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A Passivity Approach to Controller-Observer 
Design for Robots 

Harry Berghuis, Student Member, IEEE, and Henk Nijmeijer, Senior Member, IEEE 

Abstract-Passivity-based control methods for robots, which 
achieve the control objective by reshaping the robot system’s 
natural energy via state feedback, have, from a practical point 
of view, some very attractive properties. However, the poor 
quality of velocity measurements may significantly deteriorate 
the control performance of these methods. In this paper we 
propose a design strategy that utilizes the passivity concept in 
order to develop combined controller-observer systems for ro- 
bot motion control using position measurements only. To this 
end, first a desired energy function for the closed-loop system 
is introduced, and next the controller-observer combination is 
constructed such that the closed-loop system matches this en- 
ergy function, whereas damping is included in the controller- 
observer system to assure asymptotic stability of the closed-loop 
system. A key point in this design strategy is a fine tuning of 
the controller and observer structure to each other, which pro- 
vides solutions to the output-feedback robot control problem 
that are conceptually simple and easily implementable in in- 
dustrial robot applications. Experimental tests on a two-DOF 
manipulator system illustrate that the proposed controller-ob- 
server systems enable the achievement of higher performance 
levels compared to the frequently used practice of numerical 
position differentiation for obtaining a velocity estimate. 

I.  INTRODUCTION 
HE NONLINEAR nature of the tracking control T problem of robots has made this problem a challeng- 

ing one in robotics research. The research efforts that 
evolved from this have yielded several solutions to the 
problem, of which the computed torque controller [ l ]  is 
currently the best known. This controller achieves the 
tracking objective using the well-known nonlinear system 
theory concept of feedback linearization [2]. This illus- 
trates that this method actually stems from a general sys- 
tem theoretic methodology, thereby neglecting the natural 
structure imposed by the physical character of the robot 
system. 

In recent years, the so-called passivity-based approach 
[ 3 ]  to robot control has gained much attention which, con- 
trary to computed torque control, tackles the robot control 
problem by exploiting the robot system’s physical struc- 
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ture. The idea of this controller design philosophy is’to 
reshape the robot system’s natural energy such that the 
control objective is achieved. This is done by constructing 
the controller to meet a desired energy function for the 
closed-loop system, and add damping, via velocity feed- 
back, for asymptotic stabilization purposes [4]. Since in 
this way the passivity property of robots is preserved in 
the closed loop, this idea has been designated as passivity 
approach [3]. Based on this philosophy, Takegaki and Ar- 
imoto [5] proposed a beautiful, simple solution to the ro- 
bot position control problem, whereas its natural exten- 
sion to the motion control task was solved by Paden and 
Panja [6]. Also, for adaptive robot control the passivity- 
based approach has been studied extensively, see e.g., 

Passivity-based schemes are all characterized by a lin- 
ear state feedback part (frequently referred to as propor- 
tional-derivative (PD) feedback), which is in fact inherent 
to the underlying design philosophy. This shows that these 
schemes are close to the classical design approaches. In 
addition, these controllers tend to be robust [4], and can 
provide attractive shortcuts on the computational level, 
which can be seen particularly from a comparison of the 
position control scheme of Takegaki and Arimoto [5] and 
the computed torque solution to position control. These 
properties let us conclude that the passivity-based robot 
control methods could be very attractive from a practical 
point of view. 

Unfortunately, the need for velocity feedback shows 
one drawback of both computed torque and passivity- 
based control methods since in practice this can only be 
partially fulfilled for two reasons. First, although robot 
systems are generally equipped with high precision sen- 
sors for position measurements, velocity measurements, 
e .g . ,  by tachometers, are often contaminated with a con- 
siderable amount of noise. As this imparts severe limita- 
tions on the attainable closed-loop bandwidth, it may sig- 
nificantly deteriorate the control performance [lo], [ 1 11. 
Second, in robotic applications today velocity sensors are 
frequently omitted due to the considerable savings in cost, 
volume, and weight that can be obtained in this way [ 121. 

One way to remedy the velocity feedback problem is to 
determine a velocity signal by first-order numerical dif- 
ferentiation of the accurate position signal. The simplicity 
of this technique makes it particularly useful from an im- 
plementation point of view. However, for low and high 

[71-[91. 

1042-296)3/93$03.00 0 1993 IEEE 



BERGHUIS AND NIJMEIJER: PASSIVITY APPROACH TO CONTROLLER-OBSERVER DESIGN 

velocities especially, such a simple approximation of the 
velocity signal may be inadequate [ 131, [ 141. Moreover, 
the quantization effect that inherently goes along with this 
approach may produce undesired oscillations in the robot 
joint response, or even cause it to become unstable [12]. 
In addition, there is no theoretical justification for this ad 
hoc solution, i.e., closed-loop stability properties have not 
been established. 

A more sophisticated approach to solve the velocity 
feedback problem is the design of an observer that utilizes 
the high-quality position information for reconstructing 
the velocity signal. Although the nonlinear structure of 
the robot system makes this observer design problem a 
complex one, some solutions have already been proposed, 
for example based on the sliding mode concept [ 151, [ 161, 
and on a linear high-gain strategy [17]. These observers 
are universally applicable in the sense that they have been 
developed independent of the robot control scheme for 
which the velocity estimate is generated. However, an ob- 
server that asymptotically reconstructs the state of a non- 
linear system does not guarantee that a given stabilizing 
state-feedback controller will remain stable when using 
the estimated state instead of the true one in the feedback 
loop; in general a nonlinear separation principle is not 
valid. 

This stability problem has motivated the design of com- 
bined controller-observer schemes for robot systems us- 
ing position feedback only. For example, Canudas de Wit 
et al .  [ 181 propose a modified version of the computed- 
torque controller in which the actual velocity is replaced 
by an estimate obtained from a nonlinear observer, and 
prove local exponential stability of the overall system un- 
der some suitable conditions. Also Nicosia and Tomei [I91 
consider some known state-feedback controllers with a 
nonlinear observer inserted in the feedback loop, and 
guarantee local asymptotic stability. Besides the stability 
argument, however, it is important to observe that in a 
combined controller-observer design approach one may 
be able to efficiently tune the controller and observer 
structure to each other. This point is illustrated by the 
combined computed torque controller-linear observer idea 
of Berghuis et al .  [20], in which the linear observer ex- 
ploits the feedback linearizing property of the computed 
torque controller. In this paper we will show how this key 
idea of tuning can be applied to passivity-based robot con- 
trol. 

In particular we will present a systematic procedure that 
utilizes the passivity concept in order to design combined 
robot controller-observer systems for both the positioning 
and tracking problem. For this purpose we will introduce 
a desired energy function that consists of two parts, one 
that accounts for the closed-loop controller dynamics, and 
another part for the closed-loop observer dynamics. Next, 
via some design examples we will illustrate how to con- 
struct combined controller-observer systems such that for 
the closed-loop system the desired energy relation is es- 
tablished, whereas by the inclusion of damping in the 
control system we will assure asymptotic stability of the 

- 
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closed-loop under some suitable conditions on the con- 
troller and observer gains. The control methods devel- 
oped in this way will be referred to as passivity-based 
output-feedback robot controllers. 

The organization of this paper is as follows. The next 
section presents the design strategy, which in Section Ill 
will be used in order to develop some passivity-based out- 
put-feedback robot controllers. In Section IV the results 
of an experimental study towards performance and ro- 
bustness properties of one of the presented control meth- 
ods will be presented. We will end with some concluding 
remarks. 

11. DESIGN STRATEGY FOR PASSIVITY-BASED OUTPUT- 
FEEDBACK CONTROL 

A .  Introduction to the Passivity Approach to Robot 
Control 

ics of an n-DOF rigid robot system 
Consider the standard equations describing the dynam- 

(1)  
where M (  q) is the positive definite inertia matrix [n X n]  , 
C (  q ,  4) q the Coriolis and centrifugal torques [n x 11, 
G( q) the gravitational torques [ n  X 11, and 7 the control 
input [ n  X 11. These motion equations possess several 
properties that can be exploited to facilitate the controller 
design, see for instance [3]. For future reference these 
properties are shortly recalled here. 

Property 2. I :  The class of rigid robot systems is pus- 
sive from T to 4, that is 

M ( q ) i i  + C(q, $4 + G ( q )  = 7 

( 4 ,  7) E q T ( S ) T ( S )  dS 2 -0 (2) s: 
where 0 = H,(q(O), q(0)) > 0, and H o ( q ,  4) the total 
(co-)energy of the system ( I ) ,  i.e. 

f f o ( q ,  4) = ; STM(q)ir + P ( q )  (3) 

with P (  q) the potential energy. P ( q )  is assumed to have 
0 

Property 2.2: By defining C(q, q) using the Christof- 
fel symbols, M( q)  - 2C( q ,  q )  is skew-symmetric. More- 
over, for this choice C (  q, q)  satisfies 

an absolute minimum at q = 0. 

Property 2.3: For revolute robots 
and C(q,  q )  are bounded w.r.t. q, so 

0 < Mm 5 IIM(@II 5 MM 

for all x, y (4a) 

aC(q,  4 Y  

CY scalar. (4b) 
0 

the matrices M ( q )  

for all q (5a) 

IlCCq, x>lI ~Mllx l l  for all 4. x (5b) 

where in (5) and in the sequel we define the norm of a 
vector x as 
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and the norm of a matrix A as 

IIAII = J h ” J A )  (7) 

with A,,, ( . ) the maximum eigenvalue. Moreover, for any 
matrix A (x) = A T ( x )  > 0 and for all x, A,, and AM denote 
the minimum and maximum eigenvalue of A @ ) ,  

To provide the background for our work, we will 
shortly recapitulate the ideas underlying the passivity- 
based control methodology. To this end, assume that the 
control objective consists of positioning the robot at some 
desired position 9d. It is intuitively clear that this can be 
achieved by shifting the strict energy minimum at ( q ,  4) 
= (0, 0) to (e ,  4) = (0, 0), where e = q - qd represents 
the position error. According to (3), this shifting can be 

, realized by reshaping the potential energy of the system 
such that it obtains the desired minimum. To illustrate 
this, define the control law as (cf. Takegaki and Arimoto 

respectively. U 

[51) 
7 = G ( q )  - Kpe + v (8) 

where v represents a new control input. This choice of the 
control law actually modifies the original mechanical en- 
ergy function (3) of the open-loop system (1) into 

H I  (e, 4) = $ qrM( q)q  + i eTKpe 

irl ( e ,  q) = qTv. 

(9) 
for which it can easily be verified that 

(10) 
This implies that a marginally stable closed-loop system 
is obtained [4] that is passive from the new input v to q ,  
since 

< q ,  v )  = QT(s )u ( s )  ds L -H,(e(O), q(0)). (11) 

To stabilize the system, dumping should be added, so 
choose 

s: 
U = -Kdq. (12) 

Then LaSalle’s invariance principle can be employed to 
complete the asymptotic stability proof. 

For tracking purposes it is intuitively clear that the con- 
troller should be constructed such that the minimum ( q ,  
q) = (0,  0) of the open-loop is shifted towards ( e ,  e) = 
(0, 0) for the closed loop. To attain this objective, Paden 
and Panja 161 propose the motion controller 

(13a) 7 = M ( q ) q d  + C ( q ,  4 ) q d  + G ( q )  - Kpe + v 

U = -Kde. (1 3b) 
This controller structure establishes a passive mapping 
between v and e ,  as can be verified by evaluating the time- 
derivative of the energy function 

(14) 
along ( I ) ,  (13a). To prove asymptotic error convergence, 
Paden and Panja applied a theorem of Matrosov, see 161. 
It is important to observe that (13) is a natural extension 

Hl(e, e) = i eTM(q)e + ;eTKpe 

of the seminal result (S), (12) of Tgkegaki and Arimoto 

A different passivity-based controller was presented by 
Slotine and Li [8]. Their idea, which originates from slid- 
ing mode theory, has constituted a major breakthrough in 
adaptive control of robots. In particular, Slotine and Li 
[8] propose the tracking controller (cf. 1211) 

(15a) 

151. 

7 = M(q) i j r  + C ( 9 ,  q)qr + G ( 9 )  - Kpe + v 

v = - K ~ s I  ( 15b) 

(16) 

(17) 

where 

qr = qd - Ale 

s1 = q - qr = e + Ale 

and AI = AT > 0 ,  Kd = KT > 0, and Kp = Kp‘ > 0. For 
simplicity here and in the sequel we will assume the fol- 
lowing. 

Assumption 2.1: Kp, Kd, and A I  are constant and 

In this case, the closed-loop ( l ) ,  (15a) defines a 
(strictly) passive mapping from U to s I ,  as can be verified 
by evaluating the time derivative of the modified energy 
function 

diagonal. 0 

HI (e, s l )  = i s y M ( q ) s l  + eTKpe (18) 

M ( q ) S ,  + C ( q ,  q)s,  + Kpe = U. 

along ( l ) ,  (15a), i.e., 

(19) 
To establish stability, note that by virtue of (15b), the 
time derivative of (1 8) becomes 

(20) 

Then from ( l S ) ,  (20) global asymptotic stability can be 
guaranteed. 

The foregoing illustrates that the passivity approach to 
robot control consists of constructing a controller such that 
the closed-loop system matches a desired energy function 
that resembles the natural energy contents of the open- 
loop system. In this way, passivity of the robot system 
can be preserved in the closed loop, for which reason the 
concept was designated as passivity based [3]. Moreover, 
by the inclusion of damping in the loop via velocity feed- 
back, asymptotic stability can be attained. A for the realm 
of applications interesting feature of this concept is that it 
yields computationally attractive controllers that can be 
considered as extensions of the classical PD approach, see 
e.g., (13). 

Also alternative solutions to the robot motion control 
problem based on this passivity concept have been devel- 
oped, e.g. 1221, 1231. The important observation is, how- 
ever, that all these results are based on desired energy 
functions that fit into the following general formulation 

Hl(e, sl> = STkf(9)sl + f eTKl(q, e>e (21) 

where K l ( q ,  e )  = KT(q,  e) > 0 ,  sI = e + Ale,  and A, 
= AT > 0 not necessarily constant. The actual choices 

I?, (e, sl) = -sTKdsl - eTAIKpe. 
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for sI and K 1  ( 4 ,  e)  that have been considered in the lit- 
erature differ in an interesting way (see e.g., [3], [6], [8], 
[21], [23]), and are in fact strongly related to the proof 
technique used in the stability analysis. 

Remark 2.1: The key idea in the scheme (15) is the 
introduction of the sliding variable sl. This variable al- 
lows to straightforwardly conclude global asymptotic sta- 
bility of the closed-loop system ( l ) ,  (15), without the need 
for invoking advanced stability techniques such as in [6]. 
As a consequence, however, (15) does not possess what 
will be defined as the reduction properry. That is, for po- 
sition control (15) does not reduce to a simple PD with 
gravitation compensation, see (8), (12), but two addi- 
tional terms are present: - M ( q ) ( A l e )  - C(q ,  4)(A,e). 

where [q' z'] is the observer state, 4 represents the esti- 
mated velocity, 4 q - ij is the observer position esti- 
mation error, Ld = L: > 0, L~~ = ~ p ' l  2 0, ~~2 = L F ~  > 
0, and 

4 0  = 4 - A24 (24) 

with A2 = A; 2 0 can be considered the dual of qr in 

Assumption 2.2: Ld, Lpl, Lp2, and A2 are constant and 
(16) 

diagonal. Moreover, Ld and Lp2 can be written as 

0 
In addition, in this section the velocity of the robot sys- 

This implies that in regulation (15) still requires knowl- 
edge of inertial and centrifugal terms, unlike the control- 
ler (13) of [6]. 

where Id , scalar. 

tem is assumed to be bounded. 
Assumption 2.3: The velocity signal q is bounded by 

B. A Passivity Approach to Observer Design Vp ,  i.e., 
In this section the velocity observer design problem for 

rigid robot systems is studied as a support for our further 
developments. This problem consists of constructing an 
auxiliary dynamic system that asymptotically reconstructs 
the velocity signal from input-output measurements, i.e., 
torque T and position q ,  respectively. A new approach to 
this problem is proposed that is inspired by the passivity- 
based controller design concept. Corresponding to this 
concept, the problem is tackled by constructing an ob- 
server that forces the observer error dynamics to match a 
desired energy function, thereby preserving the passivity 
property. In addition, for asymptotic stabilization pur- 
poses damping has to be included in the loop. An inter- 
esting feature of this new approach is that it establishes a 
striking conceptual symmetry, or conceptual duality, be- 
tween the strategies to robot controller and observer de- 
sign. Such a duality feature is rather unique for nonlinear 

0 
Under Assumption 2.2 the observer error dynamics (1)- 
(23) equals 

M ( q ) S 2  + C ( q ,  @s2 + @f(q) s2  + Lp14 

where 

The following can be proved. 

sumptions 2.2 and 2.3. Under the condition 
Proposition 2. I :  Consider the observer (23) under As- 

(29) 
systems. 

dynamics (1) in state-space form 

f d  

l d  > Mi'CMVp To illustrate the proposed approach, rewrite the robot 

the error dynamics (l),  (23) are locally exponentially sta- 
ble, that is, there exist constants m, p > 0 such that 

Robot svstem 
where xT = [s,' 4'1. Moreover, a region of attraction is ( 4 t 7  - C(q7 q>q - G(q)l. given by 

X E R2n 1 I1X11 < (1dMmCG' - Vp) Based on this physical structure, introduce the general ve- 
locity observer system 

J 
where Pm and PM are defined as 

aq = z + Ldq 
dt 

0 

Proof Consider the desired energy relation 
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The time-derivative of (33), evaluated along (27), be- 
comes 

fi2(q, s2) = - ~ 2 ~ ~ ( 4 s ~  - q T ~ 2 ~ p l q  

(34) 

Using Property 2.3 and Assumption 2.3, an upper bound 
on (34) is given by 

fi2(q, s2) - ( I d M ,  - cM(\Is2\1 + vF')>lls2\12 

(35) 

Take V ( x )  = H2(q,  s2), where H 2 ( q ,  s2) as defined in (33), 
as a Lyapunov function. This function satisfies 

Pm IIxI12 5 V(X) 5 PM IIxI12 (36) 

where P,, PM as defined in (32). Equation (35) shows that 
if 

(37) \Is211 < ldMmc,' - v p  

i / ( X )  5 - K 11X112 

then there exists a constant K > 0 such that 

(38) 

for all x satisfying (37), where the right-hand side of (37) 
is positive by (29). So (30) can be concluded from (36) 
and (38), which completes the first part of the proof. 

Next, a sufficient condition for (37) to hold is 

(39) 

which implies that if 

then from (36), (38), (39) 

This completes the proof. U 
Clearly the exponential convergence of x implies the 

exponential convergence of the natural observer error state 
y T  = [qT (5'1, because x and y are linearly related. More- 
over, it is important to observe from (31), (32) that the 
attraction region grows O(ld) ,  which means that for a 
given set of gains L p l ,  A2, this region can be made arbi- 
trarily large by increasing the observer gain I,. In modern 
terminology this kind of stability is called semiglobal. 

The particular structure of the observer gains Ld and 
Lp2, see Assumption 2.2, enables the introduction of the 
sliding variable s2 = q + A2q in the observer error dy- 
namics (27). The meaning of this variable is dual to sl = 
e + Ale in the passivity-based control methodology that 
was discussed in Section II-A. The analogy between the 
passivity-based controller (15) and the observer (23) can 

also be seen by comparing the desired energy relations 
(18), (33), respectively, the error dynamics (lSb), (19), 
(27), respectively, and the auxiliary signals q,, qo in (16), 
(24), respectively. Unfortunately, the stability analysis for 
the observer is more elaborate than that for its control 
equivalent, which is due to the quadratic velocity depen- 
dence of the Coriolis and centrifugal terms. This intro- 
duces third-order terms in the Lyapunov derivative, which 
cannot be compensated for exactly due to the missing ve- 
locity signal, and as a consequence the result is only 
semiglobal. From the time-derivative (35) it can be seen 
that the third-order terms disappear if CM = 0, which con- 
firms that the Coriolis and centrifugal torques cause the 
locality. 

Passivity Preservation: The error dynamics (27) can 
be interpreted as a feedback interconnection of two sub- 
systems (assume for simplicity Lpl = 0): 

M ( q ) S 2  + C ( q ,  @sz = v (424 

v = -ldM(q)s2 + c(q, s2)(s2 - 4). (42b) 

For (42a) it can easily be verified that it is passive from v 
to s2,  since 

(s2, V >  = soT s%)v(s) ds 2 - H2(g(0) ,  ~ ~ ( 0 ) )  (43) 

where H 2 ( 4 ,  s2) as in (33). This shows that the observer 
error dynamics preserves the passivity of ( l ) ,  analog to 
the passivity methodology to controller design. Inspired 
by this, the constructed observer is baptized as passivity- 
based observer. 

Besides, the block (42b) defines a strictly passive map- 
ping from s2 to - v ,  since 

and under assumption (39) 

( - V ,  S2) 2 K IIs21/ ;T (44) 

where K > 0 constant and 1)  1) ;T the truncated L2-norm. 
Equations (43) and (44) imply that s2 E L2,  and the error 
proof can also be completed using the Z-O-passivity tools 

U 
Remark 2.2: As referred to in [3], the passivity-based 

control methodology allows for variations by generalizing 
the definition of the sliding variable sI. The observation 
problem allows for a similar generalization of the defini- 
tion of s2, that is 

discussed in [24] (see also [7] and [9]). 

40  = I$ - &(s) q (454 
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where K2(s)  and F2(s) satisfy 

F ~ ( s )  = sl  + K ~ ( s )  (46) 

and K2(s) should be chosen such that F,’(s) is strictly 
proper and stable. For instance, assume 

k 

(47) 
A2i K2(s) = c - 

i = o  S‘ 

with A2; > 0 diagonal, i E 0, . . . , k .  In correspondence 
to this generalized definition of s2, the observer system 
changes into 

Observer - z1 = z2 + Lp2q \ :t 

i :  

zk = Lp(k+ 1 ) q  I d  
whereL, = ldl + Lpj = ld A2(j - I )  + A,forj = 1, 
. . .  , k ,  and Lp(k + = I d  A2k. Then under condition (29), 
semiglobal asymptotic error convergence of the closed- 
loop system ( l ) ,  (48) can be guaranteed along the same 
steps as the proof of Proposition 2.1,  for an arbitrary k .  
Notice that to this end also the passivity theorem in [24] 
has to be invoked because the energy function (33) is not 
a strict Lyapunov function for the generalized definition 
(45b) of s2. The actual choice of k is determined by prac- 
tical considerations such as disturbance rejection. 0 

Remark 2.3: For the stabilizability proof of the open- 
loop observer system (23) we need the boundedness of the 
velocity signal q,  which is a reasonable assumption from 
a practical point of view. Nevertheless, in the combined 
controller-observer design approach, see Sections 11-C and 

0 
Remark 2.4:  By choosing A2 = 0 we obtain the open- 

loop observer that is proposed by Nicosia and Tomei [ 191, 
which shows that (27) is actually a generalization of the 
Nicosia and Tomei observer. U 

111, this assumption is not required any more. 

C. A Strategy for  Combined Controller-Observer 
Design 

In Section 11-A the principles that underlie the passiv- 
ity-based methodology to robot control were highlighted. 

Based on duality arguments, in Section 11-B a similar ap- 
proach was developed for the observer problem. As a con- 
sequence, for the design of passivity-based controller-ob- 
server systems it seems natural to take as a starting point 
a desired energy function that consists of a combination 
of the desired energy relations for the controller and ob- 
server system. This is also intuitively motivated by the 
fact that energy is an additive quantity. For this reason, 
consider the desired energy function 

H3(e, SI, 4, s2) = 7 s I M ( q ) s ,  + eTKl(q ,  e>e I T  

+ ; s M q ) s 2  + 4 qTK2(q, 414 
(49) 

where Kl(q, e )  = K 1  (4, e)T > 0 and K2(q ,  9) = K 2 ( q ,  
ij)T > 0. A design strategy for passivity-based output- 
feedback robot controllers, then consists of the following 
two steps. 

1) Choose sI, Kl(q, e ) ,  s2 and K2(q ,  q) ,  in order to 
define a desired energy function that the closed-loop 
error dynamics should match. Construct a control- 
ler-observer combination in order to attain the de- 
sired energy relationship, and add “damping” to 
the system for asymptotic stabilization. 

2) Use the desired energy relation as a Lyapunov func- 
tion and determine the conditions on the controller 
and observer gains under which the time derivative 
of this Lyapunov function is negative definite. This 
guarantees asymptotic stability of the overall error 
system. 

It is important to emphasize that for linear systems the 
above-mentioned strategy is greatly facilitated due to the 
separation principle [25], making the controller and ob- 
server design independent. For the class of nonlinear ro- 
bot systems considered here, on the other hand, this prin- 
ciple is not valid. For this reason, a key point in the design 
of combined controller-observer systems for robots is a 
fine-tuning of the observer structure to the underlying 
control structure, as will be shown in Section 111. 

The proposed approach is based on the ability to con- 
struct a control system that establishes a desired energy 
function. It will be clear that the choice of this function 
is crucial because on the one hand it will not be possible 
to successfully complete the construction phase for an ar- 
bitrary choice of this function. On the other hand the de- 
sired energy relation largely fixes the controller-observer 
structure, so specific wishes concerning this structure such 
as the reduction property (see Remark 2.1) limit the class 
of desired energy functions. 

Remark 2.5:  As velocity is not measurable, we cannot 
introduce damping in the closed-loop system by velocity 
feedback. Therefore the injection of damping in the loop 
has now to be realized via the observer system. In Section 
I11 we will illustrate how this can be done. 0 

Remark 2.6: It is interesting to recall recent work by 
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Ortega and Espinosa [26]. These authors underscore the 
need of developing a system theoretic framework for con- 
trol of nonlinear systems that incorporates at a fundamen- 
tal level the system's physical structure and in particular 
its dissipation properties. Clearly, the above-mentioned 
approach would perfectly fit into such a framework. 0 

111. SOME ILLUSTRATIVE EXAMPLES 
A .  The Slotine and Li Scheme for Output Feedback 

To illustrate the design strategy, the controller (15) is 
redesigned to a passivity-based output-feedback robot 
controller. 

Step 1 :  In the case that only position information is 
available, qr in (16) cannot be realized. Therefore rede- 
fine 

4 r  = 4d - AI(4  - q d )  (50) 

(51) 

4 0  4 - A24 (52) 

~2 = 4 - 90 4 + A2q. (53) 

and, consequently, 
. .  sI = q - qr = e + A l ( e  - 4). 

In addition, assume 

and, consequently, 

The control law is chosen as 

7 = M ( q ) i i r  + C ( q ,  + G ( q )  

- Kd(sI  - s2) - Kpe (54) 
where the observer signal s2 in (54) is introduced because 
sI cannot be realized, whereas the difference sI - s2 is a 
function of known signals, i.e., 

s1 - s2 = (q - qd) + A l ( e  - q) - A2q. (55) 
The closed-loop tracking error dynamics (1)-(54) be- 
comes 

M ( q ) i I  + c(q, 4)sl + Kdsl + Kpe 

= K ~ S Z  - C(q ,  ~ 2 1 4 , .  (56) 
Next, the observer should be designed. For this purpose, 
consider the following choice: 

(574 q = z + L(& 

z = qr + M-'(q)(Lp1Q - K,e) + Lp2q (57b) 
where Ld and Lp2 satisfy Assumption 2.2. Then the ob- 
server error dynamics equals 

M ( q ) ( i 2  + Ids21 + L,d = M(q).$ + Kpe (58)  

which, using (56), can be rewritten as 

M ( q ) S 2  + c(q,  @ ) s 2  + ( l d M ( q )  - Kd)s2 + Lplg 

= --&SI + C(q,  sJ(s2 - 4). (59) 

Similar to the desired energy relation for the separate con- 

troller and observer, (18) and (33), assume that K I  ( 9 ,  e)  
= Kp and K2(q ,  q )  = Lpl .  

Step 2: The time-derivative of the desired energy 
function 

I T  H3(e, SI, 4 ,  $2) = 7 slM(q)sl + ; eTQ 

+ i s;M(9)s2 + ; ijTLplq (60) 

along the error-dynamics (56), (59) is given by 

H3(e, SI ,  4 ,  s2) 

= -STKd(SI - S2) - sllddM(q)s2 + slKd(s2 - SI) 

+ sTC(q, s 2 ) h  - 4) + s2Tc(q, sA(s2 - 4) 
- eTA,Kpe + qTAIKpe - qTA2LP14 (61) 

where Property 2.2 has been used. For simplicity, set AI 
= A2 = A and Kp = Lpl. So, 

-eTAIKpe + qTAIKpe - qTAzLplq 

= -; eTAKpe - ; qTAKpq. (62) 

Let us replace Assumption 2.3 by Assumption 2.4.  

bounded by VM, i.e., 
Assumption 2.4:  The desired trajectory velocity qd is 

VM = sup 114d(OlI. (63) 
t 

0 
Next, using Property 2.3 and completion of the squares, 
(61) can be upper bounded by 

Then the following proposition is obtained. 

feedback robot tracking controller 
Proposition 3. I : Consider the passivity-based output- 
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where Ld and Lp2 satisfy Assumption 2.2. Under the fol- 
lowing conditions: 

Kd,m > cMVM (664 

(66b) Id > M L ’ ( K d , M  + c M v M )  

the closed-loop system is locally exponentially stable. 
Moreover, a region of attraction is given by 

where xT = [s s; (A@’], 

- V , ,  - V , ]  (68) 
C M  

6 = min 

and P,, PM are defined as 

P, = min { M , ,  A i 2  K p , , , } ,  

P, = max {M,,  AL~K,,,,}. (69) 
0 

Consider also the following Corollary. 
corollary 3.1: For position control, i.e., q d  = con- 

stant, under the condition 

ld > M , l K d . M  (70) 
the tracking controller (65) is locally exponentially 
stabilizing. 0 

Proof of Proposition 3. I :  Take as a Lyapunov func- 
tion V ( x )  = &(e, sI, q, sz), where &(e, sl ,  q ,  s2) as 
defined in (60). This function satisfies 

1 p m  llxl12 v(x) 1 PM llx112 (71) 
where P,, PM as defined in (69). Then the proof follows 
along the same lines as the proof of Proposition 2.1. 0 

From (67-69) it can be verified that the attraction re- 
gion grows either O ( f d )  or o(&), depending on 6 in (68), 
which implies that the result is semiglobal. 

B. Discussion 
1) In a separate controller and observer design ap- 

proach the controller (15) would have been combined with 
the open-loop observer (23 ) .  In that case the observer sys- 
tem would have obtained the following structure: 

9 = z + Ldq 

Observer z = qr + Lp2q + M - ’ ( q ) [ K p ( q d  - 4) r + C ( q ,  q o ) ( i l r  - 4 0 )  - Kd@r - 4011. 
The actual observer (65b) has a simpler structure. First, 
the compensation term C ( q ,  &)(q,  - qO) has been re- 
moved. Second, there is no need to feed forward the part 
-Kd(qr  - qo) of the control input into the observer sys- 
tem, since in the time derivative (61) of the desired en- 
ergy function the cross term sTKds2, which is due to the 

s l K d s I ,  which comes from the right-hand side of (59). In 
particular this feature illustrates the advantage that is ob- 
tained by an efficient tuning of the controller and observer 
structure to each other. 

2 )  The “filtered error signals” sl, s2, as defined in (51) 
and (54), respectively, could have been chosen differ- 
ently. For example, by defining 

s2 = q + AZq + A2e (72) 

one can increase the design freedom. Also the general- 
izations as discussed in Remark 2.2 can be employed. 

3) The choices cjo and qr in the compensation for the 
Coriolis and centrifugal torque, see (65), are in some 
sense arbitrary. In particular, it can be shown that for any 
compensation of the form C (  q ,  qc, ,) qc,?, where qc, I ,  q c , 2  

consists of some combination of qd, 4, A l e ,  and A2q, 
semiglobal exponential stability can be warranted under 
similar conditions on the controller and observer gains. 
Therefore actually a whole family of exponentially sta- 
bilizing output-feedback tracking controllers has been de- 
veloped (cf. [22] ) .  
4) Passivity interpretation-it is straightforward to in- 

terpret the controller-observer combination in terms of 
passivity. To that end, rewrite the error dynamics (56) 
and (59) as follows (take for simplicity Kp = Lpl = 0) 

M ( q ) S  + C(q ,  q ) s  = v (734 

(73b) v = - T ( q ,  4 ,  S) s 

where 
sT = [ST s;] 

- 

M ( q )  = diag [ M ( q ) ,  M(q)l 
- 

C ( q ,  4) = diag [C(q ,  4), C ( q ,  4)l 
T ( q ,  4, SI 

It can easily be shown that the mapping from v to s in 
(73a) is passive. The block (73b) is strictly passive from 
s to - v  if T(x) > 0, which is satisfied under the assump- 
tions of Proposition 3.1. 

C. The Paden and Panja Scheme for  Output Feedback 
The motion controller (15) is very elegant in the sense 

that it optimally shapes the closed-loop dynamics in order 
to meet the desired energy function (1 8). Unfortunately, 
this controller does not satisfy the reduction principle in 
case of regulation, unlike the passivity-based controller 
(13) of Paden and Panja [ 6 ] .  For this reason it is interest- 
ing to modify (13) to an output-feedback system. This is 
considered in the following. 

Step I :  Choose sI, s2 as in (17), (28), respectively, 
and take (49) as desired energy function, where 

K i ( q ,  e)  = Ai[2KdAL1 - M ( q ) l A i ,  K2(q, 4 )  = 2A2Kd. 

right-hand side of (56), is canceled by the cross term - (74) 
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Define, based on (49)-(74), the passivity-based output- 
feedback robot controller 

( q ~  = q - A2q 

0 b s e r v e r 

Step 2: Via straightforward calculation it can be 
shown that the time-derivative of the desired energy func- 
tion (49), (74) along the error dynamics (I) ,  (75) is given 

& 3 ( ~ )  = -x'Q(x)x - s l ( ldM(q)  - 2Kd)s2 
by 

- sTC(q, s2)ilrl  + e'C(q, il>(Ale) 

+ s i C ( q ,  s2 - q ) e  (76) 
with 

where x ( t ) T  = [e (QT [A,e(r)lT q( t )T  [A,q(t)]']. Then we 
have the following proposition: 

Proposition 3.2: Consider (75), where Ld and LP2 sat- 
isfy Assumption 2.2. Under the following conditions: 

K d , m  > A I , M M M  + (3 + & > c M v M  (784 

l d  > 2 M i 1 K d , ,  (78b) 
the closed-loop system is locally exponentially stable. A 
region of attraction is given by 

where 6 = (1 / (3  + A)), and 

P, = min {f M,, A & A , , ~ M ~ ) ,  

PM = max { ~ A ; ! , , & , M ,  s A < ! , , K d , M )  (80) 

Proof: Analog to the proof of Proposition 3.1. For 
further details, see [27]. 0 

1) Discussion 
1) The result in this section was obtained via an opti- 

mal tuning of the controller and observer system. In par- 
ticular, the controller consists of a linear estimated state- 

feedback part and a nonlinear part that compensates for 
the robot dynamics. The estimated velocity is provided 
by a second-order linear observer, into which the desired 
acceleration is fed forward. 

2) It can easily be verified that the closed-loop error 
dynamics (1)-(75) are also characterized by passivity 
preservation (cf. point 4) in the discussion of Section 

3) In the case of position control, the following modi- 
fied controller version of (8)-(12) is obtained (for AI = 
A2 = Aand Kp = K d A )  

Controller {T = G ( q )  - K d q  - K p ( g  - qd) 

III-B. 

(81a) 

Observer 

Equation (8 1) underscores the simplicity of the control- 
ler-observer combination (75). 

4) The controller-observer combination (75) is based 
on the requirement that exact knowledge of the robot dy- 
namics is available. Obviously, this is a rather strong re- 
quirement that generally cannot be met in practice. In this 
respect it is interesting to mention that in a recent result 
the system (1)-(75) was shown to be semiglobally uni- 
formly ultimately bounded (SUUB) in the presence of ar- 
bitrary uncertainties in the rigid robot dynamics M ( q ) ,  
C ( q ,  q) ,  and G ( q ) ;  see [28]. Moreover, this SUUB result 
remains valid under unknown friction and load distur- 
bances. This indicates that the proposed passivity-based 
output-feedback controllers preserve the inherent robust- 
ness properties of passivity-based state-feedback systems! 

5) For practical implementation it is also important to 
analyze the noise robustness of the control system (75). 
To this end, assume that the position measurements q are 
contaminated with noise q. Then, (75b) becomes 

q = z + Ld(q  + q - 4). (82) 

From (82) it is easy to see that the velocity estimate 4 is 
quite sensitive for noise on position measurements. This 
is undesirable since it may limit the choice of the deriv- 
ative feedback gain Kd and, therefore, the closed-loop 
bandwidth. 

To diminish the noise sensitivity problem, it may be 
advantageous to replace the controller part q by the inte- 
grator output z ,  see (75b), which is more immune to noise. 
So assume that (75a) is redefined as 

Controller { T  = M ( q ) q d  + C ( q ,  qo)qd + G ( q )  

- Kd(z - S r >  ( 8 3 )  
where qO, qr as in (75a). The closed-loop system (1)-(83), 
(75b) can be shown to be locally exponentially stable un- 
der conditions on the controller and observer gains that 
are slightly stronger than (78) [27]. The proof basically 
follows along the same lines as the one of Proposition 
3.2. Recent experimental results [27] demonstrate, how- 
ever, that in practice the noise rejection features of (83) 
are not better compared to those of (75), since for stable 
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control performance the observer bandwidths need to be 
selected equivalent for both (75) and (83). 

6 )  In practical robot control proportional-derivative 
feedback generally constitutes the main loop, because of 
its robustness, reliability, and acceptable performance. 
The passivity concept actually theoretically justifies the 
usefulness of PD feedback by showing that it exploits the 
physical nature of the robot system. If velocity informa- 
tion is noisy or even not present, a practically feasible 
solution is to implement the derivative part by recon- 
structing the velocity signal via linear estimation tech- 
niques, particularly because of its ease of implementa- 
tion. The results of this section form a scientific basis for 
this approach. 

IV. EXPERIMENTAL CASE STUDY 
To verify the theoretical analysis, a series of experi- 

ments were performed with the controller (75) using a 
two-DOF robot manipulator moving in the vertical plane; 
see Fig. 1 [29]. This robot system is actually lightweight 
in construction, containing some flexibility in the links. 
Nevertheless, under relatively slow motion assumptions 
the system matches the rigid body dynamics described in 
the Appendix. For these dynamics it can be shown that 
M,,, = 1 kg * m2, M ,  = 25 kg m2, and C, = 6 kg - m2 
. s - l  

Controller Implementation Issues: The robot is con- 
trolled using a network of transputers, which offers a 
powerful tool for real-time control. This network consists 
of a data acquisition rack based on the Twente LINX 
backplane [30] and a MEIKO computing surface, which 
are connected by means of an optical transputer link. The 
data acquisition and actuation takes place using two 16- 
bit T222 transputers, one for each robot link. The 
transputers inside the MEIKO cabinet perform the control 
calculations on 32-bit T800 transputers. The control al- 
gorithm was distributed on two TSOO's, one containing 
the velocity observer and the PD-feedback, and the other 
containing the model-based components. This separation 
on two transputers was performed to facilitate the use of 
dual rate control, which allows to update the model-based 
portion at a slower rate than the PD-loop including ob- 
server. See, for instance [31], where a similar idea was 
used. With this parallel processing equipment sampling 
frequencies of up to 3 kHz can be obtained, although the 
actual sampling frequency was set at 1 kHz for the PD 
and observer part, and 250 Hz for the model-based part. 
Position measurements are obtained from resolvers that 
are mounted directly on the motor shafts. To convert the 
analog resolver signals, 16 bits RDC's are used. Actua- 
tion takes place using a 12 bit D/A converter. Further de- 
tails can be found in the work of Roebbers [30]. 

We utilized as much as possible the knowledge of the 
system dynamics in the controller implementation. For 
that reason, the model-based part in the controller (75) 
was extended with an explicit compensation for the fric- 
tion F (  q)  present in the system. This friction can approx- 

Fig.  1 .  Two-DOF robot system 

imately be described by Coulomb and viscous terms [27], 
as can be seen from the structure of F ( - )  given in the 
Appendix. The friction compensation strategy is based on 
the desired trajectory velocity, in order to prevent chat- 
tering of the sign-dependent terms at low velocities. Ac- 
cording to the foregoing, the actual control input was 
given by 

where qr and qo as in (75a), and the observer part as given 
in (75b). The integrators in he observer dynamics were 
implemented using the forward Euler approximation, 
which shows that the observed part is computationally 
simple. 

Reference Trajectory: In these experiments the robot 
system had to follow a desired path given in Fig. 2.  An 
upper bound on the velocity of this path, see Assumption 
2.4, is given by V, = 0.4 rad * s-' .  As mentioned above, 
the desired path is selected relatively slow in order to pre- 
vent strong excitation of the unmodeled flexibility effects 
in the links. 

Results Using Controller-Observer Combination: In a 
first experiment we considered the closed-loop perfor- 
mance of (75b)-(84), with the controller and observer 
gains equal to 

A2 = [O" 0 0.1 '1. 
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time (s) 
Fig. 2. Desired trajectory signals. 

The initial observer conditions were set at 

which corresponds to the fact that position measurements 
are available. In Fig. 3 the tracking errors e ( t )  are given, 
for both the upper (a) and lower (b) link. For clarity 
the errors are shown on large and small scales. Fig. 4 
shows the corresponding velocity error signal, i .e.,  

From Fig. 3 it can be concluded that the transient re- 
sponses are slightly underdamped, which is due to the rel- 
atively large proportional action A, .  Unfortunately, de- 
creasing A, would yield a smaller loop stiffness, which in 
turn would decrease the tracking accuracy after the tran- 
sient phase. Since we prefer a high tracking accuracy, AI 
was chosen to be large, at the cost of underdamped initial 
responses. 

Results Using Numerical Differentiation of Position: 
Next we performed a comparative experiment in which 
the velocity was approximated by the in practice fre- 
quently employed numerical position differentiation tech- 
nique. That is, we defined the velocity estimate in the 
control input (84) as 

4 0 0 )  - Gd(t). 

, k = l ; - - , d  4(kT) - q((k  - 1 ) T )  
T 4 o o m  = 

(87) 

where k represents the sampling instant, T = 1 ms, and 
dT = 15 s,  the total experiment time. The results of this 
experiment are presented in Figs. 5 and 6. 

Figs. 3 and 5 illustrate that the tracking errors for both 
velocity reconstruction approaches are similar in both the 
transient and "steady-state" phase. On the other hand, 
the velocity errors in Figs. 4 and 6 show a clear differ- 

ence: the second-order linear observer (75b) provides a 
velocity estimate that has a significant higher immunity to 
noise compared to the one of the differentiation technique 
(87). This is also indicated by the variance of the velocity 
error signals, which are enumerated in Table I. These 
variances have been determined on t E [2.5, 151 using the 
MATLAB-function cov( e). 

Table I shows that the variance has at least been de- 
creased a factor four. This is attractive for two reasons. 
First, it yields a smoother control input, which may both 
increase the actuator's lifetime and prevent the excitation 
of unmodeled high-frequency dynamics. Second, it al- 
lows increase of the derivative gain Kd and therefore the 
proportional gain A , ,  which enables the achievement of 
higher levels of tracking performance (cf. [28]). 

Two aspects need further discussion. First, despite the 
different noise levels in the velocity estimate and conse- 
quently the input torque, the tracking errors show basi- 
cally the same time behavior. This can be explained from 
the second-order filtering nature of the robot dynamics 
from torque to position. Second, not all of the 16 bits of 
the lower link RDC are significant. In particular, the ac- 
curacy of the position signal of the upper link is 16 bits, 
whereas that of the lower link is only 14 bits due to cross- 
talk effects in the data acquisition rack. This point can 
clearly be observed from Fig. 6: the noise on the esti- 
mated velocity of the upper link is mainly determined by 
quantization noise, whereas the noise on the velocity es- 
timate of the lower link is dominated by electromagnetic 
disturbances. 

Remark 4.  I :  Although the controller-observer system 
shows acceptable tracking performance, the choice (85) 
for Kd does not satisfy the condition (78a) as required by 
Proposition 3.2 for asymptotic stabilization. This indi- 
cates that the conditions on the gains as given in the Prop- 
ositions 2.1, 3 . 1 ,  and 3.2 are likely to be conservative, 

0 and will in general not be necessary. 
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TABLE I 
VARIANCES [RAD’ s-’] OF VELOCITY ERROR SIGNALS 

V. CONCLUSION 
A strategy for designing robot motion control systems 

that requires only joint position measurements was pre- 
sented. To this end the passivity approach to state-feed- 
back robot control was extended in a natural way to the 
case that a velocity observer is integrated in the control 
loop. Via some illustrative design examples it was shown 
that this strategy can provide semiglobally exponentially 
stabilizing solutions to the output-feedback robot tracking 
problem that are computationally efficient and robust to 
model uncertainties, which is mainly due to the fact that 
in the resulting control systems both the controller and 
observer exploit the physical structure of the robot sys- 
tem. 

Tests on a two-DOF mechanical construction were per- 
formed in order to experimentally verify the characteristic 
features of, from an implementation perspective, the most 
interesting controller-observer combination. It was illus- 
trated that the tracking errors converge (close) to zero, 
although the conditions on the controller gains for stabil- 
ity were not met. This indicates that these stability con- 
ditions are too conservative and in general not necessary. 
More interestingly, comparative experiments showed that 
the linear observer outperforms the rather ad hoc position 
differentiation algorithm, with respect to noise sensitiv- 
ity. This is achieved despite the fact that the additional 
computations for the linear observer are basically negli- 
gible. 

We would like to stress that the presented control 
schemes, particularly the one proposed in Section 111-B, 
are interesting for industrial purposes. As is well known, 
an important design constraint in the development of ro- 
botic and other mechatronic systems is their economic 
feasibility. Because of the considerable cost savings that 
can be obtained, many robots today determine a velocity 
from the position signal by a first-order approximation 
[12]. The velocity observer as presented in Section 111-B 
may serve as a useful alternative for such an approxima- 
tion, particularly because of the guaranteed stability and 
enhanced noise-rejection properties. 

APPENDIX 
The robot system is characterized by [27] 

1 r9.77 + 2.02 cos ( q 2 )  1.26 + 1.01 cos (q2 )  
M(a \  = 

1 \ 1’ 

L1.26 + 1.01 cos (q2 )  1.12 

-1.01 sin (q2)G2 -1.01 sin (q2)(& + q2) 

1.01 sin (q2)ql  0 
q 9  i l) = 

8.1 sin (ql) + 1.13 sin (41 + q 2 )  

1.13 sin ( q l  + q2) G ( q )  = g 

where g = 9.8 ms-* is the acceleration of gravity 
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