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Abstract 

Van Doorn, E.A. and P. Schrijner, Random walk polynomials and random walk measures, Journal of 
Computational and Applied Mathematics 49 (1993) 289-296. 

Random walk polynomials and random walk measures play a prominent role in the analysis of a class of 
Markov chains called random walks. Without any reference to random walks, however, a random walk 
polynomial sequence can be defined (and will be defined in this paper) as a polynomial sequence {P,(x)) 
which is orthogonal with respect to a measure on [ - 1, l] and which is such that the parameters a, in the 
recurrence relations P ,,+ ,(x> = (x - (Y,)P,(x> - /3,P,, _ ,(x) are nonnegative. Any measure with respect to 
which a random walk polynomial sequence is orthogonal is a random walk measure. We collect some 
properties of random walk measures and polynomials, and use these findings to obtain a limit theorem for 
random walk measures which is of interest in the study of random walks. We conclude with a conjecture on 
random walk measures involving Christoffel functions. 

Keywords: Orthogonal polynomials; random walks 

1. Introduction 

We use the term measure to designate a Bore1 measure on R, with infinite support, total 
mass 1, and finite moments of all positive orders. Before defining the particular type of 
measures called random walk measures and the associated random walk polynomials, we recall 
some basic facts from the theory of orthogonal polynomials, see, e.g., [2]. 

Let I,!J then be a measure and {P,(x)} the (unique) manic orthogonal polynomial sequence 
COPS) with respect to $. Then {P,(x)) satisfies the recurrence relation 

&+I(.4 = (x -%x(x) -&&-1(x), n = 172,. . .7 

EJ(g = 1, PI(X) =x - (Yo, 
(1.1) 

I 
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where, for y1 = 0, 1,. . . , 

lrn cw W(x) 

an = i-P;(x) d$(x) 
--m 

(1.2) 

and 

P 
lrn Pn”+dx) W(x) 

n+1 = i’ P,‘(x) d+(x) > ” 
--m 

(1.3) 

Conversely, by Favard’s theorem, if {P,(x)} satisfies a recurrence relation of the type (1.11, 
where a,E(Wand p,+r>O, n=O, l,..., then {P,(x)} is the OPS with respect to a measure $. 
In general this measure + need not be unique, but we shall encounter measures with compact 
supports only, in which case the correspondence between measures and orthogonal polynomial 
sequences is one-to-one. 

In the following definition (Y, denotes the quantity given by (1.2). 

Definition 1.1. The measure $ is a random walk measure, and the corresponding OPS (P,(x)} is 
a random walk polynomial sequence (RWPS), if supp ($1 c [ - 1, 11 and (Y, > 0, IZ = 0, 1,. . . . 

We note that cy, 2 0 for all n means 

[mxc;(~) d+(x)>& n=O, l,..., (1.4) , 

which suggests that for 4 to be a random walk measure the mass of ~4 on the negative axis 
should not outweigh (in some sense) the mass on the positive axis. Indeed, some obvious 
sufficient conditions for 4 to be a random walk measure are 

SUPP($> = [O, 11 and (I, is a symmetric measure on [ - 1, 11. 

In general, however, it may be difficult to establish whether a given measure is a random walk 
measure. On the other hand, it is easy to establish whether an OPS, that is, a polynomial 
sequence satisfying a recurrence relation of the type (1.1) with p, > 0, is an RWPS, because of 
the following theorem. 

Theorem 1.2. The OPS (P,(x)} is an RWPS if and only if the sequence {Q,(xN, where 
Q,(x) = P,(X)/&(~), satisfies a recurrence of the type 

xQ,(x) =q,Q,-,(x) +r,Q,(x) +~nQn+l(~), n = 1, 2>..., 

Q,(x) = 1, pOQI(x) =x - r. 
(1.5) 

(so that p. + r. = 1 and p, + q, + r, = 1, it = 1, 2,. . .I, where 

Pn, 4,Sl > 0 and rn 20, n=O,l )... . (1.6) 
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Proof. Let {P,(X)}, satisfying (l.l), be an RWPS with respect to the random walk measure $. 
Since supp(@) c [ - 1, 11, a well-known result on orthogonal polynomials tells US that P,(l) > 0 
for all n. Moreover, Q,(x) = P,(x)/P,(l) satisfies the recurrence relation 

Q,(x) = 1, P,(l)Q,(x) =x - (~0’ 

which is of the type (1.5) and (1.6), since an 2 0. 
Conversely, let {Q,(x)} satisfy (1.5) and (1.6). Then the corresponding 

P,(x) satisfy (1.1) with 

ff, =r,,>O and &+r=~,,q,,+r>O, n=O,l )... . 

manic polynomials 

It remains to be shown that supp($) c [ - 1, 11, where $ is the orthogonalizing measure for 
{P,(x)}. But in view of [2, Theorem 11.4.51, we can apply [8, Theorem 21 with Xj =Pj-r> j >, 2, 
which yields 

inf SUpp($) 2 inf (2rj - I} > - 1. 

Defining go = 0 and using analogous results involving sup supp(+), one readily obtains 

sup s”pp(~) ~ sup (pj + qj + rj) = l, 

which completes the proof. •l 

Random walk polynomials and random walk measures play a prominent role in the analysis 
of a class of Markov chains in discrete time called random walks. In particular, Karlin and 
McGregor [3] have shown that the transition probabilities of a random walk can be represented 
in terms of a random walk measure and the associated RWPS. In this paper we shall not be 
concerned with random walks per se. Instead, we mention in Section 2 a theorem on random 
walk measures which is a direct consequence of Karlin and McGregor’s representation formula. 
This theorem then, as well as some other properties of random walk measures obtained in 
Section 2, will provide the basis for the analysis in Section 3, where we study the limiting 
behaviour as n + 00 of 

where $ is a random walk measure and f is a continuous function. The limiting behaviour of 
functionals of the type (1.7) plays a key role in the analysis of certain aspects of random walks 
such as ratio limits and quasi limiting behaviour, but we will not discuss those aspects here. 
Also the implications of our results for random walks will be elaborated elsewhere, see [9]. We 
conclude Section 3 with a conjecture on random walk measures involving Christoffel functions. 



292 E.A. Van Doom, P. Schrijner / Random walk polynomials 

2. Some properties of random walk measures 

Let I,!I be a random walk measure and {P,(x)} the associated manic RWPS. We let (Y, be as 
in (1.2) and define 

5 = inf supp( $) , 7 = sup SUPP($)> 
so that - 1 < 5 < 7 < 1, since @ is a measure on [ - 1, l] with infinite support. We also note that 

rl > 0, (2.1) 
as a consequence of (1.4) (with n = 0). 

We shall have use for the following result, which is an immediate consequence of Karlin and 
McGregor’s representation formula for the transition probabilities of a random walk, see [3]. 

Lemma 2.1. For all i, j and n = 0, 1,. . . , one has 

/l x”P,(x)l+) d+(x) > 0. 
-1 

(2.2) 

It follows in particular that 

= /‘x211fl d x >O, it = 0, I,..., 
5 

@( )) 

which is readily seen to lead to 

5> -7. 

But we can do better as follows. 

P-3) 

(2.4) 

Lemma 2.2. 5 + 77 2 2 infda,]. 

Proof. Apply [7, Theorem 131. q 

In the case that 5 = -77 and $J is not symmetric (i.e., LY, > 0 for some n), $I cannot have an 
atom at 5, as the first part of the next lemma shows. 

Lemma 2.3. If + is not symmetric, then 

VW771) = 0 
and 

(2.5) 

/ 

1 
xn d+(x) > 0, for n sufficiently large. (2.6) 

-1 

The statement (2.5) may be obtained as a corollary to [ll, Theorem 5.21, while (2.6) follows 
from Karlin and McGregor’s representation formula and an elementary probabilistic result. 

In Section 3 we shall encounter the quantities 

/” (-4” d+(x) 
c,w= -l1 7 n=O,l ,.**, 

/ x” d+(x) 
0 
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some pertinent properties of which will be collected next. From (2.1) it follows that the 
denominator in (2.7) is positive, so that C,(e) exists and is nonnegative for all IZ. To obtain 
upper bounds on C,(e) we must distinguish between odd and even 12. Indeed (2.3) immediately 
gives us 

C,,+,($) < 1, n =o, l,... . 

But we can do slightly better as follows. 

P-8) 

Lemma 2.4. If + is not symmetric, then there exists a 6 > 0, such that 0 G C,, + I( I)) G 1 - 6 for n 
sufficiently large. 

The proof of this lemma, which will be omitted, may be based on probabilistic arguments 
similar to those used in the proof of [4, Theorem 2.11. 

For even n we have the following result. 

Lemma 2.5. 0 G C,,($) G {/ix d+(x)}-‘, n = 0, 1,. . . . 

Proof. Holder’s inequality tells us that 

(/ix]’ d+(x)}*“< (/[xi”” d@(x)}“‘+‘, 

for any interval of integration and any k = 1, 2,. . . . Using this result twice together with (2.8), 
we conclude 

/’ x2n d@(x) 

0 <C,,($) = -l 
1x2n d+(x) 

< 

{I:, -x2n+1 d+(x))2”2n+1 

J 0 I 
x2” d+(x) 

i/ 

1 
x2,1+l 

= (C2n+1w)2n’2n+1 a 

/ 

1 

d+(x))‘n’2n+1 ~ { j^gl*2n+l d$(X)]2n’2n+1 

x2’ d+(x) 
/ 

1 
x2n d$(x) 

0 0 

11 

1 
X 

< a 

2,Z+1 d$(X)}2n’2”+1 

= 

/ 

1 
x~~+’ d+(x) (1 

1 

X2n+1 

0 

d$(x)}-1’2^11 < ( ilx d+(x)} -l, 

0 

as required. 0 

Evidently, {/ix d+(x)}-’ > 1, but we conjecture that C,,(I,!J) < 1 for n sufficiently large. 
Actually the conjecture we shall put forward in Section 3 is stronger than the present one. 

We have now gathered sufficient information on random walk measures to commence our 
study of the functionals L,( f, J,!J) of (1.7). For further properties of random walk measures and 
random walk polynomials we refer to [3,9-111. 
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3. A limit theorem for random walk measures 

Our starting points and notation are identical to those of Section 2, but in addition we 
assume that the random walk measure Cc, is not symmetric. Our aim is to find conditions for the 
existence of 

;$J+(f~ $1, (3.1) 

where L,(f, @) is defined in (1.7), for all continuous functions f on [ - 1, 11. We shall assume 
that f(r) #f( -q), which is no restriction of generality, since it can be shown that (3.1) always 
exists if f(q) =f( -q), see [9]. Note that, for IZ sufficiently large, the denominator of (1.7) is 
positive (by (2.6)), so that L,(f, $) is defined. 

We start off our analysis by writing 

(3 4 

where C,($) is given by (2.7), 

1” .‘I+) d+(x) 
A,(fY @I= -l I 

jrx”f(x) d+(x) 

/, xn d+(x) 

and B,(f, (CI) = ’ 

0” drCl(x) ’ 

Before stating our main result we mention two auxiliary lemmas, which may be proved by 
arguments similar to those used in the proof of [3, Lemma 31. 

Lemma 3.1. lim n +JXf> +) ‘f(V). 

Lemma 3.2. If {nk} is a subsequence of the sequence ofpositive integers such that ( - l)“kC,k($) -+ c 
as k + 00, then A,{f, $) + cf(-7) as k + ~0. 

Theorem 3.3. Let f be a continuous function on [ - 1, l] such that f(q) # f( -q), and let I/J be a 
random walk measure which is not symmetric. Then { L,( f, $1) converges as n + CO if and only if 
C,($) + 0 as n + ~0, in which case lim,,,L,(f, 9) = f(q). 

Proof. First suppose C,(I,!J) + 0 as n + ~0. The previous two lemmas and (3.2) then imply that 
lim .,,L,(f, $) =f(rl). 

Next suppose that C,(I,!J) * 0 as n -+ 0. Then, by Lemmas 2.4 and 2.5, there must be distinct 
numbers cr and c2, with - 1 < c1 G 0 and 0 G c2 < co, and subsequences {nt)), i = 1, 2, of the 
natural numbers, such that 

(- l)“y’C,yI($) + ci, as k + 0~1, i = 1, 2. 

As a consequence, if lim, ,,L,( f, $1 exists, (3.2) and Lemmas 3.1 and 3.2 imply that 

c,f(-4 +fW = c,f(-77) +f@?) 

1 +c, 1+c, ’ 

that is, f (77) = f ( - 7). But this is a contradiction, so { L,( f, $)) does not converge as n + 03. 
0 
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The above theorem gives us a necessary and sufficient condition for the existence of the 
limits as II + 00 of L,(f, $) in terms of $. For the applications we have in mind, however, it 
would be desirable to have a criterion in terms of the parameters of the recurrence relation 
(1.1) (or (1.5)) for th e associated RWPS, or at least in terms of these polynomials themselves. 
As a preparatory result in this direction, we first note the following lemma, the (easy) proof of 
which will be omitted. 

Lemma 3.4. If 5 > - 7, then C,(e) --) 0 as n -+ a~, 

With the help of Lemma 2.2 we now obtain a sufficient condition for lim.,,C,($> = 0 in 
terms of the parameters CY, of (1.2), as follows. 

Corollary 3.5. If a,, > 6 > 0 for all n, then C,,($) + 0 as n + 03. 

Another sufficient condition is stated in the next theorem. 

Theorem 3.6. If P~(T,I)/P:( -7) + 0 as n + ~0, then C,(4) + 0 as n + ~0. 

Proof. Suppose that C,(+) + 0 as y1 -+ ~0. Then, by Lemmas 2.4 and 2.5, there must exist a 
subsequence In,} of the natural numbers, and a number c # 0 with - 1 < c < a~, such that 
(- l)‘QCnk($) + c as k + ~0. It follows by (3.2) and Lemmas 3.1 and 3.2 that 

(3.3) 

for all i = 0, l,... . We subsequently note that (- l)‘Pi( -r> > 0 by a well-known result on 
orthogonal polynomials, since -q < 5. Because L,JPi, $) exists and is nonnegative for nk 
sufficiently large, the limit in (3.3) must be nonnegative for all i, from which it follows that 
PF( r)/PF( - 7) f) 0 as i -+ 03. Cl 

Remark 3.7. Generalizing a result by Karlin and McGregor [3], it is not difficult to show that 
the sequence ( P,Z(T)/P,~( -q)},, is nonincreasing, so that its limit actually exists. The same 
generalization of Karlin and McGregor’s result allows one to prove that the condition in 
Corollary 3.5 actually implies the condition in Theorem 3.6. 

We conjecture that the sufficient condition for lim n +,C,( 4) = 0 in the above theorem is also 
a necessary condition. In fact, we conjecture the validity of the following stronger statement. 

Conjecture 3.8. lim, +&,($J) exists and equals lim, ,,P,2(7~)/P,2( -7). 

To motivate this conjecture, we first note that it is obviously true when JI is a symmetric 
random walk measure. Thus suppose that $ is not symmetric. Then, by (2.51, $({ -q)) = 0 and 
it follows by a famous result on orthogonal polynomials [6, Corollary 2.61 that 

p,(-q)--)O, as n--+m. 
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Here p,(x) is a Christoffel function, defined by 

n-l 

1 1 

-1 

f%(x)= CPi+) 9 

i=O 

where {p,(x)} is the orthonormal RWPS associated with 4, cf. [5]. Next, using Stolz’ criterion 
(see, e.g., [l, p.414]), we obtain 

P,2(7) 
EL P,“( -7) 

= lim PA-17) 

njoa &(TJ) * 

In a number of cases, e.g., when $((q}) > 0, the limiting behaviour of the Christoffel functions 
is known and consistent with our conjecture. 

We refer to [9] for more information on the probabilistic consequences of our findings. 
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