fits with real spectra. For instance, 
in order to obtain fit errors in the parameters of -= 15% 
when fitting two partly overlapping peaks with equal 
widths, the amplitude ratio A J A ,  should exceed 0.75 
(when D w 0.5) and 0.25 (when D % 1). When the width 
ratio FJF, decreases from 1.0 to 0.5, the error to be 
expected to increase by a factor of 4-6. 

ANALYSIS OF COMPLICATED SPECTRA 

Methyl alcohokthyl alcohol mixtures 

In order to test the features of the fitting procedure out- 
lined above in a more quantitative way, some mixtures 

-- 
\ 

N 
4 

20 

I d  

0 

Figure 6.  Fit results of test spectra with two Lorentzian lines. Shown: x2 value and the errors in position, amplitude and width of line 2 on 
variation of the initial guess error of the position. Amplitude ratioAJA, = 1.00 (0, a) and 0.75 (+.A). Parameters: df, = 0 (0, +) and 
-10% (a, A); FJF, = 1 .OO; normalized band spacing D = 0.8; number of cycles = 15. dP, AP = error in initial and final parameter value, 
respectively. 
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Figure 7. Fit results of test spectra with two Lorentzian lines. Shown: normalized errors in position, amplitude and width as a function of 
the amplitude ratio AJA, (parameter: band spacing D) and the band spacing D (parameter: amplitude ratio). (a) Smooth spectra; (b) 
Poisson noise included. In (al) and (b l ) :  D =0.5 (a), 0.8 ( x ) ,  1.0 (0) and 2.0 (A). In the other plots:A,/A, =0.25 ( x ) ,  0.50 (+), 0.75 
(0 )  and 1 .OO (0). Other parameters: FJF, = 1 .OO; number of cycles = 30; dP, = 0%; dP, = 10%. 

of methyl alcohol and ethyl alcohol with various con- 
centration ratios were measured and the spectra 
analysed. In Fig. 8 the spectra of the two compounds 
and the mixtures are shown for the CH and OH stretch- 
ing region around 3000 cm-'. For the calculations the 
spectra were calibrated using the 881 cm-' line of ethyl 
alcohol, which is situated in the spectrum in a satisfact- 
orily isolated way, where the contribution of methyl 
alcohol to the spectrum is comparatively negligible. 

The methyl alcohol and ethyl alcohol lines to be 
expected in this spectral region are shown in the inset in 
Fig. 8. The fitting region extended from 2780 to 3100 

2 7 0 0  wavenumbers / cm-' 31 00 

Figure 8. Methyl alcohokthyl alcohol spectra; CH and OH 
stretch region. (a)-(f): 100, 0, 75, 80, 89, 95% ethyl alcohol. 
Measured and fitted spectra coincident; 10 cycles. 

cm-'. It is seen from the spectra that the methyl 
alcohol peak in particular at 2939 cm- seems to have 
disappeared. In such situations it turns out in practice 
that a peak initially situated in the wing of a (relatively) 
giant neighbour will, during the fitting process, either 
shift to the position of this large neighbour or become 
very broad (thus becoming part of the background), or 
both, unless the position of the peak(s) are kept fixed for 
a limited number of cycles. 

In Fig. 9 the results for the various lines are shown as 
a function of ethyl alcohol concentration. The lines 
drawn through the measured points indicate the 
expected relationship. It is seen that the weak (and 
disappearing) peak at 2939 cm- ' is easily reconstructed. 
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Human eye lenses 

The spectral region mentioned above is also of interest 
in the investigation of the water content of human eye 
lenses, supposedly connected with cataract forma- 
t i ~ n . ~ ~ . ~ ’  In Fig. 10 a typical spectrum is shown, 
together with the fit of the NH, CH and OH stretching 
region. The quality of the fit is revealed in the difference 
spectrum. It turns out that the water band may be 
approximated with three Lorentzians (we shall not 
discuss the physical relevance of this assignment here). 
The background was taken as linear, on the basis of the 
shape of the spectral regions (not shown) at the left and 
right of the region shown. 

Chromosomes 

In Fig. 11, part of a spectrum of pelleted chromosomes 
is It is seen that the measured and calcu- 
lated spectra coincide. The background consisted of a 
polynomial with degree 4. All lines can be assigned, 
including the amide lines around 1600 cm-’. 

A +., ...-.- 
I 1 , I  , I I 

2880 3008 3200 3400 36ffi0 
WRVEYUMBER / cm-1 

Figure 10. Micro-Raman spectrum of a human eye lens slide for 
cataract research; determination of the absolute water 
c ~ n t e n t . ~ ’ ’ ~ ~  NH at 2860 cm-’ CH at 2950 cm-’, OH at 3180- 
3430 cm-’. Plotted: measured, calculated and difference spectra. 

1200 1400 1600 1800 
WAVENUMBER / cm-1 

Figure 11. Micro-Raman spectrum of pelleted chromosomes in 
PBS4’ *42 The measured and calculated spectra coincide. All peaks 
can be assigned. 

AHP 

Figure 12 shows spectra of AHP [ethyl hydroxy- 
phosphate, C5NH,(PO3H2),], which are seen to consist 
of at least 35 peaks. The agreement between the mea- 
sured and calculated spectra after five cycles is satisfac- 
tory (1 cycle = 35 subsequent peak fits + 1 background 
fit). The fits took about 5 min each. At this stage in the 
fitting procedure some small corrections have to be 
made: the line at 640.3 f 0.2 cm-I is slightly Gaussian; 
the line at 751.2 f 0.2 cm-I has two small shoulders 
(not yet included in the fit); and additional lines have to 
be inserted at about 560 and 1404 cm-’. The intensity 
of these additional lines can be inserted from the inten- 
sity in the difference spectrum at these points. 

The spectra shown in Fig. 12 were chosen specially 
with no side wings present in order to judge the degree 
of the background polynomial. We therefore tested the 
fitting procedure with different background degrees 
(W, Fig. 12(aHf)). From the results it follows that with 
degree 0 to 1 similar results are obtained, except for 
some small differences in the amplitude or the width of 
some individual peaks (but not the position or the inte- 
grated intensity). Background degree 2 leads to an even 
better result. With degree 3 the result becomes worse, 
with a tendency for low-intensity peaks to broaden con- 
siderably, in order to compensate for a background 
which apparently is too low locally (e.g. the peaks at 
380 and 580 cm-’). This tendency is even more manifest 
with degree 4 at the low-wavenumber side of the spec- 
trum. It can therefore be concluded that additional 
information on the background (e.g. about the side 
wings of the spectrum) is of paramount importance for 
a successful fit. 

The errors in the line positions vary from 0.2 cm-’ 
for the sharp and isolated peaks to about 3 cm-’ for 
the low and broad bands. The errors in the integrated 
intensity vary from 5% (sharp lines) to about 60% (low 
broad bands). 

DISCUSSION AND CONCLUSIONS 

The MCGA method for the analysis of complicated 
spectra has been described, and a number of applica- 
tions have been given, together with some results from 
the analysis of test spectra. In all cases a satisfactory fit 
was obtained, although in some cases a continuation of 
the fitting process seems appropriate, especially when 
extra peaks of low intensity have to be included in the 
process. Additional knowledge of the background func- 
tion is very important. The time required for the fit 
(about ten cycles) is a few minutes on a PDP-LSI 11/73 
computer (comparable to an AT-type PC) for spectra 
consisting of 35 peaks. 

An important advantage of this direct method is the 
opportunity to interfere within the process, e.g. for the 
insertion of extra lines, or for manipulation of the 
degrees of freedom. Another advantage is the 
opportunity to insert user-defined or tabulated func- 
tions, e.g. results from previous measurements. As a 
general point it may be concluded that, especially with 
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Figure 12. Micro-Raman spectrum of AHP [ethyl hydroxyphosphate, C,NH,(PO,H,),]. 800 points; 35 Lorentzian lines. (a) Measured 
spectrum; (b)-(f) measured and calculated spectra, the difference spectrum (= measured - calculated spectrum), the background and the 
constituent lines. Background: polynomial degree: (b)-(f) =0-4. respectively. Fit results (x2): (b) 702; (c) 447; (d) 384; (e) 556; (f) 941 
(arbitrary units). 

complicated spectra, such as those for biological mol- Acknowledgement 

apparently needed new lines. the most efficient and convenient way. 
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