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holonomic mechanics and locomotion: The snakeboaxd example,” jigfy the following the power-balance equation:
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[14] J. Radford and J. Burdick, Proc. Conf. Mathematical Theory of Net- = ” (z)R(x) a7 (W) +u y (1.2)
: L dt duw O
works and Systems, submitted for publication.
whereu Ty is the power externally supplied to the system and the first

term on the right-hand side representsehergy dissipatiodue to the
resistive elements in the system.
While from the power-balance equation (1.2) the stability ofthe
controlledor unforcedsystem (1.1) (for. = 0) may be analyzed from
Energy-Based Lyapunov Functions for Forced Hamiltonian the properties of the Hamiltonian functiéh(x), in the sequel we shall
Systems with Dissipation analyze the stability of the system (1.1) focanstant but nonzero
inputw € R™, leading to aorced (controlled) equilibriumz € X.
Bernhard Maschke, Romeo Ortega, and Arjan J. van der Schaft Such situations arise, e.g., in studies of the transient stability of syn-
chronous generators in power systems [3]; see also [11] and [10]. Cor-
responding ta: = @, the forced equilibria are solutions of
Abstre_ict—_ln this paper, we propose a con§tructive procgdurg to_mo_dify 9H
Ao A P AP A @) - R@l Gy @ +g@a=0. a3
e o e blace Coreraions n general, a foroed equibrium il ot be a minmurm (noran ex-
into a larger Hamiltonian system for which a series of Casimir functionscan  tremum) ofH . Furthermore, inserting = @ in (1.2) yields
be easily constructed. Interestingly enough, for linear systems the resulting T - -
Lyapunov function is the incremental energy; thus our derivations provide 4 H= _oH 2)R(x oH 2 +7 g (z on x) 1.4
. > the in energy Vi (@)R(w) = (2) + 7 g (2) = (2)  (1.4)
a physical explanation to it. An easily verifiable necessary and sufficient dt Oz Ox dx
condition for the applicability of the technique in the general nonlinear case having a right-hand side that in general will not be nonpositive. Thus,
is given. Some examples that illustrate the method are given. . . . . .
in most cases, the Hamiltonian function aaot be directly used as a
Index Terms—Casimirs, Hamiltonian systems, Lyapunov stability, Lyapunov function for investigating the stability of a forced equilib-
sources. rium = . Hence the problem comes up if, and how, we can construct
physically basedyapunov functions foequilibria of forced physical
|. PROBLEM FORMULATION system¢1.1). Providing some (partial) solutions to this problem are the

) ) _main contributions of our work.
Network modeling of lumped-parameter physical systems [7] with

independent storage elements leads to the following class of dynamical I
systems, callegort controlled Hamiltonian systems with dissipation

. A L YAPUNOV FUNCTION BASED ON ENERGY-BALANCE

[6], [14], [15], [1]: One way of approaching the problem is to start from the power bal-
ance of the forced system (1.4) and to bring the second term on the
# = [J(z) — R(2)] OH () + g(2)u right-hand side to the left-hand side, suggesting to look for candidate
o Ox : (1.1) Lyapunov functions

-t

H(x(t)—u" / y(7)dr. (2.2)

0

y=g"(2) % ()

wherex € V', ann-dimensional manifoldy, y € R™. The State vari- ., ooy whether (2.1) can be used as a Lyapunov function, the first

I R L ; . .
ablesLL. Ler, <o, wn] are the energy vgrlables (ie., the Vanabl?ls)asic question is if we can write" fL y(7)dr as a function of the
by which the energy of the system is defined), the smooth functigon R . . .

o Stater(t). From a control theoretic point of view, this question suggests
H(zq, ---, zo): X — R represents the total stored energy, ang

are the port power variables. The tws n matrices/ () andR(x) are to ;ﬁgi‘g?;;kizfiaie E:]\;V\I/t?ljzgtlgzsfgy?p:\é ego?%/ tg:égt:gsr?;:]n of
calledstructure matriceand define the geometric structure of the staté’ yap P y

space of the energy variables. The matf{x) corresponds to a power & =[J(x) = R()] oH (2) + gla)T

continuous interconnection in the network model; gkew-symmetric Ox

and defines a generalized Poisson bracketdgeneralized because it { = gT(’U) o (z) CeR™ 2.2)
’ Qa7 ’ T '

need not satisfy the Jacobi identity [13]). The mafRik:) is a nonneg-
ativesymmetrianatrix depending smoothly or it corresponds to the Note that (2.2) can be rewritten as an unforced Hamiltonian system
energy dissipating part of the network model and defines a symmetsith dissipation

bracket on the state space. oH,

vl J(x)  —g(x) |:R($) 0:| ox 2.3)
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the starting point of our approach. To motivate our subsequent develd-pointed out above, if we can expreégs) as a function of(¢), then

ments, we first present two simple examples in Section Ill. From these can writez " j; y(7) dt as a function of. This, in turn, is true if

examples, it follows that in order to cope with the general problerthere exists a function of the form

we have to modify the dynamical system (2.3) to a more general form. .

The treatment of this more general form leading to a solution to the Flx, )= C(x) = ¢

general problem shall be given in Sections IV-VI. Conditions that ehich is a “Casimir function® [4] for the combined structure matrix in

sure that the indicated first attempt already “works” shall be given {f3.2). Being a “Casimir function” for (3.2) means that the time-deriva-

Section VII, along with some other examples. tive of F is zero along the solutions of (3.2) for any energy functtbn
Remark 2.1: From a modeling perspective, (2.3) corresponds tgnd thus for any value of the constafits L, @. Since the system (3.2)

viewing ¥ for constantu = u as theinterconnectionof ¥ with a s linear, we can také'(z) as a linear functio (z) = ki x1 + kows,

source system and one may compute the coefficiefts k2 from
é=u, 0 1 0
. [kl, kz, —1] —1 —Rg —1 = 0
aHS
" :0(% 2.5) 0 1 0
‘ which yields the unique solutioly = 1, k2 = 0. Hence, along trajec-
with H.(¢) = —u' ( the (unbounded) energy of the source systenfories of (3.2), we havé = x1 + ¢, with ¢ some constant, and from
via the interconnection constraints (2.4) we get the Lyapunov candidate function
v =y Ha(2, Olczayte = 57 Qo — (21 + )
U =—ys. (2.6) which, setting: = (C/2)z, reduces to (3.1).

Remark 2.2: Notice that the terrm " fUL y(7) dT isthe energy exter- B. A Parallel RLC Circuit

nally supplied to the syste and withdrawn from the source system.
. L As an example where the cascaded systems approach does not work,
Hence the new Lyapunov function (2.1) that we propose is |nt|mat(=]lé/

related with arenergy balancesince it is exactly the difference be- tus consider the RLC circuit obtained by modifying the preceeding

. example by connecting the resistor in parallel with the capacitor. Now
tween the energy of the system and the supplied energy. the symmetric structure matri®(=) has changed into

[l. Two MOTIVATING EXAMPLES L
R=| R
A. A Series RLC Circuit 0 0

Consider the linear time-invariant circuit COﬂSiSting of the series imepeating the arguments used forthe previous examp|e’ we end up with
terconnection of a resistor (with resistange), an inductor (with in- 3 system of equations

ductancel) a capacitor (with capacitan&g), and a constant voltage 1

sourcew. The total electromagnetic energy of the circuitHgs) = i 1 0
(1/2)ITQI, with z = [z1, -TQ]T = lqc, (,DL]T, whereqc, ¢, [k1, ko, —1] _iz 0 —1 =0
are the capacitor's charge and the inductor’s flux, respectively, and 0 1 0

@ = Diag(1/C, 1/L).

The dynamical model of the circuit can be written in the form ofvhich clearly does not have a solutioriin %:. In the next section, we
a port controlled Hamiltonian system with dissipation (1.1) with thevill show how to overcome this problem by embedding the system into
input being the voltage delivered by the sousce 7, the output being a system (2.3) with suitablgnodifiedinterconnection and dissipation

the associated currept= (1/L)x3, and the structure matrices structure.
Remark 3.1: An important observation is that the equilibrium of
7= { 0 1} R {0 0 } = {0} . the parallel RLC circuit is given by = [C, (L/R2)u] " . Hence, in
-1 0] 0 R, 1 contrast to the series RLC, in this circuit the equilibrium current in the

resistor is nonzero. Consequently, it drains an infinite amount of energy
from the source and, in view of Remark 2.2, (2.1) is not bounded from
below.

The equilibrium of this system is unique and givery: [CT, 0] .
The candidate Lyapunov function (2.1) takes the form

1 1_ /¢ 1 _
3 x' Qu — 7 U/O za(T)dT = 3 v Qu — Wy IV. SYSTEM EMBEDDING

Key to our developments is the static relation (1.3) describing the
rced equilibria. Since we want to consider forced equilibria for every
@, it is logical to assume that g(z)} C Im{J(x) — R(x)}. For
Al + _ C 5, 1 T _ simplicity we make throughout the following stronger assumption.
Sgr Quouint o =g (z=7) Qz-7). 3.1) Assumption A:[J(x) — R(x)] is invertible for every: € X.
(]|

Let us now vigw this from the perspective of the cascaded systeMsgnsider the equation (L.3) in the variable= (9H /dx)(x). By

(2.2), which in this example takes the form Assumption A, it has the unique solutien= K («)w, with

and is actually exactly (up to a constant) the standard incremental lfg
punov function used for linear systems

Wi(x)

. 1 . - —1

i 0 1 0 o K(z) = —[J(z) — R(z)]” g(x). (4.1)

2| = | -1 —Ry -1 lm (3.2) INote that these “Casimir functions” are actually extensions of the usual
0 1 0 L~ Casimir functions associated with a Poisson bracket [4] to the nonskew-sym-

¢ T metric bracket defined by the combined structure maf(ix) — R(x).
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Let us now consider the following port controlled Hamiltonian systerareconstantalong the trajectories of (4.2), with, and R, as defined

with dissipation in (5.2), respectively (5.3). Indeed, we can write
0H, d
i G — [ — Cj(w)]
— ) — . dt
[J = [Ja(z) = Ra(2)] oH. 4.2) oH,
7 3] iNe! , Oz
¢ = |:— 5 (z), e]»T:| (Jo(z) — Ra()) 31; (5.6)
on the augmented state spdae ¢) € X' x R™, endowed with the ' ac"
structure matrices
e TV K with e; the jth basis vector ilR™. Since the(n + m)-dimensional
Ja(z) & () () K () column vector(9C] /dx)(x),—e, ] is by (5.4) contained i (),
—(J()K(x))" Js(x) itis by construction and definition of, andR. contained in the kernels
and of .J, andR,. Thus the expression in (5.6) is zero (for all Hamiltonians
A R(z) R(z2)K (z) H,). Hence, along trajections of (4.2), we can express
R.(x) = I
(R(T‘)IX(T)) Rs(m) (J — CJ(T) + cj. ] cm (57)
with Hamiltonian function H,(x, ¢) defined by (2.4) and with o -
Jo(z) = —J] (2), andR.(x) = RJ () yet to be determined. Note Where the constants;, - --, ¢, depend on the initial conditions of
that ‘ (and can be set to zero). Thus the dynamics of
Ra(2) R I E(o)] i = () - @) 2 (2) + g(aya
ox) = T (x L= - 2y L)
K7 (x) O

is copied on every submanifold &f x R™ defined by (5.7). The total

i idHx) > «(x) > 0.
and thus, since by assumpti®{z) > 0, alsoR.(z) > 0 energy of the augmented system

Considering that.(¢) = —u ' ¢ is linear with respect t¢ and
that, by (4.1),R(z)K (z) = J(x)K(x) + g(z), it may be seen that
the x-dynamics is the same as in the forced system (1.1). Thus the
xz-dynamics off for « = @ has beeembeddedih the dynamics (4.2) ) . o
in the same way as it was in the augmented system (2.3). Comparifigificted to such a submanifold is given as
the two embedding systems (2.3) and (4.2), one sees that they differ .
only in their structure matrices. H.(z) 2 Ho(x, C(2)+c) = H(z) — Z w;(C;(z)+¢;) (5.8)

j=1

Hu(e, Q)= H(x)=u'¢

V. CONSTRUCTION OF THEL YAPUNOV FUNCTION
while the dynamics restricted to such a submanifold is given by

The next question is how to determing(z) = —J, (x) and
R.(z) = R] (z) > 0. This is guided by (4.1). Indeed, the-dimen- _ oH,
sional linear spaces @ =[J(2) = R(2)] 5~ (2). (5.9)

" e 72} (5.1) Note that by (5.4)

Pla) = { |:—Ix (r)u:|
u
oH, 0H , =~ _ 9C; oH , ..
are, by construction, in the kernel of the mafeiX ), J(x)K (x)] de- 9 (z) = I (;v)—z ;i 6—; (x) = e (z)—K(x)uw. (5.10)
fined by the firsta rows ofJ, in (4.2). We now define/,(x) in such a ' j=t '

manner thaf’(x) is in the kernel of thevholematrix .7, by setting

Hence, premultiplying by.J(x) — R(x)] and using (4.1)

Jo(x) 2 KT (2)J(2)K (2). (5.2) oF oF
[T (2) = R(2)] 2 () = [T (2) = R(@)] 2= (2) + g()7. (5.11)
Clearly J, satisfies/,(x) = —J.] (). In the same way, we note that ba ba
P(x) isin the kernel of the first rows of R, in (4.2), while itis in the Consequently, by (1.3) and Assumption A, the unique forced
kernel of the whole matrix?, if we choose equilibrium = corresponding toz is an extremumof H, [that is,
- ) (0H,/9z)(T) = 0].
Ry(r) = K (2)R(z)K (). (5.3) Remark 5.1: From the derivations above, it follows that the func-

tions¢; — C;(x) defined on the augmented state space R™ are

= PT( i
ThenR.(x) = R, («) 2 0. Now we are ready to deliver theup de  casimirsof the generalized Poisson bracket defined’by4]. Further-

grace ) o more, the functions; — C; (=) are also “Casimirs” with respect to the
. Asiugnethat there exist smooth function§;: X — R, symmetric bracket corresponding &, .
jem={1,---, m}, such that
. VI. MAIN RESULT
Koy =25 @), iemd(l, 0} jem (54 | | |
Ju; Let us summarize the developments above in the following theorem.

Then it immediately follows that the functions Theorem 6.1: Consider:> for constant: = @, that is

. ‘ 19, .
G-Cie),  iem 55) S =) - Rl S @0+ gem 6)
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with Assumption A. Defineli'(x) by (4.1) and assume the functions VII. EXAMPLES
Ki; satisty A. Linear Systems

OK oKy, ' If .J, R, andg areconstanimatrices, then als&” is a constant ma-

92 = om i,ken (6.2)  trix, and the existence of functioi , - - -, C,, satisfying (5.4) is au-

' tomatic. [In factC'; () is given as thdinear function Ky ;41 + -+ - +

for j € m. Then, there exist locally smooth functio@, ---, C,,  Knjx,.] In particular, for linear systems with
satisfying (5.4), and the dynamics (6.1) can be alternatively represented . .
by H(r):%:c Qz, QR=Q .

. oH, Theorem 3.2 results in a linear forced dynamics

i=[J(x) = R0) 50 () (63)

* OH.
= (J—R) ()
ox

where
with (sinceK@ = Q)

H:(2) = Hx) - Z wH(C5(@) +¢j). H, (x)= %:L'TQ.T — 2 Ku+ec= Liw— IT)Q(:L’ -7 +ec.

=1
(7.2)
The functionH.,. (=) has an extremum at, which is an equilibrium of
(6.1). Further, we have Hence we have recovered in this special case the incremental Lya-
punov function, which is normally used. Furthermore, we have given
9T H, H,. an interpretation in terms of energy balance.
T =2 mrn im0 69 P gy

B. A Parallel RLC Circuit (cont.)

and thusH,. qualifies as a.yapunov functiorfor the forced dynamics | et us come back to the parallel RLC circuit studied in Section I11-B.
(6.1) provided we can show that, not only has an extremumatbut  The embedding system (4.2) now takes the form
even aminimum

Proof: In view of the developments of the previous section, to i 0o 1 1 1 0 1
complete the proof it only remains to show that, under the given condi- Ry R Ry
tions, there exist smooth functiods, - - -, C,,, satisfying (5.4). This @2 | = -1 0 -1 (=10 0 0
follows immediately from (6.2) and Poincaré’s lemma. Ood ¢ -1 1 0 1 0 1

The corollary below follows immediately from Theorem 6.1 and R, R, R,
standard Lyapunov stability theory; see, e.g., [2]. oH,
Corollary 6.1: Assume thati, has a strict local minimum &, that a1
is, there exists an open neighborhdddf = such that, (x) > H,(T) oI,
for all € B. Furthermore, assume that the largest invariant set under | By
the dynamics (6.3) contained in 8H_u
e

r€EXNB O'H, R(x o . =0
vEe Ox (@) () Ox (2) = with H,(x, {) = H(x) — u¢. The symmetric and skew-symmetric
structure matrices admit the following Casimir function:

equals{Z}. Then,z is a locally asymptotically stable equilibrium of

the forced system (6.1). F(z,{)=a1 + Ri xy — (. (7.2)
Remark 6.1: Note that ifY is, e.g., simply connected, then the func- 2
tionsC, ---, C', satisfying (5.4) exisgloballyif (6.2) is satisfied.  Consequently the corresponding Lyapunov function is

Remark 6.2: An equivalent way to analyze the stability of the equi-
librium 7 of the forced system (6.1) by means of the Lyapunov fun%/_(w) _ 1 24 1 5 1 E_Z c L
tion H, is to look at the stability of the equilibriurf¥, ) with ¢, = )= ga it gp U\t e J 4 o | Gt R )
Cj(7), j € m, ofthe embedding system (4.2) by means of a candidate

Lyapunov function of the form
C. Mechanical Systems

H(z, ¢) EN H(x) - T+ B(G - C (x), ) Cn — Con(2)) Consider a mechanical system with damping and actuated by ex-
ternal forcesu
where the functior®, depending on the Casimits — C;(x), j € 7, OH
is still to be determined. This approach is similar to what is called the| ¢ 0 I 0 0 dq 0
energy—Casimir method in mechanics (see, e.g., [5] and the references; = Q—Ik ()} - L) D(Q)D o | T {B( )} w (7.3)
therein). Note that, restricted to any submanifold given by (5.7), the p

functionf[(w, ¢) reduces to the functiofl, (x).

Remark 5.2: The integrability condition (6.2) can be geometrically
formulated as follows. The subspacBéz) defined in (5.1) define a
codistribution” on the augmented state-spacex R™. It can be seen with generalized configuration coordinates= [q1, - -, qk]T and
that condition (6.2) is satisfieifland only if P is involutive. generalized momenja= [pi, -+, px] ' . The outputy € R™ arethe

OH
y=B"(¢) 5
p
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generalized velocities corresponding to the generalized external forces
u € R™. Letw be a constant actuating force. It follows that

[1
i 0 L 177'7T o B(q)}
K(q,p) =- = 7.4
Hap) {—Ik —D(CJ)} {B(QJ { 0 74
and hence/; = 0 andRs; = 0. Furthermore, the integrability condi- 3]
tions (5.4) boil down to the existence of functiofs, - - -, C,, such [4]
that
50 [6]
oy = 9 PR pp—
Bij(q) = 94, (q), i, j € . (7.5) [6]
Condition (7.5) means that the input vector fields in (7.3) are actually
Hamiltonianvector fields with Hamiltonian€’; (¢), - -+, C..(¢). The 7]

candidate Lyapunov function is given &5(q, p) — > i~ , w:iCi(q)
and in the case whet® is the sum of a quadratic kinetic energy and
a potential energy’(¢), the stability analysis reduces to checking the [8]
positive definiteness of (¢) — > v, @:Ci(q).

VIIl. CONCLUSION [

In this paper, we have proposed a construction of candidate Lygi0]
punov functions for port controlled Hamiltonian systems with dissipa-
tion subject to constant inputs. The construction involves the embed-
ding of the forced system into a higher dimensional system followe 11]
by its reduction using Casimir functions. The integrability conditions
for finding Casimirs, may be interpreted as the input vector fields of
the forced system being Hamiltonian with dissipation [8]. For further[12]
developments on the role of Casimir functions in the synthesis of sta-
bilizing controllers of physical systems, we refer to [12], [9], and [15].

(13]
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