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A b s t r a c t  

In this paper an n-job one-machine scheduling problem is considered, in which the machine capacity is time-dependent 
and jobs are characterized by their work content. The objective is to minimize the sum of weighted completion times. A 
necessary optimality condition is presented and we discuss some special cases where this condition is also sufficient. We 
prove that the problem is NP-complete, A branch-and-bound algorithm is developed for the case when the capacity function 
is a step function. Computational results for 1000 test problems are presented. (~) 1997 Elsevier Science B.V. 
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1. I n t r o d u c t i o n  

There are situations in production and service en- 
vironments in which the bottleneck resource (e.g. a 
machine) has non-constant capacity in time. For ex- 
ample, labor force may be varying as a consequence 
of  holidays,  shifts or breaks. Another  example is a 
machine that has non-constant capacity in time as a 
consequence o f  maintenance actions, wanning-up or 
cooling down. 

A similar  situation occurs at KLM Baggage Han- 
dling, where capacity (the number of  workers)  is non- 
constant as a consequence of  shifts and breaks [2] .  
As we assume in this paper, the job-progression of  a 
job  (the luggage from a flight with destination Am- 
sterdam) in this context is proportional to assigned 
capacity, and the objective is to minimize the sum of  
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weighted completion times. The former means that 
the marginal reduction of  the work content of  a j ob  
that is being processed, is proportional to the capacity 
assigned to that job. By minimizing weighted com- 
pletion times, different weights can be assigned to 
different jobs  (e.g. luggage from European flights, 
luggage from intercontinental flights or luggage from 
delayed flights) consistent with their relative prior- 
ity. 

The problem can also viewed as scheduling a set of  
jobs  (given by their work content) on a single pro- 
cessor when the production rate ( the capacity)  varies 
over time, see [4] .  

It is well known [3] that the problem of  minimiz-  
ing the sum of  weighted completion times on a single 
machine with constant capacity can be solved by se- 
quencing the jobs  in non-increasing order of  the ratio 
of  weight to processing time. 
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Scheduling jobs in situations with time dependent 
capacity minimizing weighted completion times is 
not a trivial case as shown by Baker and Nuttle [ I ]. 
They conjectured this problem to be NP-complete 
and left open the question how to exploit the struc- 
ture of the problem to obtain optimal solutions. They 
also found that the well known results of the cor- 
responding single-machine problem with constant 
capacity could be applied with little or no modifi- 
cation for other functions of the completion times. 
For the problem at hand, Surkis and Dogramaci [4] 
developed a myopic heuristic, based on a steepest 
imminent slope rule (SIS-rule). Applying this rule 
means that at a certain time the next job scheduled 
is the job that maximizes the ratio of weight to pro- 
cessing time, which in this case is time-dependent. 
A linear programming model was formulated to ob- 
tain a lower bound on the minimum value of the 
objective function. They found, using 1000 test prob- 
lems, that Smith's rule performed better than their 
SIS-rule. 

The content of the paper is as follows. In Sec- 
tion 2 we present the formal problem description, 
the notations we use in this paper and the assump- 
tions we make. In Section 3, we analyse the general 
case in which the capacity function is an integrable 
and bounded function. We first reduce the solution 
space and second, we deduce a Generalised Local 
Interchange rule (GLI-rule) which states in what 
cases two consecutive jobs have to be interchanged 
to improve the permutation schedule. Third, we in- 
vestigate sufficient conditions for the local ordering 
to be optimal. Last, we deduce some optimization 
results that depend on monotonicity properties. In 
Section 4, we consider the case where the capacity 
dynamics can be represented by step functions. In 
this section we investigate whether more properties 
of the optimal solution can be derived for this special 
case and we prove that the scheduling problem is NP- 
complete. In Section 5, we present a branch&bound- 
procedure for the case where the capacity function 
can be presented by a step function. A heuristic so- 
lution method is developed based on a combination 
of Smith's rule and the GLI-rule. In this section we 
also present computational results of solving 1000 
test problems with the branch&bound-procedure us- 
ing different lower bounds and both heuristic solution 
methods. 
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2. Problem definition, notations and assumptions 

The set of independent jobs to be scheduled are 
denoted by J = { 1 . . . . .  n}. All jobs are available at 
time 0. Every job is assigned a weight wi and needs 
an amount of work Qi. We assume without loss of 
generality that the jobs are ordered by non-increasing 
ratio of weight to work content (wi/Qi).  Observe that 
this ordering essentially coincides with Smith's rule 
in the constant capacity case. 

The capacity of the resource, i.e. the machine, is 
given by an integrable bounded function m : R+ ---* 
R+ (where R+ = [0,cx3)) of time. We consider the 
situation in which the capacity is divisible and can 
be shared among jobs. The capacity assigned to job 
i is denoted by the function mi, which has the same 
properties as m. The function m can be interpreted as 
the maximum production rate of the machine and mi 
as the production rate of the machine assigned to job i. 

For the existence of a feasible solution, the total 
amount of work to be processed must be less than or 
equal to the total amount of  work that can be handled 
by the machine, so 

o o  

~ a i  <_ f m(t  dt. 
iEJ 0 

Assuming additivity of job progression as a function 
of capacity assignment and taking units to m e a s u r e  Qi 
compatible with capacity measurements, the following 
requirements for a solution can be formulated. The 
capacity assigned to job i should match the amount of 
work necessary for that job, hence 

o o  

mi(t) = Oi. dt 

0 

At any time t, the capacity assigned to the jobs is 
always less than or equal to the total capacity available, 
giving 

~ mi( t ) < r e ( t ) ,  f o r a l l t E / R + .  
iEJ 

A solution that satisfies the above requirements will 
be called a feasible solution. 

Stated this way, our optimization problem is in fact 
a capacity assignment problem. The objective value of 
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an assignment ce = (ml . . . . .  mn) will be denoted by 
V(o~). Given the functions ml,m2 . . . . .  mn, let 

Ci = sup{t  > 0 ] mi(t)  > 0}, 

be the completion time of  job i, then V(a)  can be 
expressed as 

V(Od) : Z wi f i"  
iEJ 

3. The general case 

We start our analysis by showing that it is sufficient 
to look for an optimal solution within the class of  
permutation schedules in which jobs are processed one 
by one. This result is established analogously to other 
well known reductions of  solution spaces of  capacity 
assignment problems. 

The o rem 1. There exists an optimal assignment a* 
with the following properties: 

(i)  full capacity utilisation, i.e. ~'~in=l mi(t) = 
m(t ) ,  for  all t ~ [0, R], where R is such that 

R 

~-~Qi = f dt. 
iEJ 0 

(ii) no concurrency,  i.e. i f  ink(t) > O, for  t E 
[ t l , t2 ] ,  then mi(t)  = O, for  i 4= k and t E 
[ t i , t2 ] .  

(iii) no preempt ion ,  i.e. i f  job k starts at time sk and 
is completed at time CA., with 

sk = in f{ t  _> 0[  mk(t)  > 0}, 

Ck =sup{ t  > 0 [ mk(t)  > 0}, 

then m~(t) = m(t) ,  for  all t E (sk, Ck). 

Proof. 
(i)  Suppose a capacity assignment does not use full 

capacity in a t ime interval [ t, t 4- •]. Then any 
job, k say, completed after time t can be fin- 
ished earlier by assigning (part of) the unused 
capacity to k, without delaying the completion 
of  other jobs. 

(ii) Assume that under assignment a °, two jobs, say 
k and l, are simultaneously processed during 

(iii) 

[ t l , t2 ] .  Suppose job k is processed in [ t l ,  t2] 
prior to job l under an assignment a*,  then the 
completion time of  job I remains the same while 
the completion time of  job k is less than or equal 
to that under a °, thus V(a*)  <_ V(c~°). 
Suppose job k is preempted under assignment 

o be pre- a °. Let job k, which starts at time sk, 
empted at time p0, resumed at time r ° and be 
completed at time C ° . Now two situations can 
o c c u r :  

(a) There is a job, say l, completed in the in- 
terval 0 0 [Pk, rk].  In this case let an assign- 
ment a* be such that the work performed 
on job k in [pO,pO] under assignment cr ° 
directly precedes time r °, so no preemption 
occurs and work performed on other jobs in 
the preemption period of  job k will be per- 
formed in the same order directly after time 
s o . This means that the completion time of  
job k remains the same and at least one 
completion time, namely that of  job l, de- 
creases. This means that or* is strictly better 
than o~ °. 

(b)  No job is completed during the interval 
[pO, r0]. Now a* is constructed in such a 
way that the work performed oll job k after 
time r ° under assignment a ° is performed 
just after 0 Pk, and the work performed on the 
other jobs in the interval will be completed 
in the same order just before C ° . In doing 
so the completion time of  job k decreases 
and the rest of  the completion times remain 
the same. Again, a* is strictly better than 
a °. [] 

Theorem 1 implies that it suffices to consider only 
non-preemptive capacity assignments, under which 
only one job is scheduled at a time and full capacity 
is assigned to each job. This means that an assign- 
ment is defined by a permutation of  the jobs. Hence, 
the problem reduces to a sequencing problem. In the 
sequel a permutation of the jobs is denoted by 7r and 
its objective function value by V(7"r). 

We will now address the question whether it is pos- 
sible to generalize Smith 's  rule to the time depen- 
dent capacity case. So let us investigate when an in- 
terchange of  two consecutive jobs is profitable in the 
more general case. When the capacity function is a 
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non-constant integrable function, the switching-rule 
turns out to be somewhat different. Suppose that job 
i is started at time A and that the successing job j is 
completed at time B. We only have to consider the in- 
terval [A, B], because all the other completion times 
remain the same when interchanging jobs i and j .  We 
define the function 

~( t ,Q)  : D ~ IR+, 
t 

with D = { ( t ,Q)  E R2+ J / m ( x )  dx >_ Q}, 
o -  

0 

implicitly by 

t 

m(x)  d x = Q ,  w i t h ( t , Q )  E D ,  (1) 

t - (  

where we assume that s c is the smallest such number. 
Note that so(t, Q) is the processing time needed to 

finish a job of workload Q at time t using full capacity. 
The sum of the values of the weighted completion 

times of jobs i and j will be denoted by V( i , j ) ,  where 
job i directly precedes job j in a schedule. 

To deduce a switching-rule for the interchange of 
jobs i and j ,  observe that 

old situation : V( i , j )  = wiCi + wjCj 

=wi(B - ~(B,Qj)  ) + wjB, 

new situation : V(j,  i) = wiC~ + wjC 7 

= w i B  -k- w j ( B  - ~ ( B ,  Q i ) ) .  

It follows that 

V(j , i )  - V( i , j )  = wi~( B, Qj) - wj~( B, Qi). 

For the interchange to be an improvement, this differ- 
ence has to be negative. Hence, for two adjacent jobs i 
and j ,  job j must precede job i in an optimal schedule 
if 

wj wi : > - -  
~(B, Qj) ~(B, Qi)" 

This criterion will be referred to as the Generalised 
Local Interchange rule (GLI-rule). The criterion does 
not only depend on the weights and the amounts of 
work, but also on the capacity function, which enters 
through the function ( ( . ,  .). For a constant capacity 

function this criterion is equivalent to Smith's rule. In 
general the GLI-rule is a local criterion for a given 
capacity function m( . ) .  Repeated application of this 
rule may lead to a local optimum, which is not neces- 
sarily a global optimum. In the sequel [i] will denote 
the index corresponding with the job at position i in 
a schedule. The above analysis implies the following 
result. 

Theorem 2. A necessary condition for an optimal 
schedule is that for i = 1 . . . . .  n - 1 

W[ i] > W[i+lJ 

((Ct/+~l, QIq) - ~(cti+~l, Qh+~l)  

As mentioned in the introduction, Smith's rule does 
not guarantee an optimal solution. The reason is that it 
generally does not generate an ordering which satisfies 
the necessary condition given in the above theorem as 
shown by the following example. 

Example  3. Consider a problem with capacity func- 
tion 

m(t) = { 4' f o r 0 < t < 3 / 2 ,  
1, for t > 3/2  

and three jobs: wl = 4, Qi = 4, w2 = w, Q2 = 3, 
w3 = 2, Q3 = 2. It is readily verified that if w < 
3, then the Smith-orderings (3,1,2) and (1,3,2) are 
optimal. The ordering (1,2,3) is locally optimal (i.e. 
satisfies Theorem 2) if 0 < w < 373-. It is globally 
optimal, however, only if 3 < w < 373-. Note that it 
does not satisfy Smith's rule. If  w > 3 9, then the 
Smith-ordering (2,1,3) is the unique optimal solution. 
Although the ordering (2,3,1 ) in this case also satisfies 
Smith's rule, it does not satisfy the necessary condition 
stated in Theorem 2. 

We will now treat some cases in which the applica- 
tion of the GLI-criterion results in an optimal ordering. 

Lemma  4. The only positive continuous functions 
re(t), for which the ratio ~( t, Qi) / ( (  t, Q2) is inde- 
pendent oft, for all QI, Q2 > 0, are of the form 

Ol 
re(t) = 1 + fl---~t' 

where ot > O. l f  fl < O, then the domain of the function 
is restricted to [0, - 1//3). 
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Proof. As preliminary, notice that by differentiating 
relation (1) with respect to t, we obtain 

8 ( ( t , Q )  m ( t - s  ¢) - r e ( t )  
- -  = ( 2 )  

8t m(  t -- s c) 

Now, the basic observation is that the following 
should hold 

8 ( ~ ( t ,  a l ) ~  ~( t ,  a l )  ( 1 8~(t ,  a l )  

8 t \ ~ ( ~ , Q 2 ) J  - ( ( t ,  Q2) ~:(t,Ql) 
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W[IJ  > W[21 ~> . . .  2> Wlnl 

1 - e - ~  Qlu - 1 - - e -~Qm -- - l--e--~Ql,J 

is optimal. I f  fl < 0 and m( t )  defined for  t 6 
[ 0 , -  1//3), then the inequalities should be reversed. 

t ( m ( t l )  - re(t2))  + t2m(t2) -- h m ( t l ) "  

Since we only consider functions that are bounded on 
finite intervals, the only continuous functions that are 
permitted, are hyperbolic functions of  the form 

m( t )  = ~ with ot > 0. 
1 + f i t '  

Observe that if/3 = 0 the case with constant capacity 
is found. [] 

Ot 

1 O~(t, Q 2 ) )  = 0 ,  (3) 
( ( t ,  Q2) 8t ./ 

for all QI, Q2 > 0. Hence, it follows from Eqs. (2) 
and (3) that 

1 a ( ( t , Q )  = m ( t - ( )  - m ( t )  
(4) 

~(t ,  Q) at ~m( t  - ~) 

is independent of  Q for all t. Since ( ( t ,  Q) is strictly 
increasing in Q the right hand side of Eq. (4) must 
be independent of  (.  

Now choosing ( = t - q  and ~ = t - t 2 ,  with tl < t2, 
gives 

m( t l )  - re(t)  m( t z )  - re(t) 

(t  - h ) m ( h )  (t  - t2 )m( t z )"  

From this equality, we get 

m(t l  )re(t2) (t2 - tl ) 
m( t )  = 

The fact that for hyperbolic functions as in Lemma 
4 the ratio ~:(t, Qi ) / ( ( t ,  02) is independent of t, for 
all QI,Q2, means that in this case the interchange 
decision for two consecutive jobs implied by the GLI- 
rule, is independent of time. The optimal ordering for 
the hyperbolic case is given in the next theorem. 

Theorem 5. l f m ( t )  = ot/( 1 +f i t ) ,  with at > 0, /3 > 
O, then the ordering 

Proof. From the definition of ~c(t,Q) and re(t)  it is 
easily verified that 

1 _ e_(a/fl)a } ( ( t , Q )  = ( t +  ~ ) { 1  

The GLI-rule gives the ordering stated above. Op- 
timality of this ordering is easily proved by the usual 
interchange argument using Lemma 4. In fact any or- 
dering that does not satisfy the given ordering can be 
improved. [] 

Remark  6. The ordering given in the previous the- 
orem is also optimal for a sequencing problem with 
constant capacity in which the objective is to minimize 

£ ± wli I exp F[i l , with Eli 1 = Q[Jl. 
i=1 j= l  

The following optimization results depend on mono- 
tonicity properties. 

Theorem 7. I f  there exists a permutation 7r °, for  
which w[l] _> w12 ] > "-- > wln ] andQ[l l  < QIzl < 
• " " <- Q[nl, then the job  sequence 7r ° is optimal. 

Proof. Since sc(t,Q) is strictly increasing in Q for 
every t, it follows that for rr ° 

W[i] > W[i+I I  

( ( t ,  Otil) - ( ( t ,  Qti+lj ) ' 

for all t. Thus, the usual proof, that any permutation 
different from rr ° can be improved, can be applied. [] 

Theorem 8. I f  there exists a schedule 7r ° for  which 
wIi l /Ql iJ  > w[ i+ l l / a [ i+ l l  and Qlil >- QIi+I1, then 
• r ° is optimal i f m  is non-increasing. 

Proof. Let us introduce the shorthand notation b¢lil ---- 

( ( t ,  Qt il )- First observe that if QI il > QI i+ ~ 1, then 

t ft-¢r,,u re(x) dx Qli] ft-£ta re(x)  dx at-~ul 
= 1 +  - -  t 

QIi+II ft,_¢,, u m ( x )  dx ft-¢,,+u re(x) dx" 



H.F. Arnaddeo et al./European Journal of Operational Research 102 (1997) 502-512 507 

since ~[i] ~ ([i+1]. If  m( . ) ,  is non-increasing, then 

t--~:l/+ll 

f re(x) dx > (~:[il -- (ti+l])m(t - ( [ i + l l )  

t--~[i] 

and 
t 

f m(x)  dx < - ~:li+l]). ~[i+ljm(t 

Hence, if Q[il >-- Q[i+I ] ,  then 

Qtil > 1 + (sct~l -sct i+l l)  = (1/1 
QI i+11 - ~:[i+1] gc[i+ll 

~(t,  Qlil) 
w 

( ( t , Q [ i + l ] ) '  

for all t. Consequently, 

Qti___..~l > Q[i~-I] 

~[i] - -  ~ [ i + 1 1 '  

and multiplying the left hand side with Will/Qii] and 
the right hand side with w[i+l]/Q[ i+11, we find that 

W[ i] ~> W[i+l] 

(1i1 - -  ~ [ i + 1 1  ' 

for all t. 
So again, we have a globally optimal ordering. [] 

Theorem 9. If there exists a schedule qr ° for which 
w[il/Q[i] ~ wIi+ll/Q[i+ll and Q[il <- Qti+]l, then 
schedule 7r ° is optimal if m is non-decreasing. 

Proof. Analogous to the proof of Theorem 8. [] 

Some corollaries to Theorem 8 and 9 with respect 
to step functions will be derived in the next section. 

Let [ [i] ] denote the position of job i in an optimal 
sequence. 

Theorem 10. If (wi >_ wj and Qi < Qj) or (wi > 
wj and Qi < Qj) , then [[i]] < [[j]]. 

Proof. The proof easily follows by an interchange ar- 
gument. [] 

The essence of this theorem is its usefulness in re- 
stricting the solution space. It will be applied in the 
branch-and-bound algorithm presented in Section 5. 

4. Special case: step functions 

In this section we consider capacity functions m(t)  
that are step functions. In production and service en- 
vironments the capacity function can very often be 
described by a step function. At KLM Baggage Ser- 
vices the capacity dynamics is modelled this way due 
to shifts and breaks with a variable number of opera- 
tors. We define a step function m : I1~+ ~ R+ in the 
usual way: 

m ( t ) = M i ,  f o r t E I i = [ b i ,  ei), 
k 

with 1 < i < k ,  and 0 1 i  •+. 
/=1 

Of course, the general results deduced in Section 3 are 
also valid here. 

Let us now investigate the consequences of the 
general ordering-rule, given in Theorem 2, for step 
functions. The next lemma states an obvious order- 
ing property within an interval of constant capac- 
ity. 

Lemma  11. Let m : ~,+ --~ R+ be a stepfunctionand 
7r ° be a schedule with jobs [i] . . . . .  [ i + g] scheduled 
within interval Ij, i.e. 

S[il ~ bj and Cti+e I < ej.  

If 7r ° is optimal then 

WIml > Wlrn+ll with i < m < i + l - 1 .  
Qtml - Qlm+ll '  

Proof. Assume job [m] and [m + 1] are such that 
Wiml/Q[m] < Wlm+ll/Q[m+l 1. Interchanging the 
jobs will improve the objective function and schedule 
-z -° is clearly not optimal. [] 

So the ordering within an interval 1~, with j = 
1 . . . . .  k, must satisfy Smith's rule. One should notice, 
however, that the question how to assign the jobs to 
the various intervals is still open. 

Let us consider the situation where only one jump 
of m(.)  occurs during the processing of a job, say job 
[ j  ]. We will deduce some ordering-rules between that 
job and its predecessor, job [ j  - 1 ], and its successor, 
job [ j  + I ], assuming that m is constant during the 
processing of jobs [ j -  1] and [ j  + l ] .  
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The following two cases are possible 

case A :m decreases during job [ j ]  from Mt-i  to 

Mr, 

case B : m  decreases during job [ j ]  from Mt-i  to 

Mr. 

Let us first consider case A. 

Corollary 12 (to Theorem 8). 
(i) l f  Wlj_l l /Q[ j -  1] _> Wljl/Q[j I and Qlj-l!  >_ 

Q[jl, then jobs [j - 1] and [ j ]  are ordered 
according to the GLl-rule. 

(ii) I f  Wlj l /Q[j]  > w[j+ll/QIj+I], then jobs [ j ]  
and [j + I ] are ordered according to the GLI- 
rule. 

Proof. For part (i) and (ii) with Qtj1 > QIj+I], the 
assertion follows from Theorem 8. 

We are left with the case QlJl < Qtj+ll in part (ii). 
The GLI-rule implies that jobs [ j ]  and [ j  + 1 ] are 
scheduled locally optimal if 

WIJl > W [ j + I ]  with t = C[j+I]. 
( ( t ,  Qljl ) - ~(t,  Qlj+ll ) '  

Since w~jj/Qtj I > wtj+l]/Qtj+~ j, Q[Jl < Qt./+~l, 
and t --- Cj+l 

W[j] W[j] 

g(t ,  Oijl) Q[jl/MI 
> W I j + l ]  = W I j + l l  [ ]  

-- QIj+II/MI ( ( t ,  Qlj+ll)" 

In the other situations with m decreasing during 
the processing of job [ j ] ,  local optimality of  the or- 
dering of two jobs has to be checked explicitly using 
the GLI-criterion, because no general conclusion can 
be made beforehand. In these cases optimality does 
not only depend on the weight and workload of the 
jobs, but also on the magnitude of the jump and the 
location of the jobs. 

In case B, where m increases during job [ j ] ,  a 
similar result holds. 

Corollary 13 (to Theorem 9). 
(i) l fw[ j -x l /Q[ j - l l  >_ w[jl/Qlj] >_ wu+ll/QIj+ll 

and QIy-Jl >- QtJl > QIj+ll, then jobs [j - 
1], [ j ]  and [ j  + 1 ] are ordered according to 
the GLl-rule. 

(ii) I f  wlJl/Qij] > wlj+ll/Q[j+ii and QIjI,QIj+~I 
are such that, when jobs [ j ]  and [j + 1 ] are 
interchanged, job [ j +  1 ] also overlaps the jump, 
then jobs [ j ]  and [ j +  1 ] are ordered according 
to the GLl-rule. 

Proof. The proof is analogous to that of  Corollary 
12. [] 

Again, for the other cases left, the GLI-criterion has 
to be evaluated explicitly to see if jobs are ordered 
locally optimal. So, although some properties of the 
optimal solution are known at a jump of the capacity 
function, no global optimal ordering can be deduced 
as can also be inferred from the next theorem. 

Theorem 14. For the 1-machine n-job scheduling 
problem with time dependent machine-capacity, the 
problem of  the minimization of  the sum of  weighted 
completion times is NP-hard. 

Proof. The proof is established by a transformation 
from PARTITION. 

Let al . . . . .  a,, be an instance of PARTITION. 
Consider the following instance of our scheduling 

problem 

Q i = w i = a i ,  i = 1 , 2  . . . . .  n, 

and let the capacity function m be given by 

0, f o r B < t < B + l ,  
r e ( t ) ;  1, f o r 0 < t < B  

a n d B +  1 < t  < 2 B +  1, 

where B = 1/2 ~-~: I ai- 
Given a schedule 7"r, let j(~r) be the job with highest 

index, such that Cj~) < B. If  [i] denotes the ith job 
in the schedule, then 

i 

~-~Wl i lC[ i l=~-~a{ i l~a l j l  q- ~ a[il. 
i=1 i=1 j=! i=j(,n') + 1 

Since the first term on the right hand side is indepen- 
dent of the ordering 7r (Smith's rule for wi = Qi) ,  it 
is clear that PARTITION has a solution if and only if 
the scheduling problem has a solution with 

W[ilCli] = alil alj ] -4- B. [] 
/=1 i=1 j=l  
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Observe that the problem instance, considered in 
the above proof, concerns a capacity function with two 
jumps. We conjecture that even for the case of a step 
function with one jump no polynomial time solution 
algorithm exists. 

5. Step functions: a branch&bound-procedure 

In this section we present a B&B-procedure to solve 
the scheduling problem for a capacity function, that is 
represented by a step function. The number of jumps 
is arbitrary, say k, and so is the number of jobs, say 
n. No further restrictions are made. 

The B&B-tree is designed in such a way, that a node 
at depth m, with 0 < m < n - 1 contains a partial 
schedule (~,,,) of m jobs ([1 ], [2] . . . . .  [m] ), and ¢r, 
is a complete schedule. Consequently, a branch from 
a node in the B&B-tree corresponds to scheduling a 
job, not scheduled yet, after job [m]. Without loss 
of generality, we will assume that the jobs, not yet 
scheduled, are ordered by Smith's rule. 

We implemented the following dominance rule. 
(i) While in an optimal schedule the GLI-criterion 

has to hold (Theorem 2) for every two neigh- 
bours [i] and [i + 1], we will only branch 
on a job j at level m of the B&B-tree if 
wlm]/((t, Qtml) > wj/~(t, aj), with t = 
Ctm+l l ,  and 

(ii) applying Theorem 10, we will only branch on a 
job j at level m of the B&B-tree if there is no job 
l(l ~ j ) ,  not scheduled a depth m, for which 
(wt > wj and Qt < Qj) or (wl >_ wj and Qt < 
Qj). 

The B&B-procedure 

STEP 1. Use a heuristic to initialize the current "best 
schedule" (-n "b) and determine the upper 
bound UB b = V(afl'). 

STEP 2. Start with an empty schedule (Tr0 = 4,) in 
the root of the B&B-tree. 

STEP 3. Select one of the open nodes in the B&B- 
tree according to a certain selection rule. 
Branch this node if its Iowerbound is smaller 
than the best current objective function value 
UB b, else fathom this node. 

If a new node contains a complete sched- 
ule 7rn, update ~ and set UB b = V('trb), if 
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V(~'m) < V('rrb), and close the node. 
If not, calculate a lower bound for the best 

schedule that can still be obtained, given the 
partial schedule of this node. Repeat this pro- 
cedure until there are no open nodes left in 
the B&B-tree. 

STEP 4. The schedule "n "b is optimal. 

The simplest heuristic to use in step 1 is Smith's 
rule, that is ordering the jobs by non-increasing ratio of 
weight to work (wi/ai) .  We found that the deviation 
from the optimal value in using Smith's rule was 0.1% 
on average over 1000 test problems while the average 
maximum deviation was 0.94%. (The construction of 
the test problems will be discussed below). 

Since Smith's rule does not in general satisfy the 
GLI-criterion, it might be possible to improve the 
corresponding schedule by interchanging neighbour- 
ing jobs, going from head to tail in the schedule 
several times until all neighbouring jobs satisfy the 
GLI-criterion. This GLI-Smith heuristic improved the 
Smith-schedule in 74.6% of the 1000 test problems 
and proved to be optimal in 48.6% of the problems. 
It turned out that the deviation from the optimal value 
for this improved heuristic was on average 0.04% and 
the average maximum deviation was 0.75%. 

There are several possible selection rules to select 
the open nodes left in the B&B-tree. We implemented 
a best deepest first selection rule, which means that in 
the B&B-tree the open node at the deepest level with 
the smallest lower bound is selected. 

Designing efficient lower bounds, necessary to re- 
duce the number of nodes in the tree and to cut down 
computation time, is not easy in this case, because of 
the structure of the problem. The following lemma in- 
spired our lower bounds. 

Lemma 15. Consider a problem with capacity func- 
tion m °. A lower bound for the optimal solution is pro- 
vided by solving the problem for a capacity function 
m* with the following property 

t t 

f m° (u )du< / m * ( u ) d u ,  forallt>_O. (5) 

0 0 

Proof. It is easy to see that for every capacity func- 
tion m* with the above property, the corresponding 
problem provides a lower bound to the original prob- 
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lem, as the completion times under the new capacity 
function are less than or equal to the completion times 
under m ° for every given schedule. This is due to the 
fact that under the new capacity function at least as 
much work has been done at any point in time. [] 

Two lower bounds easily follow from this lemma. 
The simplest lower bound ( L B I )  is provided by using 
the constant capacity function defined by 

M * =  max M °, 
i=I ,...,k 

which equals the maximum offered production rate. 
The second lower bound (LB2) we implemented 

is more sophisticated. Assume that 

t 

.A4°(t) =/m°(u) du. 

0 

The constant capacity function that provides the sec- 
ond lower bound is constructed in the following way 

M * =  m a x  "A4°(ei) 
i=1 ,...,k ei  

M* can be interpreted as the maximum time-averaged 
production rate. 

The fact that both capacity functions, mentioned 
above, satisfy Lemma 15 and that LB2 is a sharper 
lower bound than LB 1 can be easily seen graphically. 

Lower bounds based on non-constant capacity 
functions satisfying Lemma 15 are more difficult to 
implement, because of the complexity of the result- 
ing scheduling problem. Nevertheless, we designed 
a lower bound (LB3) based on the following non- 
constant decreasing capacity function (one jump),  

m*( t )  = ~ M~,. for t < e~,. 

L M 2, for t > e I , 

with e~' following from 

M~e~ = A4° (ek )  - M~(ek -- e~) 

and 

.A.4° ( e i )  
M~ = max - - ,  

i=1 ,...,k ei 

./k40 ( ek ) - -  .AltO(hi)  
M~ = min 

i=l.....k ek --  bi 

Observe that m*( t )  is the smallest (point wise) ca- 
pacity function with one jump satisfying (5). Notice 
that lower bound LB3 is at least as sharp as LB2. 

If  M~ = M~, the resulting capacity function is con- 
stant and equals the average capacity, in which case 
LB3 equals LB2. If  M~" > M~, we have a scheduling 
problem with one jump. To obtain a lower bound for 
this problem we applied Lagrangian Relaxation. We 
omit the details, however, since the computation time 
using this lower bound is higher than the computation 
time using LB2 (see Table 1). 

Non-constant lower bounds based on hyperbolic 
capacity functions (Lemma 4) and Lemma 15 can 
also be constructed. We did not implement such 
lower bounds, however, because we expected them 
not to reduce the number of nodes very much, 
while computation time per node will increase a 
lot. This increase in computation time is caused 
by the complex computations that have to be per- 
formed to find a hyperbolic function that not only 
satisfies Lemma 15 but also produces a good lower 
bound. 

We constructed 40 combinations of the number of 
jobs n and the number of intervals k, namely n = 
20, 24, 28, 32, 36, 38, 40 combined with k = 5 . . . . .  9. 
For each combination 25 randomly generated prob- 
lems were solved using the different lower bounds in 
the B&B-procedure. In this way a total of 1000 test 
problems were constructed and solved. 

The experiments of Surkis and Dogramaci [4] 
showed that the variation in the difference between 
the Smith-solution and the optimal solution increases 
when the variation in wi and Qi increases, and also 
showed that the larger the fluctuation in capacity, 
the larger the deviation from the optimal solution. 
Therefore, the widths of  the supports of the uniform 
distributions to be used in the randomly generated test 
problems, will be taken relatively large. The weight 
and work content of each job are drawn randomly 
from a uniform distribution ( U ( I ,  10) and U(2 ,40) ,  
respectively). The weight and work content of every 
job are normalized in such a way that the total amount 
of work is 1000. This is accomplished by multiplying 
weight and work content with  1000/~i6 J Oi. The 
capacity at every interval and the interval length are 
also drawn from a uniform distribution (U(4 ,30)  
and U(5,20) ,  respectively). The capacity function 
is also normalized. First, the intervals are normalized 
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Table 1 
Average computational results for different lower bounds 
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LB1 LB2 LB3 
n # nodes CPU time (see) # nodes CPU time (sec) # nodes CPU time (sec) 

20 1168 1.90 1027 1.90 1019 
24 3092 6.24 2435 5.42 2402 
28 10967 22.34 9778 21.42 9490 
32 37280 87.79 31858 81.05 31479 
34 38869 106.24 32546 91.66 31707 
36 143738 374.11 119187 336.02 115351 
38 173494 504.76 151754 484.74 150050 
40 248123 797.93 223498 796.41 220852 

2.14 
5.97 

23.37 
90.08 
98.92 

360.79 
521.24 
870.78 

Table 2 
Average computational results for LB2 (# nodes in B&B tree, CPU time (sec)) 

n k = 5  6 7 8 9 

20 558 692 1027 916 1272 
1.08 1.28 1.90 1.75 2.32 

24 1390 2771 2436 2560 2791 
3.18 6.45 5.42 5.58 6.08 

28 5108 3762 9779 22787 6526 
13.9 10.1 21.4 52.2 17.2 

32 6243 83779* 31858 25989 125848* 
19.3 244.3* 81.0 70.8 317.3" 

34 10160 20036 32547 58006 80189 
34.4 61.9 91.7 153.6 205.0 

36 21726 25129 119187 169119 291708* 
73.8 81.1 336.0 481.2 827.1" 

38 48981* 118950 15174 556230* 251846 
187.0" 391.8 484.7 2335.2* 700.3 

40 45918 147874 223498 216052 273030 
181.4 519.1 796.4 643.4 792.0 

(# nodes) 
(sec) 

such that the total t ime is 100. Then,  the Mi's  are 

normal ized  such that the total capaci ty is 1000. The  

numbers  in the tables are the averages o f  25 experi-  

ments  for every  combina t ion .  F r o m  Table 1 one  can 

see, as to be expected ,  that the number  o f  nodes in the 

B & B - t r e e  grows exponent ia l ly  in the number  o f  j obs  

( n ) .  The  number  o f  nodes does  not  grow that fast in 

the number  o f  j u m p s  o f  the capaci ty function.  The  
latter is due  to the fact that in the B&B-p rocedu re  

the branches  are buil t  independent ly  o f  the number  
o f  intervals.  The  number  o f  j u m p s  does  however  in- 

f luence the computa t ion  o f  the lower  bounds  for the 

different  branches.  The  average computa t ion  t ime  o f  

the marked cases in Table 2 are rather h igh  compared  

to the computa t ion  t imes o f  the o ther  combinat ions .  

This  is due to the fact that the computa t ion  t ime was 

very long for one  or  more  o f  the 25 p rob lems  solved 

for that case. 

In these cases the number  o f  nodes that had to be 
invest igated were  not  reduced very much  by the d o m -  

inance rules and our  lower  bound was not very effec-  
tive. 
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6. Conclusions 

In this paper a single machine scheduling prob- 
lem with time-dependent machine capacity was in- 
vestigated, in which the objective is to minimize the 
weighted completion times. The problem was shown 
to be NP-hard. 

A necessary optimality condition has been derived 
that prescribes the ordering between two adjacent jobs. 
Some specific cases has been discussed in which this 
condition is also sufficient. Moreover, the condition 
can be used to improve the Smith schedule. The re- 
sulting heuristic proves to be quite good when applied 
to capacity functions that are step functions. 

An B&B algorithm for the case of step functions 
has been considered and applied to 1000 randomly 
generated test problems. The best lower bound (LB2) 
from a computational point of  view, is obtained from 
a constant capacity function that equals the maximum 
time-averaged production rate corresponding to the 
function re(t) .  From the computational results on the 
test problems it followed that the number of nodes in 

the B&B-tree was quite insensitive with respect to the 
number of jumps of the capacity function. We finally 
note that an analogous B&B-procedure can also be 
implemented for the general case using the same type 
of lower bounds. 
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