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Abstract— The design and realization of an on-line learning motion
controller for a linear motor is presented, and its usefulness is
evaluated. The controller consists of two components: 1) a model-
based feedback component and 2) a learning feedforward component.
The feedback component is designed on basis of a simple second order
linear model, which is known to have structural errors. In the design,
emphasis is placed on robustness. The learning feedforward
component is a neural-network-based controller, comprised of a one-
hidden-layer structure with second-order B-spline basis functions.
Simulations and experimental evaluations show that, with little effort,
a high-performance motion system can be obtained with this
approach.

Index terms– Intelligent control, learning control systems,
linear synchronous motors, mechatronics, motion control,
neural network applications

I. INTRODUCTION

Modern laser cutting, high-speed milling and scanning
machines require fast and/or accurate linear motions. Linear
electromotors are becoming increasingly popular in such
applications. Compared to traditional drives that use rotational
electromotors and lead screw or toothed belts (indirect-drive), the
direct-drive linear motor exhibits the property of contactless
transfer of electrical power to translational mechanical power
according to the laws of magnetic induction. The electromagnetic
force is applied directly to the payload without the intervention of
a mechanical transmission. For linear motion actuation, the linear
motor design, therefore, features the following advantages over its
traditional rotary-motor and transmission counterpart [1]:

• less friction and no backlash, resulting in high accuracy;
• no mechanical limitations on acceleration and velocity; (the

velocity is only limited by the bandwidth of the position
measurement system (usually an encoder) or by the power
electronics);

• higher reliability and longer lifetime, due to mechanical
simplicity.
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Hence, the performance of such a motion system is hardly
limited by mechanical elements if the remainder of the
construction (such as the supporting frame) is designed
sufficiently stiff.

In this paper, we consider a specific type of linear elec-
tromotor, namely, a brushless permanent-magnet motor. This type
of motor is attractive because it offers high-power density,
reliability, and efficiency. However, it suffers from a positional
dependency in the thrust force, herein called the force ripple. Due
to the direct drive principle of a linear motor, the force ripple can
have a significant effect on the positional accuracy at the load. As
the force ripple is a disturbance that is a-priori unpredictable, yet
highly reproducible, one can try to minimize it by adjusting the
feed currents for the motor on line using a learning controller [2].
This idea will be pursued here as well, however, with the aim to
control motion rather than force [3]. Hence, we want to eliminate
positional inaccuracy due to force ripple or any other
(reproducible, slowly varying) disturbance. For this purpose we
consider a learning feedforward controller structure [4], i.e., a
controller consisting of a model-based feedback component and a
learning feedforward component.

We first discuss the linear motor motion system in more detail
in Section II. Next, the design of the learning control system is
discussed (Section III). Simulations and experimental results will
be presented in Section IV. We end with conclusions in Section
V.

II. LINEAR MOTOR

A. Working principle

In Fig. 1 the working principle of the linear motor being studied
is depicted. It is comprised of two main parts:

• a number of base-mounted permanent magnets forming the
stator;

• a translator (as counterpart of the rotor in a rotating motor)
formed by a number of iron-core coils.

By applying a three-phase current to three adjoining coils of the
translator, a sequence of attracting and repelling forces between
the poles and the permanent magnets will be generated. This
results in a thrust force experienced by the translator. Basically,
the motor is a synchronous permanent-magnet motor with
electronic commutation. The interested reader is referred to [5]
and [6] for literature on linear motors.
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Fig. 1. Working principle of a (three-phase) synchronous permanent-magnet linear
motor.

In addition to the thrust force, other forces are generated in the
synchronous permanent-magnet motor by two physical
phenomena [5].

1) Cogging or detent force – The translator of the linear motor
consists of iron-core coils. The attraction between the
permanent magnets and the iron cores causes a force in
direction of motion. This force depends only on the relative
position of the motor coils with respect to the magnets and is
always present, even when there is no current flowing in the
motor coils.

2) Reluctance force – When the position of the translator
changes, the winding self-inductance varies. When current
flows through the coils, this causes a position-dependent
force in direction of motion.

All of these force sources are greatly affected by the magnetic
structure of the motor. Ideally, the motor thrust force is position
independent. Cogging and reluctance force together cause an
undesirable positional dependency in the thrust force, i.e., the
force ripple.

B. Force-Ripple compensation

By properly designing and realizing the spatial layout of the
permanent magnets and the feed currents of the motor, the force
ripple can be minimized. However, to reduce manufac-turing
costs of the motor, it is desirable to have not-too-tight tolerances
on both magnetic properties and placement accuracy of the
perma-nent magnets. One way to allow this and yet minimize
force ripple due to lack of spatial symmetries is by constructional
measures.

• Use noniron cores instead of iron cores for the translator
windings.

• Skew the stator magnets relative to the direction of
movement of the translator.

Unfortunately, these measures reduce the maximum force that
can be generated and the efficiency of the motor. One can instead
compensate the force ripple in feedback by modifying the feed
currents with on-line evaluations of off-line computed expressions
in terms of the back EMF [7], [8]. The merits of this approach are
that one obtains better positional accuracy without sacrificing
maximum force and motor efficiency. Recently, it has been shown
that it is beneficial to determine the required current profile on-
line using adaptation, as this allows to compensate for
nonlinearities and for effects particular to the motor under control
[2]. As an alternative to

Fig. 2. Nonlinear block diagram model of the linear motor.

feedback compensation using measurements of back EMF, one
can use feedforward compensation on basis of an experimentally
identified first-order approximation of the force ripple [9]. This
yields good results and does not require measurement of back
EMF, which is attractive. Here, we pursue the combination of the
latter ideas, i.e., we try to compensate the force ripple using
learning (adaptive) feedforward control. Therefore, we need no
measurement of back EMF and may be able to compensate
undesirable effects particular to the motor under control, without
having to identify a low-order approximation of the main
disturbances.

C. Linear motor specifications

The linear motor considered here is a current-controlled three-
phase motor driving a carriage supported by a number of
recirculating ball bearings. The motor uses sinusoidal
commutation. The position of the carriage is measured by an
incremental linear encoder with a measurement resolution of 0.5
µm. The carriage is comprised of, among other things, the
translator of the motor and an additional dummy mass to realize a
total carriage mass of 37 kg, resembling a practical setup. As the
ball bearings are not perfect, the system is not free of friction.

Fig. 2 depicts a block diagram model of the motor. This non-
linear model is used as starting point for learning controller
design. It comprises two nonlinear blocks.

• The friction is modeled with a combination of Coulomb
friction, viscous friction and a so called Stribeck effect [10],
which can be interpreted as stiction.

• The force ripple is described by a sinusoidal function of the
load position.

The linear motor under concern is applied in, among other
things, scanning machines and pick and place machines, where
high positioning accuracy is required. The main motor
characteristics are: Fmax = 750 N, mtranslator = 7 kg, mload = 30 kg,
vmax = 2 m/s, amax = 20 m/s2. In a scanning machine, movements
take place with low velocities (up to approximately 50 mm/s) and
low accelerations. In this case, cogging and, to a lesser extent,
friction disturbances are the dominant causes for position errors of
the translator and, accordingly, the payload. In a pick and place
machine, translator movements take place with high velocities (up
to 2 m/s) and large accelerations (up to 20 m/s2). In such
applications, the influence of the cogging disturbance is relatively
small; the influence of dynamic
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Fig. 3. Learning feedforward controller.

(acceleration and deceleration) effects is more dominant (see
Section IV-B).

III. CONTROLLER DESIGN

Industrial mechatronic servo systems are mostly controlled by a
proportional-plus-derivative action (PD)-type feedback controller
in combination with a feedforward controller and disturbance
compensation (I-action). For good system performance, the
feedforward controller is provided with the inverse of the a priori
known process model. This implies that modeling and
identification procedures are essential for obtaining controllers of
sufficient quality. In other words, knowledge of the process is a
prerequisite for good control. Often, the available knowledge of
the process to be controlled is not appropriate for controller
design. In this case, for example, the main disturbances, friction
and force ripple, are not known quantitatively beforehand and,
hence, cannot be compensated for properly. In such a situation it
makes sense to use available knowledge of the process during
controller design, as far as viable, and to acquire additional
process knowledge on-line (during control) for additional
performance. Such an approach can be implemented by using a
learning controller that is comprised of the following two
components (Fig. 3) [4]:
• a feedback component (C), designed on basis of the a priori

available process model, with the aim of delivering a robust
controlled system with large stability margins;

• a separate learning component (Q), equipped to acquire and
utilize process knowledge which is not taken into account
(quantitatively) in feedback design, so that the system
performance is optimized during control.

So the design of the learning controller can be divided into two
steps: 1) feedback component design and 2) feedforward
component design. Before discussing the latter, we will elaborate
upon the concept behind the learning feedforward controller.

A. Feedback component

Because the friction and ripple characteristics, shown in Fig. 2,
are not known accurately, we do not take them into account in
feedback controller design. The resulting model of the linear
motor is a simple second order system (moving mass):

    &&x
m

F= 1
thrust       (1)

Fig. 4. Learning (upper) in feedforward versus (lower) in feedback.

The feedback controller has been designed considering the model
of (1). As the errors of the model-based controller will be reduced
by the learning component, the demands on feedback tracking
performance are not strict. For this reason, the feedback
parameters have been chosen sufficiently small, so as to obtain a
safe stability margin. A PID-type feedback controller is used
during the experiments. The parameters of the PID-type feedback
controller are adjusted according to some tuning rules, with very
little effort. The most important goal of the feedback controller is
to realize a stable closed loop system. A PID controller with Kp =
2.8⋅105 N/m, Kd = 5.5⋅103 Ns/m and Ki = 7.2⋅106 N/ms (m = 37
kg) result in a well damped and stable closed loop system with a
system bandwidth of approximately 25 Hz.

B. Learning feedforward concept

First, locating the learning component in the feedforward rather
than feedback loop will be motivated. Then, the choice of the
learning network, as it is implemented as a neural network, is
motivated. The chosen network learning rule will be discussed
next.

1) Learning in Feedforward Versus in Feedback: In a tracking
control system, the learning component can be located either in
the feedback loop or outside the feedback loop, resulting in
feedforward learning (Fig. 4).

One reason for choosing the feedforward loop is that, for re-
producible disturbances such as unmodelled process dynamics,
feedforward compensation is principally faster than feedback
compensation. In other words, we get the best performance if we
try to learn the inverse process in the feedforward path.

A second reason follows from considering stability at an
intuitive level. If we disregard the learning loop, the transfer
functions of the closed-loop system with a learning feedfor-ward
and a learning feedback controller are, respectively,

Y
R

Q s P s C s P s
C s P s

= +
+

ff ( ) ( ) ( ) ( )
( ) ( )1

                    (2)
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Fig. 5. Linear motor motion as function of network inputs (low-velocity movement).

Y
R

C s P s
Q s P s C s P s

=
− +

( ) ( )
( ) ( ) ( ) ( )1 fb

                (3)

As the stability of the controlled system is determined by the
feedback loop [see Fig. 4 and (2) and (3)], feedback learning may
endanger stability. Stable feedback learning or adaptation
mechanisms can be constructed, but require detailed analysis of
stability robustness. In feedforward learning, this seems less
necessary.

However, although not explicit in Fig. 4, the feedforward
learning structure also incorporates a contribution to the feedback
loop, caused by the fact that any learning signal will be based on
measurements of process output. We come back to this later, when
choosing the learning rule.

2) Choice of learning network: The learning feedforward
controller has to create a non-linear mapping between the
reference input(s) and the force output. This mapping has to be
learned by the controller. Optional realizations are an adjustable
look-up table, a multilayer perceptron [11], a radial basis function
network [12] or a single-layer B-spline network [13]. In line with
previous research [4], we have chosen to use B-spline networks.
Such networks are comparable to radial basis function networks;
they are one-hidden-layer networks with adaptable weights
between the hidden layer and output layer only and, in case of
multiple input variables, tensor product construction. They make
use of B-spline basis functions that unequal zero on a restricted
part of the input domain only. Hence, they feature a relatively
short evaluation time for reading their content and for learning.

3) Learning rule:  The standard learning rule used with a B-
spline network is based on the back propagation learning rule
[11]. Changing the values of the network weights in the direction
of steepest descent with respect to error results in minimizing the
summed squared error of the network. Consider an input x
together with a desired output yt ( )x . When the weights are
adjusted according to the following learning rule, the actual
output will approach the desired output.

w w y y bi i i i t i ik k k1 1 1L L L, , { ( ) ( )} ( )new old= + ⋅ − ⋅γ x x x       (4)
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Fig. 6. Position error before learning (dashed) and during second (dotted) and tenth
(solic) runs while learning.

with learning rate γ satisfying 0<γ<1 and (k-dimensional) basis
functions ( )bi ik1K

x .
In the ideal case, the feedforward component should contain the

mapping from the reference signals to corresponding control
signal, such that no position error occurs by applying this control
signal to the process. The total feedforward structure equals the
inverse process model in that case. As long as this mapping is not
perfect, position errors will occur which will be compensated for
by the output of the feedback component. Hence, we can interpret
the feedback steering as an error measure for the feedforward
steering. Therefore, using the feedback control signals as the
output error measure for the learning feedforward controller is
justified, and we obtain the structure of Fig. 3. This changes the
learning rule into:

w w u bi i new i i old fb i ik k k1 1 1L L L, , ( ) ( )= + ⋅ ⋅γ x x         (5)

With (5), it becomes clear how the “feedforward component” is
incorporated in a feedback loop due to learning. Hence, the
addition of a learning feedforward component may endanger
system stability. Further research regarding this is reported in
[14]; at this moment, we assume that, as long as γ small, the
effect of learning on stability can be neglected. An additional
benefit of a small learning rate is that the learning behaviour
becomes robust for a considerable amount of sensor noise [4].

C. Learning feedforward component design

A number of design choices remain to be made. The most
important ones are the following.

1) Network inputs: As a linear motor mainly suffers from
position-dependent disturbances (cogging), it seems wise to take
at least the setpoint position as network input. Exper-iments are
performed with setpoint velocity as additional network input. Fig.
5 shows that for the motion profiles to be used in the experiments
(see the Appendix), we have obtained a unique combination of
network inputs during the time span of the motion in this way.
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Fig. 7. Position error during (upper) tenth run and (lower) twentieth run while
learning.

This unique codification is essential because disturbances not
depending on position or velocity (for example acceleration
disturbances) are allocated to a combination of these network
inputs. Proper steering signals to compensate for this cannot be
stored in the network if the codification is not unique during the
time span of the motion, for example, if only setpoint position was
taken as network input.

2) Order of Spline Functions: To obtain continuous control
signals with bounded time derivatives, at least second-order
splines are required. Higher order interpolation and, hence,
additional smoothness can be obtained at the cost of extra
computational effort. We have chosen to experiment with second-
order spline functions.

3) Learning Rate: A learning rate γ=0.1 is used. This
learning rate is chosen as a compromise between fast learning and
assuring stability. From simulations and experiments this turned
out to be a proper value.

4) Number of Splines and Distribution of Splines on Input
Space: The B-splines are placed on the input spaces according to
a predefined grid for each input space. We prefer to use a uniform
distribution as much as possible, for computational efficiency.

In our experiments, the position of the carriage varied in the
range [–0.4m …  0.1m]. Over this range, 300 splines were
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Fig. 8. Bode diagram of disturbance suppression of cogging.

distributed uniformly. Variation of the feedforward steering signal
over the position input was expected to be mainly determined by
cogging. With the given amount of splines, these variations can
be well approximated.

Over the velocity input, variations in the feedforward steer-ing
signal were expected to be mainly determined by friction. From
the friction characteristic assumed in Fig. 2 we know that it is
discontinuous at zero velocity (Coulomb friction) and a strongly
non-linear friction force variation around this velocity due to
Stribeck curve effects. To allow the network to approximate this,
two measures were taken. Firstly, the velocity input domain was
separated into two parts, one for negative velocity and one for
positive. Secondly, the spline density was chosen higher, close to
zero: 3 in the velocity range [0.05 …  1.0 m/s] (both directions);
and 9 in the range [0.0 …  0.05 m/s] (again both directions).

The memory requirement of the network is determined by the
number of B-splines used. Approximately 100 kb of memory were
available for the learning feedforward control algorithm in the
linear motor setup. The total size of the network is 300⋅(14+14) =
8400 spline functions. A 32 bit floating point number
representation was used during implementation, so that
8400⋅4=33600 bytes of memory were used for storage of the
network weights.

IV. RESULTS

During simulations and experiments, the linear motor was
required to let the carriage follow a second order profile for the
position.

A. Simulations

Simulations were performed with the simulation program 20-
sim  [15] to demonstrate feasibility of  learning control. A non-
linear motor simulation model was obtained by extending (1) with
friction and cogging effects, as depicted in the motor model of
Fig. 2. The friction force was assumed to consist of viscous
friction (linear in the velocity), Coulomb friction (dependent of
the sign of the velocity) and Stribeck curve effects (variation in
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Fig. 9. Unstable learning process: position error (upper left) before learning and (upper right) during tenth and (lower) twentieth runs.

friction coefficient at low speed). The cogging characteristic was
assumed to be sinusoidal, with a spatial period of 16 mm and an
amplitude of 8.5 N. In reality, the cogging disturbance is more
complex in shape (e.g., due to variations in magnet dimensions),
but has a comparable period and amplitude. No parameter
mismatches were introduced into the simulation model compared
to the model used for feedback controller design.

The simulation results indicated that the proposed learning
controller is able to compensate the effects of friction, cogging
and feedback controller imperfections [16].

B. Experiments

Experiments were performed with the actual linear motor setup
as well. The control system was implemented using a dSPACE

DS1102 controller board with a TMS320C31 40 MHz floating-
point digital signal processor (DSP). The controller executed at a
sampling frequency of 1.7 kHz. The network weights were
initialized to zero before the experiments were performed. The
main results for both high and low velocity trails are shown here;
for a more complete and detailed description of the experiments

performed with the linear motor system, the reader is referred to
[16].

1)  Low Velocities: The required motion was a movement back
and forth over 0.3 m within 6 s. (see the Appendix). This motion
was covered repeatedly, and Fig. 6 shows the position error of the
carriage before learning, during the second and tenth run while
learning. The position error signals are shown for the first half of
the movement only; the second half gives similar results.

The learning behavior of the B-spline network during repeated
coverage of the specified path is obvious. These experimental
results show that the learning feedforward controller actually
reduces the position errors of the linear motor system drastically.
The position error of the carriage before learning (only the
feedback controller is applied) falls within the -70 to 70 µm
range. As can be seen from Fig. 7, the position error drops to
within -4 to 4 µm during the tenth run. If learning is continued
thereafter, the position error hardly reduces further, due to noise
and restrictions in measurement resolution (0.5 µm).

A remarkable fact is that, although there is a large difference in
tracking error, the currents that are fed to the motor in run one
and in run ten differ only a little. However, a principal difference
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is that, in run one, these currents are determined completely by
the feedback controller, whereas, in run ten, they are determined
almost completely by the feed forward controller

2) High Velocities: At high speed and, accordingly, large
accelerations, the controller has to deal with other effects in the
system compared to low-speed motions. As mentioned in the
previous section, we had to deal with Stribeck curve effects and
cogging in low speed applications. At high speed and large
accelerations, the learning controller has to deal mainly with
viscous friction and acceleration forces compensation. The
disturbance resulting from cogging is relatively small at high
speed. After all, cogging disturbance appears at higher
frequencies in this case, compared to low-velocity movements.
Because of the larger disturbance suppression of the plant for
higher frequencies, the amplitude of the cogging disturbance is
reduced considerably. This can be illustrated by considering the
transfer function that describes the ripple disturbance
suppression. For the idealized second-order system controlled by
the PID controller, this transfer is given by:

E
F

s
ms K s K s Kd p iripple

= −
+ + +3 2

               (6)

With the PID feedback controller tuned as discussed in Section
III-A and a mass m = 37 kg, the Bode diagram of Fig. 8 results.
At a low speed of 0.2 m/s and a spatial cogging frequency of 16
mm, the ripple disturbance as seen in the position error signal
has a frequency of 12.5 Hz (79 rad/s). At a high speed of 1.0 m/s
the cogging disturbance in the position error signal has a
frequency of 62.5 Hz (393 rad/s). So, the amplitude of the
position error due to cogging is smaller at higher velocities. From
stability analysis [14], it becomes clear that the learning
feedforward controller may cause system instability (regardless
how small the learning rate is chosen) for learning of high
frequency components. So, learning of cogging disturbances
might result in system instability for high-speed applications.
Experimental results showed that instability indeed occurred.
Fig. 9 depicts results of a learning process leading to instability.
A movement back and forth over 0.5 m in 1.65 s, in which
velocities of almost 1 m/s and accelerations of approximately 10
m/s2 are reached (see the Appendix), is covered repeatedly. The
experiment was stopped after the twentieth run, in order to not
damage the motor. However, the results indicate that instability
occurs after the cogging disturbance component had been largely
learned.

These figures make clear that learning of high-frequency
components, which is only possible when a large number of
splines are used, is problematic. Two solutions can be pursued in
this case:

• Reduce the number of splines used on the setpoint position
input space [14] and, therefore, drop the demand for
learning the cogging disturbance. As mentioned before, at
high speed, the cogging disturbance is relatively small and,
therefore, this can be justified.
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Fig. 10. Learning process when applying a reduced number of splines: position error
during (upper) tenth and (lower) one-hundredth run.

• Learn the cogging disturbance as well as possible, and use
a criterion to stop learning before instability occurs.

The latter option is rejected because the learning controller
would then be unable to learn slowly time-varying processes
anymore after the criterion determines to stop learning.

The first option is considered, i.e., drop the demand for
accurately learning the cogging disturbance and reduce the
number of splines on the setpoint position input space. Tuning of
the network eventually resulted in spline definitions comparable
to the original network, but with only 50 splines on position
input space (whereas the original network used 300 splines here).
Fig. 10 shows the resulting position error; learning already
resulted in optimal behavior after ten learning runs (position
error fluctuates within –15 to 15µm) and instability, indeed, did
not occur anymore.

V. CONCLUSIONS

In this paper, we demonstrated the usefulness of an on-line
learning controller for motion control of a linear motor. The
learning controller is able to improve system performance
drastically, especially in the case of repetitive low-speed motions.
The position error reduces by a factor of approx-imately 25.
Therefore, without any constructional measures and with little
modeling and no identification, a surprisingly good rejection of
(reproducible, slowly varying) disturbances, such as cogging and
friction, can be achieved.

The consequences of using a learning feedforward structure is
that the feedback component of the controller can be designed
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with emphasis on robustness, and the learning feedforward
component can be used to achieve performance. However, the
structure of the learning controller is such that stability problems
may arise with high-velocity movements. Decreasing the number
of basis functions stabilizes the learning system, but implies some
loss of performance as well.

The learning feedforward component consists of a B–spline
network with second-order basis functions. The network that was
used during simulations and experiments was obtained by tuning.
Therefore, it may not be the optimal network for the linear motor
setup. Further work will be directed towards more systematic
design methods for learning feedforward control.

The results generally indicate that an on-line learning con-
troller based on neural network concepts is useful for repetitive
tracking control tasks.

APPENDIX
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(upper) low speed and (lower) high speed.
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