
E L S E V I E R European Journal of Operational Research 102 (1997) 502-512

EUROPEAN
JOURNAL

OF OPERATIONAL
RESEARCH

Theory and Methodology

One-machine job-scheduling with non-constant capacity -
Minimizing weighted completion times

H.F. Amaddeo ~, W.M. Nawijn b,,, A. van Harten c
a KLM Royal Dutch Airlines, Amstelveen, The Netherlands

h Faculty of Applied Mathematics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
c Faculty of Technology and Management, University" of Twente, The Netherlands

Received 1 October 1995; accepted I July 1996

A b s t r a c t

In this paper an n-job one-machine scheduling problem is considered, in which the machine capacity is time-dependent
and jobs are characterized by their work content. The objective is to minimize the sum of weighted completion times. A
necessary optimality condition is presented and we discuss some special cases where this condition is also sufficient. We
prove that the problem is NP-complete, A branch-and-bound algorithm is developed for the case when the capacity function
is a step function. Computational results for 1000 test problems are presented. (~) 1997 Elsevier Science B.V.

Keywords: One-machine scheduling; Non-constant capacity; Weighted completion times

1. I n t r o d u c t i o n

There are situations in production and service en-
vironments in which the bottleneck resource (e.g. a
machine) has non-constant capacity in time. For ex-
ample, labor force may be varying as a consequence
of holidays, shifts or breaks. Another example is a
machine that has non-constant capacity in time as a
consequence o f maintenance actions, wanning-up or
cooling down.

A similar situation occurs at KLM Baggage Han-
dling, where capacity (the number of workers) is non-
constant as a consequence of shifts and breaks [2] .
As we assume in this paper, the job-progression of a
job (the luggage from a flight with destination Am-
sterdam) in this context is proportional to assigned
capacity, and the objective is to minimize the sum of

* E-mail: w.m.nawija@math.utwente.nl.

weighted completion times. The former means that
the marginal reduction of the work content of a j ob
that is being processed, is proportional to the capacity
assigned to that job. By minimizing weighted com-
pletion times, different weights can be assigned to
different jobs (e.g. luggage from European flights,
luggage from intercontinental flights or luggage from
delayed flights) consistent with their relative prior-
ity.

The problem can also viewed as scheduling a set of
jobs (given by their work content) on a single pro-
cessor when the production rate (the capacity) varies
over time, see [4] .

It is well known [3] that the problem of minimiz-
ing the sum of weighted completion times on a single
machine with constant capacity can be solved by se-
quencing the jobs in non-increasing order of the ratio
of weight to processing time.

0377-2217/97/$17.00 (~) 1997 Elsevier Science B.V. All fights reserved.
PH S0377-2217 (96)00240-8

H.E Amaddeo et al./European Journal

Scheduling jobs in situations with time dependent
capacity minimizing weighted completion times is
not a trivial case as shown by Baker and Nuttle [I].
They conjectured this problem to be NP-complete
and left open the question how to exploit the struc-
ture of the problem to obtain optimal solutions. They
also found that the well known results of the cor-
responding single-machine problem with constant
capacity could be applied with little or no modifi-
cation for other functions of the completion times.
For the problem at hand, Surkis and Dogramaci [4]
developed a myopic heuristic, based on a steepest
imminent slope rule (SIS-rule). Applying this rule
means that at a certain time the next job scheduled
is the job that maximizes the ratio of weight to pro-
cessing time, which in this case is time-dependent.
A linear programming model was formulated to ob-
tain a lower bound on the minimum value of the
objective function. They found, using 1000 test prob-
lems, that Smith's rule performed better than their
SIS-rule.

The content of the paper is as follows. In Sec-
tion 2 we present the formal problem description,
the notations we use in this paper and the assump-
tions we make. In Section 3, we analyse the general
case in which the capacity function is an integrable
and bounded function. We first reduce the solution
space and second, we deduce a Generalised Local
Interchange rule (GLI-rule) which states in what
cases two consecutive jobs have to be interchanged
to improve the permutation schedule. Third, we in-
vestigate sufficient conditions for the local ordering
to be optimal. Last, we deduce some optimization
results that depend on monotonicity properties. In
Section 4, we consider the case where the capacity
dynamics can be represented by step functions. In
this section we investigate whether more properties
of the optimal solution can be derived for this special
case and we prove that the scheduling problem is NP-
complete. In Section 5, we present a branch&bound-
procedure for the case where the capacity function
can be presented by a step function. A heuristic so-
lution method is developed based on a combination
of Smith's rule and the GLI-rule. In this section we
also present computational results of solving 1000
test problems with the branch&bound-procedure us-
ing different lower bounds and both heuristic solution
methods.

of Operational Research 102 (1997) 502-512 503

2. Problem definition, notations and assumptions

The set of independent jobs to be scheduled are
denoted by J = { 1 n}. All jobs are available at
time 0. Every job is assigned a weight wi and needs
an amount of work Qi. We assume without loss of
generality that the jobs are ordered by non-increasing
ratio of weight to work content (wi/Qi). Observe that
this ordering essentially coincides with Smith's rule
in the constant capacity case.

The capacity of the resource, i.e. the machine, is
given by an integrable bounded function m : R+ ---*
R+ (where R+ = [0,cx3)) of time. We consider the
situation in which the capacity is divisible and can
be shared among jobs. The capacity assigned to job
i is denoted by the function mi, which has the same
properties as m. The function m can be interpreted as
the maximum production rate of the machine and mi
as the production rate of the machine assigned to job i.

For the existence of a feasible solution, the total
amount of work to be processed must be less than or
equal to the total amount of work that can be handled
by the machine, so

o o

~ a i <_ f m(t dt.
iEJ 0

Assuming additivity of job progression as a function
of capacity assignment and taking units to m e a s u r e Qi
compatible with capacity measurements, the following
requirements for a solution can be formulated. The
capacity assigned to job i should match the amount of
work necessary for that job, hence

o o

mi(t) = Oi. dt

0

At any time t, the capacity assigned to the jobs is
always less than or equal to the total capacity available,
giving

~ mi(t) < r e (t) , f o r a l l t E / R + .
iEJ

A solution that satisfies the above requirements will
be called a feasible solution.

Stated this way, our optimization problem is in fact
a capacity assignment problem. The objective value of

504 H.F. Amaddeo et aL /European Journal of Operational Research 102 (1997) 502-512

an assignment ce = (ml mn) will be denoted by
V(o~). Given the functions ml,m2 mn, let

Ci = sup{t > 0] mi(t) > 0},

be the completion time of job i, then V(a) can be
expressed as

V(Od) : Z wi f i"
iEJ

3. The general case

We start our analysis by showing that it is sufficient
to look for an optimal solution within the class of
permutation schedules in which jobs are processed one
by one. This result is established analogously to other
well known reductions of solution spaces of capacity
assignment problems.

The o rem 1. There exists an optimal assignment a*
with the following properties:

(i) full capacity utilisation, i.e. ~'~in=l mi(t) =
m(t) , for all t ~ [0, R], where R is such that

R

~-~Qi = f dt.
iEJ 0

(ii) no concurrency, i.e. i f ink(t) > O, for t E
[t l , t2] , then mi(t) = O, for i 4= k and t E
[t i , t2] .

(iii) no preempt ion , i.e. i f job k starts at time sk and
is completed at time CA., with

sk = in f{ t _> 0[mk(t) > 0},

Ck =sup{ t > 0 [mk(t) > 0},

then m~(t) = m(t) , for all t E (sk, Ck).

Proof.
(i) Suppose a capacity assignment does not use full

capacity in a t ime interval [t, t 4- •]. Then any
job, k say, completed after time t can be fin-
ished earlier by assigning (part of) the unused
capacity to k, without delaying the completion
of other jobs.

(ii) Assume that under assignment a °, two jobs, say
k and l, are simultaneously processed during

(iii)

[t l , t2] . Suppose job k is processed in [t l , t2]
prior to job l under an assignment a*, then the
completion time of job I remains the same while
the completion time of job k is less than or equal
to that under a °, thus V(a*) <_ V(c~°).
Suppose job k is preempted under assignment

o be pre- a °. Let job k, which starts at time sk,
empted at time p0, resumed at time r ° and be
completed at time C ° . Now two situations can
o c c u r :

(a) There is a job, say l, completed in the in-
terval 0 0 [Pk, rk]. In this case let an assign-
ment a* be such that the work performed
on job k in [pO,pO] under assignment cr °
directly precedes time r °, so no preemption
occurs and work performed on other jobs in
the preemption period of job k will be per-
formed in the same order directly after time
s o . This means that the completion time of
job k remains the same and at least one
completion time, namely that of job l, de-
creases. This means that or* is strictly better
than o~ °.

(b) No job is completed during the interval
[pO, r0]. Now a* is constructed in such a
way that the work performed oll job k after
time r ° under assignment a ° is performed
just after 0 Pk, and the work performed on the
other jobs in the interval will be completed
in the same order just before C ° . In doing
so the completion time of job k decreases
and the rest of the completion times remain
the same. Again, a* is strictly better than
a °. []

Theorem 1 implies that it suffices to consider only
non-preemptive capacity assignments, under which
only one job is scheduled at a time and full capacity
is assigned to each job. This means that an assign-
ment is defined by a permutation of the jobs. Hence,
the problem reduces to a sequencing problem. In the
sequel a permutation of the jobs is denoted by 7r and
its objective function value by V(7"r).

We will now address the question whether it is pos-
sible to generalize Smith 's rule to the time depen-
dent capacity case. So let us investigate when an in-
terchange of two consecutive jobs is profitable in the
more general case. When the capacity function is a

H.E Amaddeo et al./European Journal of Operational Research 102 (1997) 502-512 505

non-constant integrable function, the switching-rule
turns out to be somewhat different. Suppose that job
i is started at time A and that the successing job j is
completed at time B. We only have to consider the in-
terval [A, B], because all the other completion times
remain the same when interchanging jobs i and j . We
define the function

~(t ,Q) : D ~ IR+,
t

with D = { (t ,Q) E R2+ J / m (x) dx >_ Q},
o -

0

implicitly by

t

m(x) d x = Q , w i t h (t , Q) E D , (1)

t - (

where we assume that s c is the smallest such number.
Note that so(t, Q) is the processing time needed to

finish a job of workload Q at time t using full capacity.
The sum of the values of the weighted completion

times of jobs i and j will be denoted by V(i , j) , where
job i directly precedes job j in a schedule.

To deduce a switching-rule for the interchange of
jobs i and j , observe that

old situation : V(i , j) = wiCi + wjCj

=wi(B - ~(B,Qj)) + wjB,

new situation : V(j, i) = wiC~ + wjC 7

= w i B -k- w j (B - ~ (B , Q i)) .

It follows that

V(j , i) - V(i , j) = wi~(B, Qj) - wj~(B, Qi).

For the interchange to be an improvement, this differ-
ence has to be negative. Hence, for two adjacent jobs i
and j , job j must precede job i in an optimal schedule
if

wj wi : > - -
~(B, Qj) ~(B, Qi)"

This criterion will be referred to as the Generalised
Local Interchange rule (GLI-rule). The criterion does
not only depend on the weights and the amounts of
work, but also on the capacity function, which enters
through the function ((. , .). For a constant capacity

function this criterion is equivalent to Smith's rule. In
general the GLI-rule is a local criterion for a given
capacity function m(.) . Repeated application of this
rule may lead to a local optimum, which is not neces-
sarily a global optimum. In the sequel [i] will denote
the index corresponding with the job at position i in
a schedule. The above analysis implies the following
result.

Theorem 2. A necessary condition for an optimal
schedule is that for i = 1 n - 1

W[i] > W[i+lJ

((Ct/+~l, QIq) - ~(cti+~l, Qh+~l)

As mentioned in the introduction, Smith's rule does
not guarantee an optimal solution. The reason is that it
generally does not generate an ordering which satisfies
the necessary condition given in the above theorem as
shown by the following example.

Example 3. Consider a problem with capacity func-
tion

m(t) = { 4' f o r 0 < t < 3 / 2 ,
1, for t > 3/2

and three jobs: wl = 4, Qi = 4, w2 = w, Q2 = 3,
w3 = 2, Q3 = 2. It is readily verified that if w <
3, then the Smith-orderings (3,1,2) and (1,3,2) are
optimal. The ordering (1,2,3) is locally optimal (i.e.
satisfies Theorem 2) if 0 < w < 373-. It is globally
optimal, however, only if 3 < w < 373-. Note that it
does not satisfy Smith's rule. If w > 3 9, then the
Smith-ordering (2,1,3) is the unique optimal solution.
Although the ordering (2,3,1) in this case also satisfies
Smith's rule, it does not satisfy the necessary condition
stated in Theorem 2.

We will now treat some cases in which the applica-
tion of the GLI-criterion results in an optimal ordering.

Lemma 4. The only positive continuous functions
re(t), for which the ratio ~(t, Qi) / ((t, Q2) is inde-
pendent oft, for all QI, Q2 > 0, are of the form

Ol
re(t) = 1 + fl---~t'

where ot > O. l f fl < O, then the domain of the function
is restricted to [0, - 1//3).

506

Proof. As preliminary, notice that by differentiating
relation (1) with respect to t, we obtain

8 ((t , Q) m (t - s ¢) - r e (t)
- - = (2)

8t m(t -- s c)

Now, the basic observation is that the following
should hold

8 (~ (t , a l) ~ ~(t , a l) (1 8~(t , a l)

8 t \ ~ (~ , Q 2) J - ((t , Q2) ~:(t,Ql)

H.E Araaddeo et al. /European Journal of Operational Research 102 (1997) 502-512

W[IJ > W[21 ~> . . . 2> Wlnl

1 - e - ~ Qlu - 1 - - e -~Qm -- - l--e--~Ql,J

is optimal. I f fl < 0 and m(t) defined for t 6
[0 , - 1//3), then the inequalities should be reversed.

t (m (t l) - re(t2)) + t2m(t2) -- h m (t l) "

Since we only consider functions that are bounded on
finite intervals, the only continuous functions that are
permitted, are hyperbolic functions of the form

m(t) = ~ with ot > 0.
1 + f i t '

Observe that if/3 = 0 the case with constant capacity
is found. []

Ot

1 O~(t, Q 2)) = 0 , (3)
((t , Q2) 8t ./

for all QI, Q2 > 0. Hence, it follows from Eqs. (2)
and (3) that

1 a ((t , Q) = m (t - () - m (t)
(4)

~(t , Q) at ~m(t - ~)

is independent of Q for all t. Since ((t , Q) is strictly
increasing in Q the right hand side of Eq. (4) must
be independent of (.

Now choosing (= t - q and ~ = t - t 2 , with tl < t2,
gives

m(t l) - re(t) m(t z) - re(t)

(t - h) m (h) (t - t2)m(t z)"

From this equality, we get

m(t l)re(t2) (t2 - tl)
m(t) =

The fact that for hyperbolic functions as in Lemma
4 the ratio ~:(t, Qi) / ((t , 02) is independent of t, for
all QI,Q2, means that in this case the interchange
decision for two consecutive jobs implied by the GLI-
rule, is independent of time. The optimal ordering for
the hyperbolic case is given in the next theorem.

Theorem 5. l f m (t) = ot/(1 +f i t) , with at > 0, /3 >
O, then the ordering

Proof. From the definition of ~c(t,Q) and re(t) it is
easily verified that

1 _ e_(a/fl)a } ((t , Q) = (t + ~) { 1

The GLI-rule gives the ordering stated above. Op-
timality of this ordering is easily proved by the usual
interchange argument using Lemma 4. In fact any or-
dering that does not satisfy the given ordering can be
improved. []

Remark 6. The ordering given in the previous the-
orem is also optimal for a sequencing problem with
constant capacity in which the objective is to minimize

£ ± wli I exp F[i l , with Eli 1 = Q[Jl.
i=1 j= l

The following optimization results depend on mono-
tonicity properties.

Theorem 7. I f there exists a permutation 7r °, for
which w[l] _> w12] > "-- > wln] andQ[l l < QIzl <
• " " <- Q[nl, then the job sequence 7r ° is optimal.

Proof. Since sc(t,Q) is strictly increasing in Q for
every t, it follows that for rr °

W[i] > W[i+I I

((t , Otil) - ((t , Qti+lj) '

for all t. Thus, the usual proof, that any permutation
different from rr ° can be improved, can be applied. []

Theorem 8. I f there exists a schedule 7r ° for which
wI i l /Ql iJ > w[i+ l l / a [i+ l l and Qlil >- QIi+I1, then
• r ° is optimal i f m is non-increasing.

Proof. Let us introduce the shorthand notation b¢lil ----

((t , Qt il)- First observe that if QI il > QI i+ ~ 1, then

t ft-¢r,,u re(x) dx Qli] ft-£ta re(x) dx at-~ul
= 1 + - - t

QIi+II ft,_¢,, u m (x) dx ft-¢,,+u re(x) dx"

H.F. Arnaddeo et al./European Journal of Operational Research 102 (1997) 502-512 507

since ~[i] ~ ([i+1]. If m(.) , is non-increasing, then

t--~:l/+ll

f re(x) dx > (~:[il -- (ti+l])m(t - ([i + l l)

t--~[i]

and
t

f m(x) dx < - ~:li+l]). ~[i+ljm(t

Hence, if Q[il >-- Q[i+I] , then

Qtil > 1 + (sct~l -sct i+l l) = (1/1
QI i+11 - ~:[i+1] gc[i+ll

~(t, Qlil)
w

((t , Q [i + l]) '

for all t. Consequently,

Qti___..~l > Q[i~-I]

~[i] - - ~ [i + 1 1 '

and multiplying the left hand side with Will/Qii] and
the right hand side with w[i+l]/Q[i+11, we find that

W[i] ~> W[i+l]

(1i1 - - ~ [i + 1 1 '

for all t.
So again, we have a globally optimal ordering. []

Theorem 9. If there exists a schedule qr ° for which
w[il/Q[i] ~ wIi+ll/Q[i+ll and Q[il <- Qti+]l, then
schedule 7r ° is optimal if m is non-decreasing.

Proof. Analogous to the proof of Theorem 8. []

Some corollaries to Theorem 8 and 9 with respect
to step functions will be derived in the next section.

Let [[i]] denote the position of job i in an optimal
sequence.

Theorem 10. If (wi >_ wj and Qi < Qj) or (wi >
wj and Qi < Qj) , then [[i]] < [[j]].

Proof. The proof easily follows by an interchange ar-
gument. []

The essence of this theorem is its usefulness in re-
stricting the solution space. It will be applied in the
branch-and-bound algorithm presented in Section 5.

4. Special case: step functions

In this section we consider capacity functions m(t)
that are step functions. In production and service en-
vironments the capacity function can very often be
described by a step function. At KLM Baggage Ser-
vices the capacity dynamics is modelled this way due
to shifts and breaks with a variable number of opera-
tors. We define a step function m : I1~+ ~ R+ in the
usual way:

m (t) = M i , f o r t E I i = [b i , ei),
k

with 1 < i < k , and 0 1 i •+.
/=1

Of course, the general results deduced in Section 3 are
also valid here.

Let us now investigate the consequences of the
general ordering-rule, given in Theorem 2, for step
functions. The next lemma states an obvious order-
ing property within an interval of constant capac-
ity.

Lemma 11. Let m : ~,+ --~ R+ be a stepfunctionand
7r ° be a schedule with jobs [i] [i + g] scheduled
within interval Ij, i.e.

S[il ~ bj and Cti+e I < ej.

If 7r ° is optimal then

WIml > Wlrn+ll with i < m < i + l - 1 .
Qtml - Qlm+ll '

Proof. Assume job [m] and [m + 1] are such that
Wiml/Q[m] < Wlm+ll/Q[m+l 1. Interchanging the
jobs will improve the objective function and schedule
-z -° is clearly not optimal. []

So the ordering within an interval 1~, with j =
1 k, must satisfy Smith's rule. One should notice,
however, that the question how to assign the jobs to
the various intervals is still open.

Let us consider the situation where only one jump
of m(.) occurs during the processing of a job, say job
[j]. We will deduce some ordering-rules between that
job and its predecessor, job [j - 1], and its successor,
job [j + I], assuming that m is constant during the
processing of jobs [j - 1] and [j + l] .

508 H.E Amaddeo et al./European Journal of Operational Research 102 (1997) 502-512

The following two cases are possible

case A :m decreases during job [j] from Mt-i to

Mr,

case B : m decreases during job [j] from Mt-i to

Mr.

Let us first consider case A.

Corollary 12 (to Theorem 8).
(i) l f Wlj_l l /Q[j - 1] _> Wljl/Q[j I and Qlj-l! >_

Q[jl, then jobs [j - 1] and [j] are ordered
according to the GLl-rule.

(ii) I f Wlj l /Q[j] > w[j+ll/QIj+I], then jobs [j]
and [j + I] are ordered according to the GLI-
rule.

Proof. For part (i) and (ii) with Qtj1 > QIj+I], the
assertion follows from Theorem 8.

We are left with the case QlJl < Qtj+ll in part (ii).
The GLI-rule implies that jobs [j] and [j + 1] are
scheduled locally optimal if

WIJl > W [j + I] with t = C[j+I].
((t , Qljl) - ~(t, Qlj+ll) '

Since w~jj/Qtj I > wtj+l]/Qtj+~ j, Q[Jl < Qt./+~l,
and t --- Cj+l

W[j] W[j]

g(t , Oijl) Q[jl/MI
> W I j + l] = W I j + l l []

-- QIj+II/MI ((t , Qlj+ll)"

In the other situations with m decreasing during
the processing of job [j] , local optimality of the or-
dering of two jobs has to be checked explicitly using
the GLI-criterion, because no general conclusion can
be made beforehand. In these cases optimality does
not only depend on the weight and workload of the
jobs, but also on the magnitude of the jump and the
location of the jobs.

In case B, where m increases during job [j] , a
similar result holds.

Corollary 13 (to Theorem 9).
(i) l fw[j -x l /Q[j - l l >_ w[jl/Qlj] >_ wu+ll/QIj+ll

and QIy-Jl >- QtJl > QIj+ll, then jobs [j -
1], [j] and [j + 1] are ordered according to
the GLl-rule.

(ii) I f wlJl/Qij] > wlj+ll/Q[j+ii and QIjI,QIj+~I
are such that, when jobs [j] and [j + 1] are
interchanged, job [j + 1] also overlaps the jump,
then jobs [j] and [j + 1] are ordered according
to the GLl-rule.

Proof. The proof is analogous to that of Corollary
12. []

Again, for the other cases left, the GLI-criterion has
to be evaluated explicitly to see if jobs are ordered
locally optimal. So, although some properties of the
optimal solution are known at a jump of the capacity
function, no global optimal ordering can be deduced
as can also be inferred from the next theorem.

Theorem 14. For the 1-machine n-job scheduling
problem with time dependent machine-capacity, the
problem of the minimization of the sum of weighted
completion times is NP-hard.

Proof. The proof is established by a transformation
from PARTITION.

Let al a,, be an instance of PARTITION.
Consider the following instance of our scheduling

problem

Q i = w i = a i , i = 1 , 2 n,

and let the capacity function m be given by

0, f o r B < t < B + l ,
r e (t) ; 1, f o r 0 < t < B

a n d B + 1 < t < 2 B + 1,

where B = 1/2 ~-~: I ai-
Given a schedule 7"r, let j(~r) be the job with highest

index, such that Cj~) < B. If [i] denotes the ith job
in the schedule, then

i

~-~Wl i lC[i l=~-~a{ i l~a l j l q- ~ a[il.
i=1 i=1 j=! i=j(,n') + 1

Since the first term on the right hand side is indepen-
dent of the ordering 7r (Smith's rule for wi = Qi) , it
is clear that PARTITION has a solution if and only if
the scheduling problem has a solution with

W[ilCli] = alil alj] -4- B. []
/=1 i=1 j=l

H.E Amaddeo et al./European Journal of Operational Research 102 (1997) 502-512

Observe that the problem instance, considered in
the above proof, concerns a capacity function with two
jumps. We conjecture that even for the case of a step
function with one jump no polynomial time solution
algorithm exists.

5. Step functions: a branch&bound-procedure

In this section we present a B&B-procedure to solve
the scheduling problem for a capacity function, that is
represented by a step function. The number of jumps
is arbitrary, say k, and so is the number of jobs, say
n. No further restrictions are made.

The B&B-tree is designed in such a way, that a node
at depth m, with 0 < m < n - 1 contains a partial
schedule (~,,,) of m jobs ([1], [2] [m]), and ¢r,
is a complete schedule. Consequently, a branch from
a node in the B&B-tree corresponds to scheduling a
job, not scheduled yet, after job [m]. Without loss
of generality, we will assume that the jobs, not yet
scheduled, are ordered by Smith's rule.

We implemented the following dominance rule.
(i) While in an optimal schedule the GLI-criterion

has to hold (Theorem 2) for every two neigh-
bours [i] and [i + 1], we will only branch
on a job j at level m of the B&B-tree if
wlm]/((t, Qtml) > wj/~(t, aj), with t =
Ctm+l l , and

(ii) applying Theorem 10, we will only branch on a
job j at level m of the B&B-tree if there is no job
l(l ~ j) , not scheduled a depth m, for which
(wt > wj and Qt < Qj) or (wl >_ wj and Qt <
Qj).

The B&B-procedure

STEP 1. Use a heuristic to initialize the current "best
schedule" (-n "b) and determine the upper
bound UB b = V(afl').

STEP 2. Start with an empty schedule (Tr0 = 4,) in
the root of the B&B-tree.

STEP 3. Select one of the open nodes in the B&B-
tree according to a certain selection rule.
Branch this node if its Iowerbound is smaller
than the best current objective function value
UB b, else fathom this node.

If a new node contains a complete sched-
ule 7rn, update ~ and set UB b = V('trb), if

509

V(~'m) < V('rrb), and close the node.
If not, calculate a lower bound for the best

schedule that can still be obtained, given the
partial schedule of this node. Repeat this pro-
cedure until there are no open nodes left in
the B&B-tree.

STEP 4. The schedule "n "b is optimal.

The simplest heuristic to use in step 1 is Smith's
rule, that is ordering the jobs by non-increasing ratio of
weight to work (wi/ai) . We found that the deviation
from the optimal value in using Smith's rule was 0.1%
on average over 1000 test problems while the average
maximum deviation was 0.94%. (The construction of
the test problems will be discussed below).

Since Smith's rule does not in general satisfy the
GLI-criterion, it might be possible to improve the
corresponding schedule by interchanging neighbour-
ing jobs, going from head to tail in the schedule
several times until all neighbouring jobs satisfy the
GLI-criterion. This GLI-Smith heuristic improved the
Smith-schedule in 74.6% of the 1000 test problems
and proved to be optimal in 48.6% of the problems.
It turned out that the deviation from the optimal value
for this improved heuristic was on average 0.04% and
the average maximum deviation was 0.75%.

There are several possible selection rules to select
the open nodes left in the B&B-tree. We implemented
a best deepest first selection rule, which means that in
the B&B-tree the open node at the deepest level with
the smallest lower bound is selected.

Designing efficient lower bounds, necessary to re-
duce the number of nodes in the tree and to cut down
computation time, is not easy in this case, because of
the structure of the problem. The following lemma in-
spired our lower bounds.

Lemma 15. Consider a problem with capacity func-
tion m °. A lower bound for the optimal solution is pro-
vided by solving the problem for a capacity function
m* with the following property

t t

f m° (u)du< / m * (u) d u , forallt>_O. (5)

0 0

Proof. It is easy to see that for every capacity func-
tion m* with the above property, the corresponding
problem provides a lower bound to the original prob-

510 H.E Amaddeo et aL /European Journal o f Operational Research 102 (1997) 502-512

lem, as the completion times under the new capacity
function are less than or equal to the completion times
under m ° for every given schedule. This is due to the
fact that under the new capacity function at least as
much work has been done at any point in time. []

Two lower bounds easily follow from this lemma.
The simplest lower bound (L B I) is provided by using
the constant capacity function defined by

M * = max M °,
i=I ,...,k

which equals the maximum offered production rate.
The second lower bound (LB2) we implemented

is more sophisticated. Assume that

t

.A4°(t) =/m°(u) du.

0

The constant capacity function that provides the sec-
ond lower bound is constructed in the following way

M * = m a x "A4°(ei)
i=1 ,...,k ei

M* can be interpreted as the maximum time-averaged
production rate.

The fact that both capacity functions, mentioned
above, satisfy Lemma 15 and that LB2 is a sharper
lower bound than LB 1 can be easily seen graphically.

Lower bounds based on non-constant capacity
functions satisfying Lemma 15 are more difficult to
implement, because of the complexity of the result-
ing scheduling problem. Nevertheless, we designed
a lower bound (LB3) based on the following non-
constant decreasing capacity function (one jump),

m*(t) = ~ M~,. for t < e~,.

L M 2, for t > e I ,

with e~' following from

M~e~ = A4° (ek) - M~(ek -- e~)

and

.A.4° (e i)
M~ = max - - ,

i=1 ,...,k ei

./k40 (ek) - - .AltO(hi)
M~ = min

i=l.....k ek -- bi

Observe that m*(t) is the smallest (point wise) ca-
pacity function with one jump satisfying (5). Notice
that lower bound LB3 is at least as sharp as LB2.

If M~ = M~, the resulting capacity function is con-
stant and equals the average capacity, in which case
LB3 equals LB2. If M~" > M~, we have a scheduling
problem with one jump. To obtain a lower bound for
this problem we applied Lagrangian Relaxation. We
omit the details, however, since the computation time
using this lower bound is higher than the computation
time using LB2 (see Table 1).

Non-constant lower bounds based on hyperbolic
capacity functions (Lemma 4) and Lemma 15 can
also be constructed. We did not implement such
lower bounds, however, because we expected them
not to reduce the number of nodes very much,
while computation time per node will increase a
lot. This increase in computation time is caused
by the complex computations that have to be per-
formed to find a hyperbolic function that not only
satisfies Lemma 15 but also produces a good lower
bound.

We constructed 40 combinations of the number of
jobs n and the number of intervals k, namely n =
20, 24, 28, 32, 36, 38, 40 combined with k = 5 9.
For each combination 25 randomly generated prob-
lems were solved using the different lower bounds in
the B&B-procedure. In this way a total of 1000 test
problems were constructed and solved.

The experiments of Surkis and Dogramaci [4]
showed that the variation in the difference between
the Smith-solution and the optimal solution increases
when the variation in wi and Qi increases, and also
showed that the larger the fluctuation in capacity,
the larger the deviation from the optimal solution.
Therefore, the widths of the supports of the uniform
distributions to be used in the randomly generated test
problems, will be taken relatively large. The weight
and work content of each job are drawn randomly
from a uniform distribution (U (I , 10) and U(2 ,40) ,
respectively). The weight and work content of every
job are normalized in such a way that the total amount
of work is 1000. This is accomplished by multiplying
weight and work content with 1000/~i6 J Oi. The
capacity at every interval and the interval length are
also drawn from a uniform distribution (U(4 ,30)
and U(5,20) , respectively). The capacity function
is also normalized. First, the intervals are normalized

H.E Amaddeo et al. /European Journal of Operational Research 102 (1997) 502-512

Table 1
Average computational results for different lower bounds

511

LB1 LB2 LB3
n # nodes CPU time (see) # nodes CPU time (sec) # nodes CPU time (sec)

20 1168 1.90 1027 1.90 1019
24 3092 6.24 2435 5.42 2402
28 10967 22.34 9778 21.42 9490
32 37280 87.79 31858 81.05 31479
34 38869 106.24 32546 91.66 31707
36 143738 374.11 119187 336.02 115351
38 173494 504.76 151754 484.74 150050
40 248123 797.93 223498 796.41 220852

2.14
5.97

23.37
90.08
98.92

360.79
521.24
870.78

Table 2
Average computational results for LB2 (# nodes in B&B tree, CPU time (sec))

n k = 5 6 7 8 9

20 558 692 1027 916 1272
1.08 1.28 1.90 1.75 2.32

24 1390 2771 2436 2560 2791
3.18 6.45 5.42 5.58 6.08

28 5108 3762 9779 22787 6526
13.9 10.1 21.4 52.2 17.2

32 6243 83779* 31858 25989 125848*
19.3 244.3* 81.0 70.8 317.3"

34 10160 20036 32547 58006 80189
34.4 61.9 91.7 153.6 205.0

36 21726 25129 119187 169119 291708*
73.8 81.1 336.0 481.2 827.1"

38 48981* 118950 15174 556230* 251846
187.0" 391.8 484.7 2335.2* 700.3

40 45918 147874 223498 216052 273030
181.4 519.1 796.4 643.4 792.0

(# nodes)
(sec)

such that the total t ime is 100. Then, the Mi's are

normal ized such that the total capaci ty is 1000. The

numbers in the tables are the averages o f 25 experi-

ments for every combina t ion . F r o m Table 1 one can

see, as to be expected , that the number o f nodes in the

B & B - t r e e grows exponent ia l ly in the number o f j obs

(n) . The number o f nodes does not grow that fast in

the number o f j u m p s o f the capaci ty function. The
latter is due to the fact that in the B&B-p rocedu re

the branches are buil t independent ly o f the number
o f intervals. The number o f j u m p s does however in-

f luence the computa t ion o f the lower bounds for the

different branches. The average computa t ion t ime o f

the marked cases in Table 2 are rather h igh compared

to the computa t ion t imes o f the o ther combinat ions .

This is due to the fact that the computa t ion t ime was

very long for one or more o f the 25 p rob lems solved

for that case.

In these cases the number o f nodes that had to be
invest igated were not reduced very much by the d o m -

inance rules and our lower bound was not very effec-
tive.

512 H.E Amaddeo et al./European Journal of Operational Research 102 (1997) 502-512

6. Conclusions

In this paper a single machine scheduling prob-
lem with time-dependent machine capacity was in-
vestigated, in which the objective is to minimize the
weighted completion times. The problem was shown
to be NP-hard.

A necessary optimality condition has been derived
that prescribes the ordering between two adjacent jobs.
Some specific cases has been discussed in which this
condition is also sufficient. Moreover, the condition
can be used to improve the Smith schedule. The re-
sulting heuristic proves to be quite good when applied
to capacity functions that are step functions.

An B&B algorithm for the case of step functions
has been considered and applied to 1000 randomly
generated test problems. The best lower bound (LB2)
from a computational point of view, is obtained from
a constant capacity function that equals the maximum
time-averaged production rate corresponding to the
function re(t) . From the computational results on the
test problems it followed that the number of nodes in

the B&B-tree was quite insensitive with respect to the
number of jumps of the capacity function. We finally
note that an analogous B&B-procedure can also be
implemented for the general case using the same type
of lower bounds.

References

[1] Baker, K.R.. and Nunle, H.L.W. (1980), "Sequencing
independent jobs with a single resource", Naval Research
Logistics Quarterly 27/3, 499-510.

[2] Bootsma, ED., and van Harten, A. (1993), "Predicting
Manpower Requirements at KLM Baggage Handling",
Working Paper, Department of Management Science and
Logistics, University of Twcnte.

[3] Smith, W.E. (1956), "Various Optimizers for Single-stage
Production", Naval Research Logistics Quarterly 3/1, 59-66.

[4] Surkis, J. and A. Dogramaci (1988), "Minimizing the Sum
of Weighted Completion Times of n-lndependent Jobs when
Resource Availability Varies over Time: Performance of
Simple Priority Rule", Naval Research l,ogistics Quarterly
35/1, 35-47.

