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In this paper we consider the MX/G/I queueing system with batch arrivals. We give simple approximations for the 
waiting-time probabilities of individual customers. These approximations are checked numerically and they are found to 
perform very well for a wide variety of batch-size and service-time distributions. 

Batch-arrival queueing models can be used in 
1) many practical situations, such as the analysis 
of message packetization in data communication sys- 
tems. In general it is difficult, if not impossible, to 
find tractable expressions for the waiting-time proba- 
bilities of individual customers. It is, therefore, useful 
to have easily computable approximations for these 
probabilities. This paper gives such approximations 
for the single server MX/G/1 model. 

Exact methods for the computation of the waiting- 
time distribution in the MX/G/1 queue are discussed 
in Eikeboom and Tijms (1987), cf. also Chaudhry and 
Templeton (1983), Neuts (1981) and Tijms (1986). 
However, these methods apply only for special service- 
time distributions and are, in general, not suited for 
routine calculations in practice. A simple approxi- 
mation for the tail probabilities of the waiting time 
was given in Eikeboom and Tijms by using interpo- 
lation of the asymptotic expansions for the particular 
cases of deterministic and exponential services. This 
approximate approach uses only the first two 
moments of the service time. 

This paper presents an alternative approach that 
uses the actual service-time distribution rather than 
just its first two moments. This alternative approach 
starts with the asymptotic expansion of the waiting- 
time distribution. In Van Ommeren (1988) it is shown 
that the complementary waiting-time probability of 
an arbitrary customer in the MX/G/1 queue has an 
exponentially fast decreasing tail under some mild 
assumptions. By calculating the decay parameter and 
the amplitude factor, we get the asymptotic expansion 
of the waiting-time distribution. Such asymptotic 
expansions already provide a very powerful tool in 
practical queueing analysis, cf. Cromie, Chaudhry and 
Grassman (1979) and Tijms. It turns out that for 

nonlight traffic this asymptotic expansion can be used 
as a good first-order approximation for the waiting- 
time probabilities. Next, by incorporating exact results 
for other quantities, such as the delay probability and 
the first two moments of the waiting time, we are able 
to give an improved second-order approximation. 
This approximate method performs very well for a 
wide range of values of the traffic intensity and the 
coefficients of variation of the service-time distribu- 
tion and the batch-size distribution. 

The organization of this paper is as follows. In 
Section 1, the model is defined and some prelimi- 
naries, including the asymptotic expansion of the 
waiting-time distribution, are given. The second-order 
approximation is given in Section 2. In Section 3 we 
give numerical results and discuss the performance of 
the approximations. The Appendix deals with the 
motivation of the second-order approximation. 

1. THE MODEL AND PRELIMINARIES 

In the MX/G/ 1 queue, customers arrive in batches and 
are served individually by a single server. The batches 
arrive according to a Poisson process with rate X. The 
number of customers in the batches are independent 
and identically distributed positive random variables. 
Denote the number of customers in a batch by X and 
the probability distribution of X by gi := Pr{X = i 1, 
i = 1, 2, ... 1. The generating function of IgiI is 
denoted by G(z) := EJ=1 gjz1. The service times of 
individual customers are independent identically dis- 
tributed random variables. Denote the service time of 
a customer by S and the distribution of S by B(x) = 

PrfS s x}. We assume that B(O) = 0 and B'(O) 
lim1joB(t)/t exists. We denote the Laplace-Stieltjes 
transform of B(.) by B(s) f"O e-S' dB(t). Let Q(s) 
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denote the Laplace-Stieltjes transform of the total 
amount of service time required by all customers 
belonging to one batch. It follows that 

Q(s) = G(B(s)). 

The offered load is denoted by p = XE(S)E(X) and 
it is assumed that p < 1. 

Customers belonging to different batches are served 
in order of arrival, while customers belonging to the 
same batch are served according to their random 
position in the batch. Let D, denote the delay in the 
queue of the nth served customer. The limit dis- 
tribution lim,,.Pr{D, - x} exists only when the 
batch-size distribution {gil is aperiodic (i.e., when 
the g.c.d. {jIgj > 0O = 1), cf. Cohen (1976). As a 
counterexample, consider a constant batch size of 
2 in which case Pr{D2k = 01 = 0 for all k > 1 and 
limk,.PrjD2kl= = = (1 - p). In Van Ommeren 
it is proved that the limit 

I n 

W, (t):=lim - PrjDj ,<t 1, t oo 
n-eo n j=f1 

always exists. Note that Wq(t) represents with proba- 
bility 1 the long-run fraction of customers having a 
waiting time of no more than t. Denote the Laplace- 
Stieltjes transform of WJq(*) by 

Wq(s) f e- dWq(t). 

From Cohen we can easily get the following theorem. 

Theorem 1. The Laplace-Stieltjes transform of the 
stationary waiting-time distribution WVq() is given by 
WJ (s) = W1 (s) W2(s) with 

W1 (s) = ( - ps s - X(1 Qs)) 

and 

J47(s 
- 1 - Q(s) 

2~5j -E(X)( -B(s)) 

Burke (1975) and Cooper (1981, pages 241-243), 
use another, more intuitive, probabilistic approach. 
Following their approach, we find that W1 (.) is the 
Laplace-Stieltjes transform of the stationary waiting- 
time distribution of the first customer in a batch. 
W2(.) represents the Laplace-Stieltjes transform of 
the distribution of the waiting time of an arbitrary 
customer caused by customers who arrived in the 
same batch and are served before him. From Wq(*), 
the Laplace-Stieltjes transform of the stationary wait- 

ing-time distribution, we can easily derive exact results 
for the delay probability, the derivative of W'q(X) at 
x = 0 and the first two moments of the waiting 
time. The following results will be needed in order to 
obtain a second-order approximation to Wq(*) 

Wq(O) =lim Wq(S) = E()(1) 
S--->ooE(X) 

W" (O) = lim S(Wq(S) - Wq(0)) 

( - p )[( -gl)B'(O) + X] (2) 
E(X) 

f (1 Wq(t)) dt Wq(0) 

W1'(O) W2?(O) (3) 

and 

t(I - Wq(t))dt=-WVi"(0) 

+ I W1(OW(O) + l(0) W2() 

+ 2W2'(O) (4) 

Here the derivatives should be interpreted as the right 
derivatives in t = 0. In order to evaluate the right- 
hand sides of (3) and (4) we have to use l'Hopital's 
rule repeatedly to obtain 

XQ" (O) WI' (O) = 2(1 -p) 

W" ( -) = XQ"(O) + 2[ WI' (0)12 
3(1 - p) 

2(0) Q"(O) - E(X)B"(O) J'V?O) = 2E(X)B'(O) 

and 

W2V (O) 

2[Q"' (O)B'(O) - Q' (O)B" '(O)]B'(O) 

- 3[Q"(O)B'(O) - Q'(O)B"(O)]B"(O) 
6E(X)(B ' (0))3 

where 

B'(O) =-E(S), B"(O) = E(S2) 

B" (O)= -E(S3) 

Q'(O) =-E(S)E(X) 

Q"(O) = E(X(X- 1))E(S)2 + E(X)E(S2) 
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and 

Q"' (0) =-E(X(X - 1)(X -2))E(S) 

- 3E(X(X- 1))E(S)E(S2) 

- E(X)E(S3). 

Here, it is assumed that the service time and the batch 
size have finite third moments. 

To give the asymptotically exponential expansion 
of the complementary waiting-time distribution 1 - 
Wq(t) for t -* o0, we need a mild assumption on the 
service-time and batch-size distributions. Essentially, 
we have to require that both the service-time and the 
batch-size distributions do not have an extremely long 
tail. This can be stated precisely as follows. 

Assumption 

a. The radius of convergence R of the power series 
G(z) = Z =_ gj zi is larger than one and the integral 
B(s) = f o e-St dB(t) is finite for some s < 0. 

b. Lims1TB(s) = R 
where 

T= inf{s e-St dB(t) < R1. 

c. LimzTR[G(z)]-' = 0. 

This assumption is satisfied in most cases of practical 
interest. It is always satisfied if the service-time distri- 
bution is of phase type and if the batch-size distribu- 
tion has finite support. Assumption c excludes 
batch-size distributions of the form rn -2pn though. 

Theorem 2. The stationary waiting-time distribution 
Wq( * ) satisfies 

lim e3t(1 - Wq(t)) = a, (5) 

where : is the smallest positive solution to 

X( Q(-13) -1 ) = /3b 

and a is defined by 

(1 - p)f 
* XE(X)(XQ'(-i) + 1)(1 -B(-f)) 

This theorem follows as an immediate corollary of 
the general results for the GIX/G/1 queue in Van 
Ommeren. It can also be derived from Theorem 12 
in Gaver (1959), where an asymptotic expansion is 
given for the virtual waiting-time distribution in the 
Mx/G/I queue. 

2. APPROXIMATIONS 

The asymptotic expansion stated in Theorem 2 sug- 
gests the following first-order approximation to Wq(t) 

1 - Wq(t) xae-t for t large enough. 

This approximation gives practically useful results for 
moderate values of t as long as the traffic load is not 
too low. The performance of this first-order approxi- 
mation improves as p increases. As a rule of thumb, 
in terms of the pth percentile of the waiting-time 
distribution function Wq(t), the first-order approxi- 
mation can also be used for practical purposes when 
p > 1 - p( - WJ(O)), cf. also the numerical results 
in Section 3. 

A refinement of the first-order approximation for 
the complementary waiting-time distribution 1 - 
Wq(t) that can be used for all values of t is given by 

Wapp(t) = ace-' + ye-"t + oe", t > 0. (6) 

Here a and : are the coefficients of the asymptotic 
expansion (5). The motivation of an approximation 
with three (rather than two) exponential terms is as 
follows. A close look at the derivation of the asymp- 
totic expansion reveals that the behavior of the wait- 
ing-time distribution is determined by the poles of the 
Laplace-Stieltjes transform of this waiting-time distri- 
bution and the residues at these points. The pole with 
the largest negative real part is simple and real and 
gives a first-order approximation. The poles that have 
the second largest negative real parts lead to a second- 
order approximation. However, it is difficult to find 
these poles because they no longer have to be real. 
We, therefore, try to determine y, 6, n and 'P by 
matching the exact explicit results for the delay prob- 
ability, the derivative of Wq(x) at x = 0 and the first 
two moments of the stationary waiting time. This 
yields the relations 

Wapp (0) = 1 - Wq (0) (7) 

Wapp(0) = -W4(0) (8) 

J'Wapp(t) dt = (1 - WJ(t)) dt (9) 

and 

tWapp(t) dt = t(1 - W(t)) dt. (10) 

The numbers y, b, r and SO may or may not be real. If 
they are not real, they are complex conjugates, that is, 
a = S? and y = a, and we find after some algebra that 
(6) involves a cosine term, cf. Remark 1 in the 
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Appendix. Furthermore, we require that both Re(Q) > 
f and Re(SP) > f hold. Otherwise, the asymptotically 
exponential expansion would be violated for t large. 
If the poles are complex, it is preferable to approxi- 
mate 1 - Wq(t) by three exponential terms rather 
than by two exponential terms. Moreover, numerical 
investigations indicate that for small values of t, the 
three-term approximation to 1 - Wq(t) usually per- 
forms much better than the two-term approximation. 

As further support for the approximation (6), note 
that the approximation is exact when the service time 
as a K2-distribution and the batch size is geometrically 
distributed (cf. Van Ommeren). If the service time has 
a K3-distribution and the batch size is geometrically 
distributed the approximation is also exact provided 
that the function X(Q(-s) - 1) - s has no double 
zero, which is usually the case. 

In order to give closed form expressions for y, b, - 

and SP, we define the constants 

C, (1 - Wq(O)) - a 

C2 W4 (0) - af 

C3 ( - , Vq(t))dt-al (11) 

C4 f t(1 - Wq(t)) dt - a/:2 

and 

A = (CCC3 - C2C4)2 -4(C2 - C4C1)(C2 -C2C3). 

Note that the C 's represent the deviations of the 
moments of 1 - WJ(x) and the moments of the first- 
order approximation ae-Ot. We can give a simple 
scheme for computation of the numbers y, 6, X and 
'P. For clarity of presentation, we give only the results 
and refer to the Appendix for their derivation. Let /0 
denote some constant with %0 > f, e.g., j% = 2f. We 
have to distinguish between the following cases. 

Case i. C1 = C2= C3 = C4 = 0. In this case, the first- 
order approximation already matches the four pro- 
posed conditions (7)-( 10), and we set y=n = 0 and 
6 = O = Co. 

Case ii. C3 . Cocl/C3 > i, C2 = C2C3 and C2 = 

C1C4. In this case, only two exponential terms are 
needed in the approximation (6) and we set y = C1, 

- Cl/C3, n =0 and 'P = i3. 

Case iii. C' 0 C, C4, (ClC3- C2 C4)/2(Cl -C4Cl) > 

Ai and 0 < A < [(CIC3- C2C4) - 2(C3- c4C1) 12. 

We then get three exponential terms in the approxi- 
mation (6) where the numbers ay, 6, X and 'P are all 
real and are given by 

C1C3 - C2c4 + 

2(C2 - C4C1) 

C1C3 - C2cC4- 

2(C3-C4C1) 

C2_ 
- 

(PsCI an =C2 bC1 and n P 

Case iv. C3$ C3C4, (C1C3 - C2C4)/2(C - C4Cl) > 

f and A < 0. In this case, the numbers y, 5, X and 'P 
are complex and y = n and 5 = 'P. This gives the 
following representation for the approximation (6) 

Wapp(t ) - oae-:t + oy *cos((P * t + A, *)e-6*t (12) 

where b5* = Re(s), 'P* = Im(b) and y * are given by 

=C1 C3 -C2C4 

2(C2 -C4C1) 

_ _ _ _ _ _ _ _ (13) 
2(C2 -C4C1) 

y *.=/vC1 + ((C2-a *Cl )/S5* )2 

and A is defined by cos(ik*) = Ci/y * and sin(ik*) = 

O * C1 -C2)/(Y *SP *)- 

Remark 1. In most applications, the constants C1, C2, 

C3 and C4 match one of these four cases. In case they 
do not, we propose to try approximation (6) with two 
exponential terms (i.e., tq = 0), where the approxima- 
tion matches the exact results for the delay probability 
and the first moment of the waiting time. This approx- 
imation is given by 

Wapp(t) = ael:t + Cl e-(C1/C3)t 

and should, of course, satisfy the requirement that 
C3 ? 0 and d < C1/C3. If this requirement is not 
satisfied, we propose to use the asymptotically expo- 
nential expansion. However, in our numerical inves- 
tigations, this contingency never arose. 

Remark 2. For the Mx/D/ 1 queue with deterministic 
services it may be hazardous to use the above approx- 
imations, particularly when the traffic load is low. Due 
to batches that arrive in an empty system, the waiting- 
time distribution has a positive mass at nD when 

E gk # O. 
k=n+I 
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The effect of this phenomenon is considerable when 
the traffic load is low, but becomes less important for 
high traffic when most batches arrive in a nonempty 
system. It was shown in Eikeboom and Tijms that the 
total mass of the waiting-time distribution at the dis- 
crete points nD with n - 1 equals (1 - p)(1 - 1 /E(X)). 
Since the approximations given in this paper are all 
continuous, it cannot be expected that they perform 
well in the case of deterministic services and low 
traffic. In this particular case we, therefore, suggest to 
use the approximate method given in Eikeboom and 
Tijms. Next, assume that the service-time distribution 
has a similar shape as the discount distribution, i.e., 
there is a large probability that the service time is 
within a relatively narrow interval. For these systems 
we have the same effect as in the case where the service 
times are constant: When p is small the waiting-time 

distribution will have most of its mass in a number of 
narrow intervals. This explains the fact that our 
approximation performs slightly less for the Eo- 
distribution and p = 0.2 (see Section 3). 

To conclude this section, we give a short outline of 
the approximate method. 

Step 1. Determine a and f (see Theorem 2). 
Step 2. Compute C1, C2, C3, C4 and A (see (11)) by 

using (1), (2), (3) and (4). 
Step 3. If one of the cases i, ii or iii (see below ( 11)) 

applies, then use the formulas given there to compute 
-y, 3, q and S(. In these three cases, the approximation 
is given by (6). In Case iv, use (13) to find y *, 6 *, (P 
and 4V*. The approximation is then given by (12). If 
none of these four cases apply, then follow the proce- 
dure described in Remark 1. 

Table I 
Conditional Waiting-Time Percentiles When E(X) = 2 

Elo, C2 =0.1 E2, C2 0.5 H2, C2 = 2 

CX 0.00 0.17 0.50 2.00 0.00 0.17 0.50 2.00 0.00 0.17 0.50 2.00 

p = 0.2 p = 0.2 asy 0.56 0.80 0.85 0.52 0.41 0.68 0.75 0.38 0.00 0.00 0.00 0.00 
app 0.70 0.82 0.88 1.18 0.48 0.61 0.72 1.06 0.24 0.33 0.46 0.81 
exa 0.75 0.83 0.90 1.11 0.48 0.60 0.72 1.06 0.24 0.34 0.46 0.82 

p = 0.5 asy 0.94 1.28 1.73 3.34 0.95 1.31 1.76 3.32 0.00 0.05 0.97 2.98 
app 1.07 1.35 1.73 3.35 1.04 1.34 1.76 3.41 0.84 1.12 1.57 3.38 
exa 1.07 1.35 1.74 3.38 1.04 1.34 1.76 3.41 0.84 1.12 1.57 3.37 

p = 0.8 asy 1.71 2.22 3.46 8.85 2.01 2.54 3.73 9.03 2.15 2.85 4.25 9.64 
app 1.64 2.24 3.46 8.85 2.04 2.58 3.73 9.03 2.53 3.13 4.35 9.70 
exa 1.63 2.27 3.46 8.85 2.04 2.58 3.73 9.03 2.52 3.11 4.35 9.70 

p = 0.9 asy 2.28 2.94 4.76 13.01 2.81 3.48 5.21 13.36 4.18 4.97 6.73 14.67 
app 2.23 2.92 4.76 13.01 2.82 3.50 5.21 13.36 4.31 5.04 6.75 14.68 
exa 2.27 2.88 4.76 13.01 2.81 3.49 5.21 13.36 4.30 5.05 6.75 14.69 

p = 0.5 p = 0.2 asy 0.72 0.92 1.04 0.86 0.63 0.84 0.99 0.83 0.00 0.00 0.21 0.53 
app 0.83 0.97 1.05 1.41 0.67 0.83 0.98 1.39 0.47 0.61 0.79 1.32 
exa 0.85 0.95 1.05 1.33 0.67 0.83 0.98 1.39 0.47 0.62 0.79 1.32 

p = 0.5 asy 1.52 1.88 2.47 4.68 1.65 2.02 2.62 4.82 1.50 1.95 2.74 5.21 
app 1.50 1.89 2.47 4.68 1.66 2.03 2.62 4.86 1.83 2.21 2.88 5.40 
exa 1.48 1.92 2.47 4.70 1.66 2.04 2.62 4.86 1.83 2.21 2.88 5.40 

p = 0.8 asy 3.08 3.76 5.26 12.14 3.65 4.32 5.79 12.59 5.50 6.20 7.68 14.34 
app 3.09 3.76 5.26 12.14 3.65 4.32 5.79 12.59 5.52 6.21 7.68 14.36 
exa 3.09 3.76 5.26 12.14 3.65 4.32 5.79 12.59 5.52 6.21 7.68 14.36 

p = 0.9 asy 4.27 5.18 7.37 17.78 5.16 6.06 8.19 18.48 8.52 9.42 11.41 21.25 
app 4.27 5.18 7.37 17.78 5.16 6.06 8.19 18.48 8.53 9.42 11.41 21.25 
exa 4.27 5.18 7.37 17.78 5.16 6.06 8.19 18.48 8.53 9.42 11.41 21.25 

p = 0.8 p = 0.2 asy 1.40 1.68 2.02 2.95 1.47 1.74 2.12 3.12 1.32 1.65 2.18 3.58 
app 1.39 1.69 2.02 3.06 1.47 1.75 2.12 3.27 1.55 1.84 2.29 3.77 
exa 1.38 1.70 2.03 3.05 1.47 1.75 2.12 3.27 1.53 1.83 2.29 3.77 

p = 0.5 asy 3.71 4.38 5.64 10.98 4.27 4.95 6.22 11.59 6.16 6.86 8.21 13.77 
app 3.71 4.38 5.64 10.98 4.27 4.95 6.22 11.59 6.16 6.86 8.21 13.78 
exa 3.71 4.38 5.64 10.98 4.27 4.95 6.22 11.59 6.16 6.86 8.21 13.78 

p = 0.8 asy 8.21 9.66 12.69 26.65 9.75 11.20 14.20 28.09 15.58 17.02 19.96 33.63 
app 8.21 9.66 12.69 26.65 9.75 11.20 14.20 28.09 15.58 17.02 19.96 33.63 
exa 8.21 9.66 12.69 26.65 9.75 11.20 14.20 28.09 15.58 17.02 19.96 33.63 

p = 0.9 asy 11.61 13.65 18.03 38.50 13.90 15.92 20.24 40.57 22.72 24.70 28.86 48.65 
app 11.61 13.65 18.03 38.50 13.90 15.92 20.24 40.57 22.72 24.70 28.86 48.65 
exa 11.61 13.65 18.03 38.50 13.90 15.92 20.24 40.57 22.72 24.70 28.86 48.65 
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3. NUMERICAL RESULTS 

In this section, we present numerical results for var- 
ious models. We consider four different batch- 
size distributions: i) the constant batch size 
(Ck = 0), ii) the uniformly distributed batch size 
(Cx2 = E(X -1 )/3E(X)), iii) the geometrically distrib- 
uted batch size (C2 = E(X - 1)/E(X)), and iv) a 
batch size with a mixed-geometric distribution with 
balanced means, where C2 is taken to be equal 
to 2. A batch-size distribution {b, n > 1} is said to be 
a mixed-geometric distribution with balanced means 
when b, = qp1(I _ p,)n-' + (1 - q)p2( -p2)n-1, n > 

1 with q/p1 = (1 - q)/P2. Here C2 denotes the 
squared coefficient of variation of the batch size X 
(i.e., the ratio of the variance to the squared mean). 
For the service time S of a customer, we consider the 
Erlang- 10 distribution (C = V/io), the Erlang-2 distribu- 

tion (C' = 1/2) and the hyperexponential distribution 
of order 2 with balanced means where C2 = 2 
is taken for the latter distribution. In all cases, we 
have taken E(S) = 1. 

In Tables I and II we present numerical results 
which are obtained by: a) the first-order approxima- 
tion (asy), b) the second-order approximation (app), 
and c) the exact solution (exa). The results are dis- 
played by using the waiting-time percentiles. Since the 
percentiles v(p) of the conditional waiting-time distri- 
bution of the delayed customer are defined for all 0 < 
p < 1, it is convenient to use this conditional percentile 
rather than the percentiles t(p) of the unconditional 
waiting-time distribution Wq(.). Note that v(p) is 
determined by (1 - (Wq(v(p))/(1 - Wq(O)) = 1 - p 
and thus t(po) = Y(Pi) when po = 1- (1 - pi)(1 - 

Wq(O)). The numerical investigations reveal that for 

Table II 
Conditional Waiting-Time Percentiles When E(X) = 5 

EC2= 0.1 E2, C=0.5 H2, 

Cj2 0.00 0.27 0.80 2.00 0.00 0.27 0.80 2.00 0.00 0.27 0.80 2.00 

p 0.2 p = 0.2 asy 1.64 2.29 1.71 0.00 1.53 2.18 1.58 0.00 0.00 0.93 0.73 0.00 
app 1.53 1.70 1.71 1.94 1.27 1.61 1.58 1.78 0.78 0.98 1.16 1.38 
exa 1.41 1.56 1.72 1.89 1.23 1.40 1.58 1.78 0.80 0.97 1.16 1.38 

p = 0.5 asy 2.56 3.56 4.23 4.10 2.60 3.59 4.36 4.02 1.77 3.02 4.04 3.61 
app 2.69 3.45 4.23 5.78 2.62 3.37 4.36 5.82 2.29 3.05 4.11 5.79 
exa 2.84 3.51 4.23 5.78 2.70 3.44 4.36 5.82 2.28 3.06 4.11 5.79 

p = 0.8 asy 4.36 6.03 9.57 16.97 4.68 6.34 9.79 17.10 5.28 7.10 10.49 17.54 
app 4.44 6.15 9.57 17.05 4.77 6.29 9.79 17.21 5.39 7.11 10.49 17.84 
exa 4.33 6.26 9.57 17.05 4.74 6.49 9.79 17.21 5.37 7.10 10.49 17.84 

p= 0.9 asy 5.71 7.89 13.50 26.71 6.25 8.42 13.90 27.00 7.94 10.18 15.38 28.08 
app 5.72 8.02 13.50 26.71 6.31 8.40 13.90 27.01 7.96 10.19 15.38 28.13 
exa 5.54 7.86 13.50 26.71 6.23 8.47 13.90 27.01 7.97 10.19 15.38 28.13 

p 0.2 p = 0.2 asy 1.88 2.44 2.44 0.00 1.76 2.32 2.36 0.00 0.78 1.48 1.79 0.00 
app 1.94 2.25 2.44 2.82 1.73 2.12 2.36 2.74 1.29 1.62 1.98 2.44 
exa 1.93 2.17 2.44 2.78 1.74 2.04 2.36 2.74 1.30 1.63 1.98 2.44 

p = 0.5 asy 3.81 4.98 6.71 8.98 3.91 5.08 6.81 9.08 3.87 5.14 7.03 9.37 
app 3.85 5.00 6.71 9.56 3.94 5.05 6.81 9.72 4.00 5.18 7.04 10.20 
exa 3.87 5.10 6.71 9.57 3.96 5.14 6.81 9.72 3.98 5.17 7.04 10.20 

p = 0.8 asy 7.56 9.93 15.03 26.58 8.09 10.45 15.51 27.00 9.89 12.26 17.25 28.56 
app 7.56 9.95 15.03 26.59 8.09 10.45 15.51 27.01 9.89 12.27 17.25 28.61 
exa 7.59 9.90 15.03 26.59 8.09 10.43 15.51 27.01 9.89 12.27 17.25 28.61 

p = 0.9 asy 10.40 13.67 21.33 39.90 11.25 14.51 22.08 40.55 14.44 17.65 24.98 43.08 
app 10.40 13.68 21.33 39.90 11.25 14.51 22.08 40.56 14.44 17.65 24.98 43.09 
exa 10.39 13.68 21.33 39.90 11.25 14.51 22.08 40.56 14.44 17.65 24.98 43.09 

p = 0.2 p = 0.2 asy 3.49 4.39 5.47 6.22 3.50 4.41 5.52 6.34 3.30 4.28 5.57 6.67 
app 3.52 4.39 5.47 7.00 3.52 4.39 5.52 7.13 3.41 4.32 5.59 7.46 
exa 3.57 4.45 5.47 7.00 3.54 4.43 5.52 7.13 3.39 4.32 5.59 7.46 

p = 0.5 asy 9.07 11.54 16.15 25.63 9.58 12.05 16.68 26.18 11.35 13.86 18.57 28.20 
app 9.07 11.54 16.15 25.64 9.58 12.05 16.68 26.20 11.35 13.86 18.57 28.23 
exa 9.06 11.54 16.15 25.64 9.58 12.05 16.68 26.20 11.35 13.86 18.57 28.23 

p = 0.8 asy 19.95 25.48 36.98 63.47 21.44 26.96 38.43 64.87 27.03 32.53 43.90 70.17 
app 19.95 25.48 36.98 63.47 21.44 26.96 38.43 64.87 27.03 32.53 43.90 70.17 
exa 19.95 25.48 36.98 63.47 21.44 26.96 38.43 64.87 27.03 32.53 43.90 70.17 

p = 0.9 asy 28.18 36.03 52.74 92.09 30.40 38.24 54.88 94.14 38.90 46.66 63.06 101.9 
app 28.18 36.03 52.74 92.09 30.40 38.24 54.88 94.14 38.90 46.66 63.06 101.9 
exa 28.18 36.03 52.74 92.09 30.40 38.24 54.88 94.14 38.90 46.66 63.06 101.9 
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nonlight traffic, the first-order approximation can be 
used for relatively small values of t. In terms of the 
conditional waiting-time percentile v(p), the first- 
order approximation (1/f)ln(a/(1 - p)p) to v(p) can 
be used for practical purposes when p > 1 - p. This 
rule of thumb reflects the fact that the performance of 
the first-order approximation improves as p gets larger. 
The numerical results show the excellent performance 
of the second-order approximation to WQ(t) for all 
values of t. Therefore, this approximation is well suited 
for practical purposes because it combines accuracy 
with ease of computation. 

APPENDIX 

The Derivation of the Second-Order 
Approximation 

In this Appendix, we derive the approximation given 
in Section 2. The proposed conditions (7) to (11) for 
the determination of the numbers -y, 6, q and SP in 
approximation (6) lead to the following equations for 
these numbers 

C1Y+n, C2='Y+nSO 

C3= /6+ OP (Al) 

and 

C4 = a/6 2 + n/s 2. 

In these four nonlinear equations, we restrict the 
feasible (complex) numbers as follows: for -y 0 we 
require that Re(a) > f and for n $ 0 we require that 
Re(P) > F. From (6)-(l 1), when y = 0, the number 6 
is not determined by (A 1) and, hence, can be taken as 
any real (or complex) number with Re(a) > F. The 
same applies for SP when n = 0. Also, it will be used 
below that the roles of y and 6 in (Al) are interchange- 
able with the roles of n and SP, respectively. In the 
following, let A: (C1 C3 - C2C4)2 - 4(C3- 

C4C1 )(Cl - C2C3) and let F0 denote some real con- 
stant with %0 > A, e.g., F0 = 2f. 

Theorem Al. The four nonlinear equations in (Al) 
have a solution if and only if one of the following four 
(exclusive) cases applies: 

i. C1 = C2 = C3 = C4 = 0 

ii. C35 - ? LI >> C2 = C2C3 and C2 = C1C4 
C3 

iii. C 1 GlC, 2(C-CIC > 
- ~~2C - /3 

andO < A < [(C1C3 - C2C4) - 2(C2 - C1C4)f12 

iV. C$2 CiC4, C C3 - C2C4 
2(C3- I4) 

For the respective cases, we have as solutions 

i. y=,n=O and =(=0S=f% (A2) 

ii. y = C1, 6 = C, O and SP #=/0 (A3) 
C3 

iii. and iv. 

CC3 - C2C4+ + A 

= 2( - C4C1) 2( 32-C 

CiC3 - C2C4 -4 p= 2(C - C4C)(A4) 2( 32-41 

C2 -C and C2-C 

Proof. a. Suppose that (y, 6, n, 'P) is a solution to 
(Al) satisfying the restriction stated below (Al). First 
consider the case of yq = 0. Because of (6), the pairs 
(y, () and (q, SP) are interchangeable. Without loss of 
generality, we can thus assume that q = 0. This means 
that the set of equations (Al) reduces to 

C1, = a C2 = y , 

,Y l~~~~~y C3= 1 and C4 = 62 (A5) 

If C1 = 0 it follows from (A5) that all Ci's are zero 
and so -y = q = 0 and 6 = = 0% is a solution (Case 
i). If C1 $ 0, then -y 0 and so by the convention 
below (A1) Re(a) > f which implies 6 $ 0. Hence 
C1 $ 0 implies that all Ci's are nonzero and, therefore, 
6 = C2/C1 = C1/C3 = C3/C4. This leads to the results 
for Case ii of Theorem Al. 

Secondly consider the case that -y $ 0 and 6 = SP. 
By our convention 6 $ 0. The set of equations (Al) 
reduces to 

C1 = 'y + , C2 (Y + n)a, 

C3 =7 n and C4= (A6) 

This set of equations is identical to (A5) with y' = 
-y + q and 6 ' = 6 and, thus, either i or ii applies. Next, 
we can replace the solution (-y, 6(, 7, SP) with a solution 
as in (A2) or (A3). 
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Finally, consider the remaining case of -yn $ 0 and 
6 $ SP. Since an-(6 - So) $ 0 it is easily derived from 
(Al) that (bC, - C2), (bC3 - C1) and (bC4 - C3) are 
all nonzero and that SP is equal to both (aC1 - C2)/ 
(aC3- C1) and (bC3- C1)/(aC4 - C3). Thus, 6 must 
satisfy the relation 

(C2 - CC4)6 2 - (C1 C3 -C2 C4)6 

+ (C - C2C3) = 0. (A7) 

Since the pairs (y, t) and (n, SO) can be interchanged, 
the same relation applies to SO, that is 

(C2 - CC4)O 2 - (Cl C3 - C2 C4)O 

+ (C2 - C2C3) = 0. (A8) 

Since tS $ SO and C2 _ C1C4 = /-n(/ 1/Sp)2 ? 0, it 
follows from (A7) and (A8) that b5 and SP can be taken 
as in (A4). From the condition that Re(Q) > f and 
Re(SP) > f, it easily follows that (C1 C3 - C2C4)! 
2(C2 - CIC4) > f and A < [(C1C3 - C2C4) - 2(C2 - 

C1 C4)f]2. We must also have A $ 0, since other- 
wise 6 = s(. Next, using (A1), we find the equations 
-y = (,PC, - C2)/(SP - e) and n = (aC1 - C2)/(6 - SP). 
Note that n and -y are nonzero since (6C1 - C2) and 
((PC1 - C2) are nonzero. Hence yn $ 0 and 6 $ SP 
imply the conditions of Case iii or Case iv. 

b. By the construction of the solutions given in a, 
it follows that under the conditions stated in Cases 
i-iv the corresponding solutions satisfy the nonlinear 
equations (Al) with restrictions. 

Remark Al. Note that in Case iv of the previous 
theorem, A < 0, which implies that the numbers -y, 6, 
n and SP are not real. In this case, we have - = i and 
6 = (; and, therefore, we also have that ne-t is the 
complex conjugate of -e-". In the remaining anal- 
ysis, we use the relations eix = cos(x) + i sin(x) and 
0 cos(x) + w sin(x) = (02 + W2)112COS(X + y) with 
02 + w2 > 0 and y such that cos(y) = 0/(92 + W2)1/2 

and sin(y) = -W/(02 + W2)112. After some algebra, we 
find that ye-" + ne-< = y*cos(SP*t + 41*)e-'*t 

where X5* = Re(a), SP* = Im(a) and y * are given by 

* CC3 -C2C4 

2(C2 3 C4C1) 

ly* = 
=2(C3 - C4C1) 

*= Vc2 + ((C2 - aC)f) 

and A * is defined by cos(i* ) = Ci /e* and sin(i/* ) = 

(6*Cl - C2)/z*P* 
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