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Energy-Based Lyapunov Functions for Forced Hamiltonian
Systems with Dissipation

Bernhard Maschke, Romeo Ortega, and Arjan J. van der Schaft

Abstract—In this paper, we propose a constructive procedure to modify
the Hamiltonian function of forced Hamiltonian systems with dissipation
in order to generate Lyapunov functions for nonzero equilibria. A key step
in the procedure, which is motivated from energy-balance considerations
standard in network modeling of physical systems, is to embed the system
into a larger Hamiltonian system for which a series of Casimir functions can
be easily constructed. Interestingly enough, for linear systems the resulting
Lyapunov function is the incremental energy; thus our derivations provide
a physical explanation to it. An easily verifiable necessary and sufficient
condition for the applicability of the technique in the general nonlinear case
is given. Some examples that illustrate the method are given.

Index Terms—Casimirs, Hamiltonian systems, Lyapunov stability,
sources.

I. PROBLEM FORMULATION

Network modeling of lumped-parameter physical systems [7] with
independent storage elements leads to the following class of dynamical
systems, calledport controlled Hamiltonian systems with dissipation
[6], [14], [15], [1]:

�:
_x = [J(x)�R(x)]

@H

@x
(x) + g(x)u

y = g>(x)
@H

@x
(x)

(1.1)

wherex 2 X , ann-dimensional manifold,u; y 2 Rm. The state vari-
ablesx = [x1; � � � ; xn]

> are the energy variables (i.e., the variables
by which the energy of the system is defined), the smooth function
H(x1; � � � ; xn): X ! R represents the total stored energy, andu; y

are the port power variables. The twon�nmatricesJ(x) andR(x) are
calledstructure matricesand define the geometric structure of the state
space of the energy variables. The matrixJ(x) corresponds to a power
continuous interconnection in the network model; it isskew-symmetric
and defines a generalized Poisson bracket onX (generalized because it
need not satisfy the Jacobi identity [13]). The matrixR(x) is a nonneg-
ativesymmetricmatrix depending smoothly onx; it corresponds to the
energy dissipating part of the network model and defines a symmetric
bracket on the state space.
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The port controlled Hamiltonian systems with dissipation (1.1) sat-
isfy the following the power-balance equation:

d

dt
H = �

@>H

@x
(x)R(x)

@H

@x
(x) + u

>
y (1.2)

whereu>y is the power externally supplied to the system and the first
term on the right-hand side represents theenergy dissipationdue to the
resistive elements in the system.

While from the power-balance equation (1.2) the stability of theun-
controlledor unforcedsystem (1.1) (foru = 0) may be analyzed from
the properties of the Hamiltonian functionH(x), in the sequel we shall
analyze the stability of the system (1.1) for aconstant, but nonzero,
input u 2 R

m, leading to aforced(controlled) equilibriumx 2 X .
Such situations arise, e.g., in studies of the transient stability of syn-
chronous generators in power systems [3]; see also [11] and [10]. Cor-
responding tou = u, the forced equilibriax are solutions of

[J(x)�R(x)]
@H

@x
(x) + g(x)u = 0: (1.3)

In general, a forced equilibriumx will not be a minimum (nor an ex-
tremum) ofH . Furthermore, insertingu = u in (1.2) yields

d

dt
H = �

@>H

@x
(x)R(x)

@H

@x
(x) + u

>
g
>(x)

@H

@x
(x) (1.4)

having a right-hand side that in general will not be nonpositive. Thus,
in most cases, the Hamiltonian function cannot be directly used as a
Lyapunov function for investigating the stability of a forced equilib-
rium x . Hence the problem comes up if, and how, we can construct
physically basedLyapunov functions forequilibria of forced physical
systems(1.1). Providing some (partial) solutions to this problem are the
main contributions of our work.

II. A L YAPUNOV FUNCTION BASED ONENERGY-BALANCE

One way of approaching the problem is to start from the power bal-
ance of the forced system (1.4) and to bring the second term on the
right-hand side to the left-hand side, suggesting to look for candidate
Lyapunov functions

H(x(t))� u
>

t

0

y(�)d�: (2.1)

To check whether (2.1) can be used as a Lyapunov function, the first
basic question is if we can writeu> t

0
y(�)d� as a function of the

statex(t). From a control theoretic point of view, this question suggests
to consider a cascade of� with inputu, followed by the integration of
y, and to look for Lyapunov functions of the composed system

_x = [J(x)�R(x)]
@H

@x
(x) + g(x)u

_� = g
>(x)

@H

@x
(x); � 2 R

m
: (2.2)

Note that (2.2) can be rewritten as an unforced Hamiltonian system
with dissipation

_x

_�
=

J(x) �g(x)

g>(x) 0
�

R(x) 0

0 0

@Ha

@x

@Ha

@�

(2.3)

with Ha(x; �) theaugmentedenergy function

Ha(x; �)
�
=H(x) +Hs(�); Hs(�)

�
= �u>�: (2.4)

Writing u>
t

0
y(�)d� as a function ofx(t) then corresponds to

expressing�(t) as a function ofx(t) along the dynamics (2.3). This is
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the starting point of our approach. To motivate our subsequent develop-
ments, we first present two simple examples in Section III. From these
examples, it follows that in order to cope with the general problem,
we have to modify the dynamical system (2.3) to a more general form.
The treatment of this more general form leading to a solution to the
general problem shall be given in Sections IV–VI. Conditions that en-
sure that the indicated first attempt already “works” shall be given in
Section VII, along with some other examples.

Remark 2.1: From a modeling perspective, (2.3) corresponds to
viewing � for constantu = u as theinterconnectionof � with a
source system

_� =us

ys =
@Hs

@�
(2.5)

with Hs(�) = �u>� the (unbounded) energy of the source system,
via the interconnection constraints

us = y

u =�ys: (2.6)

Remark 2.2: Notice that the termu> t

0
y(�)d� is the energy exter-

nally supplied to the system� and withdrawn from the source system.
Hence the new Lyapunov function (2.1) that we propose is intimately
related with anenergy balance, since it is exactly the difference be-
tween the energy of the system and the supplied energy.

III. T WO MOTIVATING EXAMPLES

A. A Series RLC Circuit

Consider the linear time-invariant circuit consisting of the series in-
terconnection of a resistor (with resistanceR2), an inductor (with in-
ductanceL) a capacitor (with capacitanceC), and a constant voltage
sourceu. The total electromagnetic energy of the circuit isH(x) =
(1=2)x>Qx, with x = [x1; x2]

> = [qC ; �L]
>, whereqC ; �L

are the capacitor’s charge and the inductor’s flux, respectively, and
Q = Diag(1=C; 1=L).

The dynamical model of the circuit can be written in the form of
a port controlled Hamiltonian system with dissipation (1.1) with the
input being the voltage delivered by the sourceu = u, the output being
the associated currenty = (1=L)x2, and the structure matrices

J =
0 1

�1 0
; R =

0 0

0 R2
; g =

0

1
:

The equilibrium of this system is unique and given byx = [Cu; 0]>.
The candidate Lyapunov function (2.1) takes the form

1

2
x>Qx�

1

L
u

t

0

x2(�)d� =
1

2
x>Qx� ux1

and is actually exactly (up to a constant) the standard incremental Ly-
punov function used for linear systems

W (x)
�
=

1

2
x>Qx�ux1+

C

2
u2 =

1

2
(x�x)>Q(x�x): (3.1)

Let us now view this from the perspective of the cascaded system
(2.2), which in this example takes the form

_x1

_x2

_�

=

0 1 0

�1 �R2 �1

0 1 0

1

C
x1

1

L
x2

�u

: (3.2)

As pointed out above, if we can express�(t) as a function ofx(t), then
we can writeu> t

0
y(�)d� as a function ofx. This, in turn, is true if

there exists a function of the form

F (x; �) = C(x)� �

which is a “Casimir function”1 [4] for the combined structure matrix in
(3.2). Being a “Casimir function” for (3.2) means that the time-deriva-
tive ofF is zero along the solutions of (3.2) for any energy functionH ,
and thus for any value of the constantsC; L; u. Since the system (3.2)
is linear, we can takeC(x) as a linear functionC(x) = k1x1 + k2x2,
and one may compute the coefficientsk1; k2 from

[k1; k2; �1]

0 1 0

�1 �R2 �1

0 1 0

= 0

which yields the unique solutionk1 = 1; k2 = 0. Hence, along trajec-
tories of (3.2), we have� = x1 + c, with c some constant, and from
(2.4) we get the Lyapunov candidate function

Ha(x; �)j�=x +c =
1

2
x>Qx� u(x1 + c)

which, settingc = (C=2)u, reduces to (3.1).

B. A Parallel RLC Circuit

As an example where the cascaded systems approach does not work,
let us consider the RLC circuit obtained by modifying the preceeding
example by connecting the resistor in parallel with the capacitor. Now
the symmetric structure matrixR(x) has changed into

R =

1

R2
0

0 0
:

Repeating the arguments used for the previous example, we end up with
a system of equations

[k1; k2; �1]

�1

R2
1 0

�1 0 �1

0 1 0

= 0

which clearly does not have a solution ink1; k2. In the next section, we
will show how to overcome this problem by embedding the system into
a system (2.3) with suitablymodifiedinterconnection and dissipation
structure.

Remark 3.1: An important observation is that the equilibrium of
the parallel RLC circuit is given byx = [Cu; (L=R2)u]

>. Hence, in
contrast to the series RLC, in this circuit the equilibrium current in the
resistor is nonzero. Consequently, it drains an infinite amount of energy
from the source and, in view of Remark 2.2, (2.1) is not bounded from
below.

IV. SYSTEM EMBEDDING

Key to our developments is the static relation (1.3) describing the
forced equilibria. Since we want to consider forced equilibria for every
u, it is logical to assume that Imfg(x)g � ImfJ(x) � R(x)g. For
simplicity we make throughout the following stronger assumption.

Assumption A: [J(x)� R(x)] is invertible for everyx 2 X .

Consider the equation (1.3) in the variablev = (@H=@x)(x). By
Assumption A, it has the unique solutionv = K(x)u, with

K(x) = �[J(x)�R(x)]�1g(x): (4.1)

1Note that these “Casimir functions” are actually extensions of the usual
Casimir functions associated with a Poisson bracket [4] to the nonskew-sym-
metric bracket defined by the combined structure matrixJ(x)�R(x).
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Let us now consider the following port controlled Hamiltonian system
with dissipation

_x

_�
= [Ja(x)�Ra(x)]

@Ha

@x

@Ha

@�

(4.2)

on the augmented state space(x; �) 2 X � Rm, endowed with the
structure matrices

Ja(x)
�
=

J(x) J(x)K(x)

�(J(x)K(x))> Js(x)

and

Ra(x)
�
=

R(x) R(x)K(x)

(R(x)K(x))> Rs(x)

with Hamiltonian functionHa(x; �) defined by (2.4) and with
Js(x) = �J>s (x), andRs(x) = R>s (x) yet to be determined. Note
that

Ra(x) =
I

K>(x)
R(x) [ I K(x) ]

and thus, since by assumptionR(x) � 0, alsoRa(x) � 0.
Considering thatHs(�) = �u>� is linear with respect to� and

that, by (4.1),R(x)K(x) = J(x)K(x) + g(x), it may be seen that
the x-dynamics is the same as in the forced system (1.1). Thus the
x-dynamics of� for u = u has beenembeddedin the dynamics (4.2)
in the same way as it was in the augmented system (2.3). Comparing
the two embedding systems (2.3) and (4.2), one sees that they differ
only in their structure matrices.

V. CONSTRUCTION OF THELYAPUNOV FUNCTION

The next question is how to determineJs(x) = �J>s (x) and
Rs(x) = R>s (x) � 0. This is guided by (4.1). Indeed, them-dimen-
sional linear spaces

P (x) =
�K(x)u

u
u 2 Rm (5.1)

are, by construction, in the kernel of the matrix[J(x); J(x)K(x)] de-
fined by the firstn rows ofJa in (4.2). We now defineJs(x) in such a
manner thatP (x) is in the kernel of thewholematrixJa, by setting

Js(x)
�
=K>(x)J(x)K(x): (5.2)

ClearlyJs satisfiesJs(x) = �J>s (x). In the same way, we note that
P (x) is in the kernel of the firstn rows ofRa in (4.2), while it is in the
kernel of the whole matrixRa if we choose

Rs(x)
�
=K>(x)R(x)K(x): (5.3)

ThenRs(x) = R>s (x) � 0. Now we are ready to deliver thecoup de
grâce.

Assume that there exist smooth functionsCj : X ! R,
j 2 m

�
= f1; � � � ; mg, such that

Kij(x) =
@Cj

@xi
(x); i 2 n

�
= f1; � � � ; ng; j 2 m: (5.4)

Then it immediately follows that the functions

�j � Cj(x); i 2 m (5.5)

areconstantalong the trajectories of (4.2), withJs andRs as defined
in (5.2), respectively (5.3). Indeed, we can write

d

dt
[�j � Cj(x)]

= �
@>Ci

@x
(x); e>j (Ja(x)�Ra(x))

@Ha

@x

@Ha

@�

(5.6)

with ej the jth basis vector inRm. Since the(n + m)-dimensional
column vector[(@C>j =@x)(x);�e

>

j ]
> is by (5.4) contained inP (x),

it is by construction and definition ofJs andRs contained in the kernels
of Ja andRa. Thus the expression in (5.6) is zero (for all Hamiltonians
Ha). Hence, along trajections of (4.2), we can express

�j = Cj(x) + cj ; j 2 m (5.7)

where the constantsc1; � � � ; cm depend on the initial conditions of�
(and can be set to zero). Thus the dynamics of

_x = [J(x)�R(x)]
@H

@x
(x) + g(x)u

is copied on every submanifold ofX �Rm defined by (5.7). The total
energy of the augmented system

Ha(x; �) = H(x)� u>�

restricted to such a submanifold is given as

Hr(x)
�
=Ha(x; C(x) + c) = H(x)�

m

j=1

uj(Cj(x) + cj) (5.8)

while the dynamics restricted to such a submanifold is given by

_x = [J(x)�R(x)]
@Hr

@x
(x): (5.9)

Note that by (5.4)

@Hr

@x
(x) =

@H

@x
(x)�

m

j=1

uj
@Cj

@x
(x) =

@H

@x
(x)�K(x)u: (5.10)

Hence, premultiplying by[J(x)� R(x)] and using (4.1)

[J(x)�R(x)]
@Hr

@x
(x) = [J(x)�R(x)]

@H

@x
(x)+ g(x)u: (5.11)

Consequently, by (1.3) and Assumption A, the unique forced
equilibrium x corresponding tou is an extremumof Hr [that is,
(@Hr=@x)(x) = 0].

Remark 5.1: From the derivations above, it follows that the func-
tions�j � Cj(x) defined on the augmented state space� � Rm are
Casimirsof the generalized Poisson bracket defined byJa [4]. Further-
more, the functions�j �Cj(x) are also “Casimirs” with respect to the
symmetric bracket corresponding toRa.

VI. M AIN RESULT

Let us summarize the developments above in the following theorem.
Theorem 6.1:Consider� for constantu = u, that is

�: _x = [J(x)�R(x)]
@H

@x
(x) + g(x)u (6.1)
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with Assumption A. DefineK(x) by (4.1) and assume the functions
Kij satisfy

@Kij

@xk
=

@Kkj

@xi
; i; k 2 n (6.2)

for j 2 m. Then, there exist locally smooth functionsC1; � � � ; Cm

satisfying (5.4), and the dynamics (6.1) can be alternatively represented
by

_x = [J(x)�R(x)]
@Hr

@x
(x) (6.3)

where

Hr(x)
�
=H(x)�

m

j=1

uj(Cj(x) + cj):

The functionHr(x) has an extremum atx, which is an equilibrium of
(6.1). Further, we have

d

dt
Hr = �

@>Hr

@x
(x)R(x)

@Hr

@x
(x) � 0 (6.4)

and thusHr qualifies as aLyapunov functionfor the forced dynamics
(6.1) provided we can show thatHr not only has an extremum atx but
even aminimum.

Proof: In view of the developments of the previous section, to
complete the proof it only remains to show that, under the given condi-
tions, there exist smooth functionsC1; � � � ; Cm, satisfying (5.4). This
follows immediately from (6.2) and Poincaré’s lemma.

The corollary below follows immediately from Theorem 6.1 and
standard Lyapunov stability theory; see, e.g., [2].

Corollary 6.1: Assume thatHr has a strict local minimum atx, that
is, there exists an open neighborhoodB of x such thatHr(x) > Hr(x)
for all x 2 B. Furthermore, assume that the largest invariant set under
the dynamics (6.3) contained in

x 2 X \ B
@>Hr

@x
(x)R(x)

@Hr

@x
(x) = 0

equalsfxg. Then,x is a locally asymptotically stable equilibrium of
the forced system (6.1).

Remark 6.1: Note that ifX is, e.g., simply connected, then the func-
tionsC1; � � � ; Cm satisfying (5.4) existglobally if (6.2) is satisfied.

Remark 6.2: An equivalent way to analyze the stability of the equi-
librium x of the forced system (6.1) by means of the Lyapunov func-
tionHr is to look at the stability of the equilibrium(x; �) with �j =
Cj(x); j 2 m, of the embedding system (4.2) by means of a candidate
Lyapunov function of the form

~H(x; �)
�
=H(x)� u

>
� + �(�1 � C1(x); � � � ; �m � Cm(x))

where the function�, depending on the Casimirs�j �Cj(x); j 2 m,
is still to be determined. This approach is similar to what is called the
energy–Casimir method in mechanics (see, e.g., [5] and the references
therein). Note that, restricted to any submanifold given by (5.7), the
function ~H(x; �) reduces to the functionHr(x).

Remark 5.2: The integrability condition (6.2) can be geometrically
formulated as follows. The subspacesP (x) defined in (5.1) define a
codistributionP on the augmented state-spaceX �Rm. It can be seen
that condition (6.2) is satisfiedif and only ifP is involutive.

VII. EXAMPLES

A. Linear Systems

If J , R, andg areconstantmatrices, then alsoK is a constant ma-
trix, and the existence of functionsC1; � � � ; Cm satisfying (5.4) is au-
tomatic. [In factCj(x) is given as thelinear functionK1jx1 + � � � +
Knjxn.] In particular, for linear systems� with

H(x) = 1

2
x
>
Qx; Q = Q

>
:

Theorem 3.2 results in a linear forced dynamics

_x = (J �R)
@Hr

@x
(x)

with (sinceKu = Qx)

Hr(x) =
1

2
x
>
Qx� x

>
Ku+ c = 1

2
(x� x

>)Q(x� x) + c:

(7.1)

Hence we have recovered in this special case the incremental Lya-
punov function, which is normally used. Furthermore, we have given
an interpretation in terms of energy balance.

B. A Parallel RLC Circuit (cont.)

Let us come back to the parallel RLC circuit studied in Section III-B.
The embedding system (4.2) now takes the form

_x1

_x2

_�

=

0 1
1

R2

�1 0 �1

�1

R2
1 0

�

1

R2
0

1

R2

0 0 0
1

R2
0

1

R2

�

@Ha

@x1

@Ha

@x2

@Ha

@�

with Ha(x; �) = H(x) � u�. The symmetric and skew-symmetric
structure matrices admit the following Casimir function:

F (x; �) = x1 +
1

R2
x2 � �: (7.2)

Consequently the corresponding Lyapunov function is

W (x) =
1

2C1
x
2

1 +
1

2L
x
2

2 � u x1 +
1

R2
x2 +

u2

2
C1 +

L

R2
2

:

C. Mechanical Systems

Consider a mechanical system with damping and actuated by ex-
ternal forcesu

_q

_p
=

0 Ik

�Ik 0
�

0 0

0 D(q)

@H

@q

@H

@p

+
0

B(q)
u (7.3)

y =B
>(q)

@H

@p

with generalized configuration coordinatesq = [q1; � � � ; qk]
> and

generalized momentap = [p1; � � � ; pk]
>. The outputsy 2 Rm are the
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generalized velocities corresponding to the generalized external forces
u 2 R

m. Letu be a constant actuating force. It follows that

K(q; p) = �
0 Ik

�Ik �D(q)

�1
0

B(q)
=

B(q)

0
(7.4)

and henceJs = 0 andRs = 0. Furthermore, the integrability condi-
tions (5.4) boil down to the existence of functionsC1; � � � ; Cm such
that

Bij(q) =
@Cj

@qi
(q); i; j 2 m: (7.5)

Condition (7.5) means that the input vector fields in (7.3) are actually
Hamiltonianvector fields with HamiltoniansC1(q); � � � ; Cm(q). The
candidate Lyapunov function is given asH(q; p) � m

i=1
uiCi(q)

and in the case whereH is the sum of a quadratic kinetic energy and
a potential energyV (q), the stability analysis reduces to checking the
positive definiteness ofV (q)� m

i=1
uiCi(q).

VIII. C ONCLUSION

In this paper, we have proposed a construction of candidate Lya-
punov functions for port controlled Hamiltonian systems with dissipa-
tion subject to constant inputs. The construction involves the embed-
ding of the forced system into a higher dimensional system followed
by its reduction using Casimir functions. The integrability conditions
for finding Casimirs, may be interpreted as the input vector fields of
the forced system being Hamiltonian with dissipation [8]. For further
developments on the role of Casimir functions in the synthesis of sta-
bilizing controllers of physical systems, we refer to [12], [9], and [15].
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