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A new method for deriving similarity solutions is introduced. The application proves to be very simple and 
straightforward. For any set of analytical relations, whether dimensionally homogeneous or not, the greatest 
possible reduction in the number of quantities may easily be accomplished. The method is introduced by means 
of simple applications and the results are compared with the results of conventional dimensional analysis. 

In elastohydrodynamic lubrication in particular, this method may readily be accepted as a very helpful tool 
when dealing with the extensive sets of analytical relations involved. Yet it is certainly not restricted to lubrication 
problems only. 

Furthermore, the results show that physical properties seem to have no place in similarity analysis. Similarity 
analysis is pure string manipulation. Consequently, the method has proved to be perfectly suitable for personal 
computer applications. 

- 

1. Introduction 

1.1. Similarity analysis 
A model in mathematical analysis based on a physical 

phenomenon may be stated as a set of relations such 
as algebraic equations, differential equations, integral 
equations etc. It will in general be restated by applying 
a reduced number of quantities. This has to be per- 
formed by introducing well-chosen functions of the 
original quantities. Often some of these substitutions 
are quite obvious, e.g. simple additions and subtractions, 
and they will be performed almost automatically. The 
selection of a set ofpowerproducts ofquantities (hence- 
forth PPs) which will lead to a maximum reduction in 
the number of original quantities, though, is far from 
easy. 

Similarity analysis is the name given to the various 
techniques applied to yield a workable set of PPs [l]. 
Dimensional analysis is the most well-known technique 
among them [2]. A modification called vectorial di- 
mensional analysis was introduced later [3, 41. The 
problems related to the application of vectorial di- 
mensional analysis raise doubts about the introduction 
of typical physical concepts such as dimensions into 
the mathematical analysis and this has provided the 
impetus for the present work. 

To begin with, let us assume that a set of relations 
in mathematical analysis involves m original quantities 
Qi, and let us also assume that a set of n PPs for 

similarity ri has been derived for this set of relations. 
Then rj can be defined by the following PPs: 

ri=y,fiQjmj for i=l, 2, . . . . n and n <m 
j- 1 

with yi and in particular aij representing real numbers. 
Actually -yi is quite arbitrary. For reasons of simplicity, 
therefore, we will assume 3/i = 1 throughout this paper. 

The first author who systematically derived PPs for 
similarity was Vaschy [5] in 1892. Since these PPs were 
essentially non-dimensional, they became well known 
by the name of “dimensionless numbers”. Later, Buck- 
ingham [6, 71 introduced the symbol rri applied above. 

As we shall see later, when deriving PPs for similarity 
it will be more convenient to indicate ri by the dashed 
quantity Qi; Qi represents a quantity appearing with 
unit power and is explicitly in the PP for similarity 
Qi; i.e. 

Qi=Q5_F+1Qj-i for i=l, 2, . . . . n and n<m (1) 

We will call this a set of similarity quantities (henceforth 
SQs). Later these SQs may be arranged in a new set 
of linearly independent PPs in order to derive a suitable 
set of PPs for similarity rri. This is a matter of personal 
choice, though, and therefore will not be discussed 
here. 

It will also prove convenient to discriminate between 
the following five types of SQs: 
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control similarity parameters; 
dependent similarity parameters; 
independent similari~ variables; 
integration similarity variables; 
dependent similarity variables. 

These SQs will be defined as follows. On the one 
hand, the quantities appearing in an SQ may a11 be 
parameters. We will call this parametric SQ a similari~ 
parameter. Moreover, this type of similarity parameter 
may be treated as a control similarity parameter or as 
a dependent similarity parameter. This distinction is 
not exact, though. It has to be decided from the problem 
definition under consideration. It is not crucial, anyhow. 

On the other hand, variables too may appear in an 
SQ. We will call this variable SQ a similarity variable. 
If all the variables in a similarity variable are inde- 
pendent then we will call it an independent similarity 
variable. IIowever, in integra1 expressions an extra 
integration similarity variable will often be needed. 

Finally, if at least one of the variables in a similari~ 
variable is dependent then we will call it a dependent 
similarity variable. 

1.2. The meaning of s~~~la~.~ analysis 
At this stage it should be mentioned that the ad- 

vantages obtained by applying similarity analysis are 
quite often not fully understood. In brief, similarity 
analysis is a very useful tool, since, for example: 

(i) Model experiments are based on similarity pa- 
rameters [8]. 

(ii) Analogues are based on identical formulations 
for the relations between sets of similarity quantities 
in different domains of science, e.g. the analogues based 
on electricity which led to the analogue computer. 

(iii) Simplifications that may be quite substantiai 
foIIow from introducing similari~ quantities. Sometimes, 
partial differential equations reduce to ordinary dif- 
ferential equations, or even to algebraic equations 191. 

(iv) The reduction in the number of quantities needed 
may lead to substantial savings in both time and money 
when carrying out numerical calculations [9]. 

(v) A better presentation of the solution of a problem 
can be given, since only a limited number of graphs, 
tables etc. will be needed [9]. 

(vi) Curve fitting is facilitated, as in the application 
to elastohydrodynamic lubrication in Section 4.2. 

Considering these six characteristics it is remarkable 
to see the haphazard applications of similarity analysis 
in engineering. There often seems to have been more 
use of intuition and diligence than of pure reasoning. 
Consequently, the smallest possible set of SQs has quite 
often not been attained (see, for instance, ref. 10 for 
a discussion on the application to elastohydrodynamic 
lubrication). 

The situation is much more favourable in hydro- 
dynamics. For instance, Schlichting [9] employs an 
impressive collection of applications of bounda~-layer 
theory, ail of them seemingly appearing out of the blue. 
By the way, one of these applications, the application 
to the well-known problem of Blasius, served as a 
perfect exercise when testing the new method to be 
presented. 

This is an exception, though. The main reason for 
this quite unsatisfactory situation may be that the well- 
known dimensional analysis, being both straightforward 
and simple, but generally leading to at least one re- 
dundant dimensionless number, offers a very attractive 
tool and consequently is very generally applied. How- 
ever, the application of vectorial dimensional analysis 
]4], which may more frequently lead to optimal similarity, 
has only been applied when the quite mysterious vec- 
torial components of the spatial dimensions for the 
derived quantities could be guessed, and unfortunately 
the quite useful inspectional analysis 1111 is just a 
method of verification. 

The new method to be presented in this paper is 
both simple and straightforward and nevertheless will 
invariably lead to an optimum similarity solution. 

2. A simple model: Jeffreys’ equation [12] 

This method, called optimum similarity analysis, is 
based on completely new concepts and therefore will 
be introduced step by step by means of four successive 
procedures, all applied to one and the same formula. 
The first step will be a quite unsatisfactory analysis. 
The following steps will gradually lead to improvements 
until the fourth and final step brings about the optimum 
similarity that has been aimed for. 

For demonstration purposes a very suitable math- 
ematical formulation happens to be the equation ac- 
cording to Jeffreys [12) for the drainage of a vertical 
plate, reading 

where h represents the thickness of the fluid layer, p 
its density and p its viscosity; g represents the accel- 
eration due to gravity, x the coordinate along the plate 
and t the time; see also Fig. 1. 

To begin with, this equation will be normalized in 
the conventional way, i.e. both Lagrange’s solution 
applying integral curves and Cauchy’s method are pur- 
posely neglected. The boundary conditions will be dis- 
cussed later. 
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Fig. 1. The drainage of a vertical plate after Jeffreys. 

2.1. Normalization 
Normalization of an equation means replacing the 

original variables by normalized variables, i.e. the orig- 
inal variables h, x and t divided by the respective 
characteristic parameters h*, x^ and i. A method for ob- 
taining these parameters will be discussed later. It will 
become the key to the new method. For the time being, 
however, we define 

Thus Jeffreys’ equation, introduced above as eqn. 
(2), may be replaced by 

where 

7r1 represents a PP which is dimensionless but of little 
use because of the as yet unknown three characteristic 
parameters involved. 

The next step in this series of procedures, therefore, 
will be a method to derive these characteristic param- 
eters. 

2.2. A provisional similarity solution 
Substitution of the definitions in eqn. (3) into eqn. 

(5) leads to 

By substituting r1 = 1 into eqn. (6) (this is allowed since 
the three characteristic parameters have not been chosen 
yet) there remains 

h2i pgh’t -=- 
.f P 

One of the solutions to eqn. (7) reads 

(7) 

Consequently Jeffreys’ equation may be replaced by 
the similarity solution 

i!j +p% =o 

at af 

As the embarrassing characteristic parameters have 
been eliminated this is a substantially improved relation 
compared with eqn. (4). It may even seem to be quite 
useful. Still, this is just the beginning. 

2.3. Dimensional analysis 
Next, a simple version of the Vaschy-Buckingham 

approach [5-71 will be applied to this problem. The 
four quantities (or PPs of quantities) that may be 
distinguished in Jeffrey? equation are h, x, t and pgl 
I_L. Between these quantities there are two independent 
dimensional relations, i.e. through length and through 
time. Consequently the following dimensionless numbers 
may be derived (see Table 1). 

&& tpg 0% x=x - (8) 
Y p 

Thus Jeffreys’ equation may be replaced by the ordinary 
differential equation (see also Appendix A) 

dh h 

Z = _ h2+X (9) 

which can readily be solved (substituting &=z(#“): 

& = (C2++‘2- c 

The integration constant c still has to be estimated 
by means of the uniqueness condition that applies; i.e. 
an initial condition or a boundary condition. 

2.4. Optimum similarity analysis 
The reader may have noticed that the dimensionless 

numbers in eqns. (8) may also follow from eqn. (7) by 
simply introducing f for the product ft and h for ht, 
thus eliminating i. This automatically raises the question 
as to what would be the result of introducing & for 
h(&)l” and eliminating both i and X. According to 
eqn. (8) this would simply lead to 

TABLE 1. Matrix of coefficients for the dimensional formulae 
for Jeffreys’ model 

h 1 0 
x 1 0 
t 0 1 
PgIk -1 -1 
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which eventually reduces Jeffreys’ equation to the al- 
gebraic equation (see also Appendix A) 

h3-&=0 
(11) 

This has the immediate solutions 

h=O, +1 (12) 

Indeed, 6 = 1 is a particular solution to Jeffreys’ problem. 
This unquestionably represents the optimum similarity 
solution, for, notwithstanding the lack of uniqueness 
conditions, the original partial differential equation has 
been solved. Of course this implies that some kind of 
uniqueness condition has been introduced; this will be 
discussed in Section 3. 

2.5. Discussion 
Referring to these results for just one equation we 

may draw some conclusions in relation to optimum 
similarity solutions in general. However, since single- 
equation models are a rarity, these conclusions will be 
quite provisional in character. 

The unique SQ for Jeffreys’ equation stems from the 
definition of the PP for similarity rrl that has been 
derived by applying a primitive normalization procedure. 
Hence this normalization procedure can be considered 
as the first step in the derivation of an optimum similarity 
solution. The second and final step is the substitution 
of the respective variables for the characteristic pa- 
rameters, which is equivalent to omitting the caps in 
the definition of rl. 

For a multitude of ri values with i= 1, . . . . n, an 
intermediate step might have been needed, i.e. the 
derivation of II new r, values with explicit occurrence 
of each parameter by arranging these ri values in n 
PPs. For this simple model, though, 7~~ leads to just 
one SQ. Anyhow, the number of SQs (or ei values; 
see eqn. (1)) in an optimum similarity solution quite 
simply equals the number of PPs (or rr, values) of 
quantities as acquired by primitive normalization. 

3. More complicated modelling 

3.1. A modification of Jefieys’ model 
An interesting problem that still remains to be solved 

is the role of the uniqueness conditions. First, it may 
be noticed that the optimum similarity solution according 
to eqn. (12) includes one of the following three pairs 
of uniqueness conditions: 

for h=O if x=0 then h=O and if t=O then h=O 

for h= -1 ifx=O then h=O andift=Othenh=-m 

for h=l if x=0 then h=O andift=Othenh=m 

Obviously the third set of conditions is the one applied 
in Section 2.4. It can be seen that all three sets are 
made up of single-term uniqueness conditions. For 0, 
- m and + 00 may not be considered as terms for 
obvious reasons. This corresponds to the provisional 
conclusion at the end of the discussion above, suggesting 
that the addition of multiple-term uniqueness conditions 
would have led to a multitude of SQs in the optimum 
similarity solution, 

For instance, let us consider the following pair of 
conditions with just one proper two-term equation (the 
last one): 

ifx=O then h=O and if t=O then h=ax 

i.e. a wedge-shaped initial layer of fluid with wedge 
angle tan- ’ a as seen in Fig. 2. Normalization of these 
conditions leads to 

ifx=O then h=O and if I=0 

where 

Omitting the caps, which extends 
procedure to optimum similarity 
the PP 

ax 

X- 

then h = ~2 

this normalization 
analysis, leads to 

which combined with h according to eqn. (10) forms 
a set of PPs for similarity which fits this model. 

Next, by arranging rrl and rZ in two linearly inde- 
pendent PPs a variety of new sets may be derived that 
are equally suited. Take for instance 

-i7-2 
-1 and rr12n-22 

These lead to the dependent similarity variable h and 
the independent similarity variable i; notably 

ax P 

Consequently this modification to Jeffreys’ model has 
the similarity solution (see also Appendix A) 

d/i h3 =. 
xi+ izz if I=0 then h= I 

I 9 

Fig. 2. A modification of Jeffreys’ model. 

(13) 
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TABLE 2. Matrix of coefficients for the vectorial dimensional 
formulae for Jeffreys’ model 

L LY T 

h 0 1 0 
X 1 0 0 
t 0 0 1 
PglP 1 -2 -1 

It can readily be solved (substituting h=.~(~)-~“): 

/-- (1+4+-l 

2t 
with t> 0 

With the original quantities substituted the result is 

h=~ (1+4pgaza/~)1”-1 
2pgat 

with t>O 

3.2. Discussion 
It should be mentioned here that complications may 

occur when applying this method to quite different 
models. For instance, it will be clear that a linear 
dependence between the ri values will lead to a re- 
duction in the optimum set of SQs. But what should 
be done with integrals and functional arguments? The 
application to elastohydrodynamic lubrication (hence- 
forth EHL) below may serve as an illustrative example. 

In relation to dimensional analysis the following will 
be clear. Similarity quantities are dimensionless if and 
only if the basic relations are unit-free. However, all 
dimensionally homogeneous relations are unit-free [13]. 
As a consequence, dimensional analysis can only be 
applied to unit-free relations or, and this is the extra 
power of dimensional analysis, to quantities that are 
presumed to occur in as yet unknown unit-free relations. 

This may explain why vectorial dimensional analysis 
lost favour. The correct arguments for the selection of 
the vectorial components in space follow from the 
constituent relations. As long as these relations remain 
vectorially unit-free, everything is all right. If these 
relations are still unknown, though, it is mere gambling. 
By way of an example Table 2 shows the correct way 
of deriving the optimum set of SQs for Jeffreys’ original 
model by means of vectorial dimensional analysis. This 
could hardly have been guessed a priori, however. 

4. Elastohydrodynamic lubrication 

4.1. The optimum similarity solution 
A more practical problem is the derivation of the 

smallest set of parametric SQs for the minimum film 
thickness model in elastohydrodynamic lubrication. 

The starting point for optimum similarity analysis in 
EHL is the following set of relations (see ref. 14, in 
particular the definitions for U,, R and E’) 

-m 

P = l-4 expW3 
.+-a 

w= P(x) dx s 
-m 

hmin = min(h) 

0P=O with Pa0 

P=O forx= + ~0 

Equation (14) is 

(16) 

(17) 

and e>O 

(18) 

(19) 

(20) 

the Reynolds equation written as 
a complementarity problem (in order to simulate cav- 
itation); eqn. (15) is the elasticity equation; eqn. (16) 
represents the exponential viscosity-pressure relation; 
eqn. (17) defines the load per unit width; eqn. (18) 
defines the minimum film thickness and eqns. (19) and 
(20) define respectively the cavitation and boundary 
conditions that apply. 

It will be convenient to arrange the quantities in five 
groups: 

(1) The control parameters (compulsory); the order 
represents priority for explicit occurrence in the sim- 
ilarity parameters, including W, load per unit length; 
(Y, the piezoviscosity coefficient; pi, the viscosity at the 
entrance; U,, the sum velocity of the boundaries; R, 
the effective radius of curvature and E’, the reduced 
Young’s modulus. To be specific, one set of values for 
the control parameters defines a unique solution to 
the problem. The remaining parameters belong to the 
next group. 

(2) The dependent parameters (if any); these are 
the parameters that do not belong to the control 
parameters of the preceding group, e.g. h,i”, the min- 
imum film thickness. 

(3) The independent variables (compulsory), e.g. the 
x-coordinate. 

(4) The integration variables (if any), e.g. the x’- 
coordinate. In general the independent variables of 
group three may function as integration variables. Some- 
times, though, extra variables will be needed, as in 
convolution integrals. 

(5) The dependent variables (compulsory), including, 
P, the pressure; h, the film thickness; p, the viscosity 
and 6, the ruptured film fraction. 

Next, these quantities will be arranged in the five 
groups of SQs as mentioned in the introduction. 
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Normalization leads to eleven independent PPs of 
parameters. They will be arranged in groups depending 
on the equation that produced them, i.e. eqns. (14) 
(15), (16), (17) and (18) respectively: 

hmin 
q9’ - 

h 

Obviously eqns. (19) and (20) do not lead to extra PPs 
and neither do the integral limits, which may be written 
in full asx’ = + m andx = f 03. The integral expressions 
offer no new problems. 

By arranging the results in well-chosen PPs of PPs 
and by subsequently omitting the caps, the following 
optimum set of SQs may be derived: 

(1) The control similarity parameters: 

A load number It4 and a piezoviscosity number L have 
been introduced because ever since their introduction 
[15] (see also ref. 14) these dimensionless numbers 
have been generally applied in EHL. 

(2) The dependent similarity parameter: 
l/2 

For reasons of convenience a minimum film thickness 
number H has been introduced. 

(3) The independent similarity variable: 
If4 

(4) The integration similarity variable: 
I/4 

(5) The dependent similarity variables: 

The load number M and the piezoviscosity number L 
represent the new control parameters we were looking 
for; they stand for a reduction in the number of control 
parameters from six to two. 

In deriving these SQs the matrix of coefficients as 
shown in Table 3 may be helpful. For reasons of 
convenience in this table the five groups of quantities 
have been arranged in reverse order. In this way a 
gaussian reduction applied to the right-hand square 
matrix will lead to a set of SQs for the left-hand group 
of quantities only. This is why, in the foregoing, arranging 
the quantities in a specific order has been stressed. 

In doing so, the gaussian reduction will either lead 
to the smallest set of similarity parameters or, if no 
similarity parameters occur, to a reduction in the number 
of independent similarity variables, as has been shown 
for Jeffreys’ model above. 

The transformation of the original PPs of quantities 
to the final solution shown in Table 4 may still be 
rather toilsome. Fortunately, it can almost as well be 
carried out by a computer. Copies of a computer program 
by the name SIMANUT are available on a diskette at 
a small fee. This program takes about ten seconds to 
analyse this EHL model on a PC; the output is illustrated 
in Fig. 3. 

This computer program SIMANUT was originally 
derived just as a test for the ideas proposed in this 
work; in particular for the idea that similarity solutions 
may be derived by sheer string manipulation. Yet this 
quite unsophisticated program represents a very useful 
tool when analysing mathematical models. As to the 
most extensive model analysed so far: it takes about 
one minute to confirm the four parametric SQs for the 
Kirchhoff problem as derived by Tijdeman [16]. 

One of the main problems met when writing the 
computer program concerned was the introduction of 
logarithmic functions. Actually the primitive function 
for l/x should read log(.&,) with x, representing an 

TABLE 3. Matrix of coefficients for the set of power products 
of parameters for EHL 

TI 1 2 -1 0 O-10 0 0 O-l 00 
7r* 0 0 01 0 00 00 0 0 00 
,rr-1 100 O-IO 00 0 0 01 
574-l 0 00 0 10 00 0 0 -1 1 

r5 0 0 00 -1 10 0 0 0 0 00 

T6 0 0 10 0 00 0 0 -1 0 00 

=7 1 0 0 0 0 0001 00 0 0 
778 -1 0 0 0 O-IO 10 0 0 00 

r9 o-1 00 0 01 00 0 0 00 
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TABLE 4. Matrix of coefficients for the set of similarity quantities for EHL 

63 

P h P e X' X kin W a CLi us R E’ 

P 1 0 0 0 0 0 0 
h 0 1 0 0 0 0 0 
e 0 0 1 0 0 0 0 
I3 0 0 0 1 0 0 0 
5’ 0 0 0 0 1 0 0 
f 0 0 0 0 0 1 0 
HEApi, 0 0 0 0 0 0 1 
M=W 0 0 0 0 0 0 0 
LIiy 0 0 0 0 0 0 0 

0 - 114 - l/4 l/4 
0 - l/2 -l/2 - l/2 
0 -1 0 0 
0 0 0 0 
0 - 114 -l/4 - 314 
0 - l/4 - l/4 - 314 
0 - l/2 - l/2 - l/2 
0 - l/2 -l/2 -112 
1 l/4 l/4 - l/4 

- 314 
II2 
0 
0 
l/4 
l/4 
l/2 

-1l2 
314 

FILE NAME: ehl 

QUANTITIES: 

P h teta mu x' x hmin W alfa mui Us R E' 

EQUATIONS: 

@(h^3/mu*@P/@x)/@x=6*Us*@((l-teta)*h)/@x 
@h/@x=x/R-4/(pi*E')*igl(-inf;inf:P[x'l/(x-x')*@x') 
mu=mui*exp[alfa*P] 

W=igl(-inf;inf;P[x]*@x) 
hmin=min[h] 

FINAL RESULTS: 

THE 9 OPTIMUM SIMILARITY QUANTITIES ARE: 

P*(mui^-l*Us^-l*R*E'^-3)^1/4 
h*(mui^- l*Us^-l*R'-l'E')-l/Z 
teta 
mu*(mui.^-1) 
x'*(mui^-l*Us^-l*R^-3*E')^1/4 
x*(mui^-l*Us^-l*R^-3*E')^1/4 
hmin*(mui^-l*Us--l*R^-1+E')^1/2 

W*(mui^-l*Us^-l*R^-l*E"-l)+1/2 
alfa*(mUi*Us*R^-l"E'^3)^1/4 

THE EQUATIONS IN TERMS OF THESE SIMILARITY QUANTITIES ARE: 
(dashes have been omitted!) 

@(he3/mu*@P/@x)/@x=6*@((l-teta)*h)/@x 
@h/@x=x-4/(pi)*igl(-inf:inf;P[x']/(x-x')*@x') 
mu=exp[alfa*P] 
W=iql(-inf:inf;P[x]*@x) 
hmin=min[h] 

Fig. 3. Output of the computer program SIMANUT for the EHL 
model. 

arbitrary constant, since the alternative, log(x) + C, may 
lead to complications. For the same reason log(A/B) 
is to be preferred rather than log(A)-log(B) and so 
on. 

4.2. Survey diagrams 
In this way a proof has been given that indeed the 

minimum film thickness in EHL may be considered as 
depending on two control parameters only. As a con- 
sequence the extra control parameter defined [lo] by 

E’R 

PiUs 

although dimensionless, is redundant and the minimum 
film thickness number H depends exclusively on the 
load number M and on the piezoviscosity number L; 

i.e. 

H=H(M, L) 

Calculated data and measurements, therefore, may 
readily be plotted into just one diagram and curve 
fitting can easily be performed. In addition, the following 
four asymptotic solutions that apply will prove to be 
very useful. 

(1) The rigid-isoviscous (index RI) asymptotic so- 
lution may be derived by eliminating both (Y and E’ 

from these three similarity parameters, i.e. 

HRI=CRIMpl for M- 0 

Martin [17] has shown that C,, = 2.44748 . . . 
(2) The rigid-piezoviscous (index RP) asymptotic 

solution may be derived by eliminating both W and 
E’, i.e. 

HRP=CRPLe2” for L - 03 

Grubin [18] has shown that C,,= 1.04970 . . . 
(3) The elastic-isoviscous (index EI) asymptotic so- 

lution may be derived by eliminating cy, i.e. 

HEI = C,,M” for M- ~0 and L=O 

We have shown [19] that (Y= - 5 and C,,=2.04594 . . . 
(4) The elastic-piezoviscous (index EP) asymptotic 

solution may be expected to look like 

HEp = C,,MPL y for M- m 

Crook [20] shows that p= - B, y= 2 and Cnp= 
0.856526 . . . 

For more information about the derivation of these 
asymptotic solutions see ref. 19. 

Figure 4 shows a survey of the complete solution 
for the EHL at line contact that has been based on 
these four asymptotic solutions. This diagram has been 
drawn by applying the curve-fit 

H=[[([l-exp[ -(~~]]H~ps~z)8’1’ 

(21) 
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I 2.5 
1 
0 

0.1 
0.1 M 1000 

Fig. 4. Survey diagram for EHL; logarithmic axes. 

0.1 I__~ ~~_~__~ _~ _~ ~_~ .~ ~~ ~~~ 
0.001 F 1” 

Fig. 5. The effect of flexibility on film thickness; logarithmic axes. 

The quite accurate numerical solutions in the transition 
areas between the asymptotic solutions calculated by 
Venner [21] have been compared with our curve-fit 
[19]. This confirms the high quality of the curve-fit, in 
particular in comparison with our original diagram [22], 
but also in comparison with the diagrams introduced 
by Lubrecht [23] and Venner [21]. 

By rearranging the order of priority of the control 
parameters for explicit occurence in the similarity pa- 
rameters a great number of alternative survey diagrams 
may be generated. One of these diagrams, represented 
by Fig. 5, is of particular interest. It shows the effect 
of the flexibility on the minimum film thickness. This 
time the symbols applied are defined by 

Where F represents a flexibility number. The diagram 
is based on eqn. (21). 

As might have been expected, the film thickness 
generally increases with increasing flexibility. However, 
quite surprisingly in this diagram a small area occurs 
where the film thickness decreases with increasing 
flexibility. Incidentally this area happens to represent 
most of the applications. A second computer program 
by the name of EHLUT, this time for calculating the 
minimum film thickness in EHL based on the curve- 
fit presented above, is also available on a diskette at 
a small fee. 

Of course, when applying optimal similarity analysis 
to dissimilar models complications may arise. However, 
the analysis of special problems in EHL does not lead 
to complications. Of interest are the applications listed 
with the computer program SIMANUT mentioned 
above in Section 4.1. 

5. Discussion and conclusions 

The new technique for obtaining similarity solutions 
as introduced in this paper is both simple and straight- 
forward. Therefore it is a very attractive tool for en- 
gineers applying mathematical analysis. 

Essentially, this optimum similarity method is an 
extension of the well-known and generally applied 
technique of normalizing equations, although the 
method is much more powerful, since optimum similarity 
solutions will invariably be derived. Moreover, the ap- 
plication is simple. For complicated models, the com- 
puter program SIMANUT, mentioned above may be 
very helpful. 

Of course, a drawback as compared with dimensional 
analysis is that the complete mathematical formulation 
has to be known “a priori”. However, the advantage 
is that an optimum similarity solution will be obtained, 
whether the relations are unit-free or not. 

Apparently a paradox is presented when comparing 
Buckingham’s pi-theorem with the derivation of sim- 
ilarity quantities as presented in this paper. This is 
because the pi-theorem refers to fundamental dimen- 
sional quantities [24, 251, whereas actually the optimum 
set of similarity quantities depends on the number of 
terms, equations etc. involved, which has nothing at 
all to do with dimensions. 

This paradox may be overcome by noticing that the 
number of similarity quantities, as derived by applying 
dimensional analysis or by applying the pi-theorem, 
actually may be any number in between the number 
of elements in the optimum set of similarity quantities 
and the number of quantities appearing in the set of 
relations under consideration. The result depends on 
the kind of dimensional analysis applied. For instance, 
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it will depend on whether there is to be discrimination 
between two or even three spatial components, and 
on whether there is to be discrimination between grav- 
itational mass and inertial mass in a newtonian world. 

As a consequence, our final conclusion needs to be 
that these results do show that physical properties are 
out of place in similarity analysis. This may lead to 
the challenging conclusion that similarity analysis has 
nothing whatsoever to do with physics. In fact similarity 
analysis is limited to sheer string manipulation. However, 
the reader should be aware that mathematical analysis 
in general is definitely more than just syntax. 
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The transformation to new independent variables in 
differential equations is not always easily performed. 
The following equation may be helpful: 

Qi K?i 
aQ, - z 

J I J 

where i= 1, . . . . d and j=d + 1, . . . . n. In this equation 
d represents the number of dependent variables, which 
corresponds to the number of dependent similarity 
variables, and n -d represents the number of inde- 
pendent similarity variables. Furthermore, aij represents 
the power of the independent variable Qj in the in- 
dependent similarity variable Qi with i=d + 1, . .., n; 
see also eqn. (1). 

For instance, eqn. (9) originates from substituting 
for the partial derivatives in the eqn. (2): 

and eqn. (11) originates from substituting for the partial 
derivatives in eqn. (2): 

ah 
at= 

and eqn. (13) originates from substituting for the partial 
derivatives in eqn. (2): 

Appendix B: Nomenclature 

E’ reduced Young’s modulus, FLe2 
F flexibility number 

g acceleration due to gravity, LT-’ 
h thickness of film or fluid layer, L 

hmin minimum film thickness, L 
H minimum film thickness number 
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L 
M 
P 

8 

R 
1 

us 
W 
x, x’, y 

piezoviscosity number 
load number 
pressure, FL-’ 
quantity 
characteristic similarity quantity for the quantity 

Qi 
effective radius of curvature, L 
time, T 
sum of the tangential surface velocities, L/T 
load per unit length, F/L 
coordinates, L 

Greek symbols 
CY piezoviscosity coefficient, LYF 

ruptured film fraction 
fluid viscosity, FTL-2 
viscosity at entrance, FIV2 
dimensionless number 
fluid density, FT2Lm4 

Abbreviations 
EHL Elasto hydrodynamic lubrication 
EI Elastic-isoviscous 
EP Elastic-piezoviscous 
PP Power product of quantities 
RI Rigid-isoviscous 
RP Rigid-piezoviscous 
SQ Similarity quantity 


