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In this paper we consider the M*/G/1 queueing system with batch arrivals. We give simple approximations for the
waiting-time probabilities of individual customers. These approximations are checked numerically and they are found to
perform very well for a wide variety of batch-size and service-time distributions.

atch-arrival queueing models can be used in
many practical situations, such as the analysis
of message packetization in data communication sys-
tems. In general it is difficult, if not impossible, to
find tractable expressions for the waiting-time proba-
bilities of individual customers. It is, therefore, useful
to have easily computable approximations for these
probabilities. This paper gives such approximations
for the single server M*/G/1 model.

Exact methods for the computation of the waiting-
time distribution in the M*/G/1 queue are discussed
in Eikeboom and Tijms (1987), cf. also Chaudhry and
Templeton (1983), Neuts (1981) and Tijms (1986).
However, these methods apply only for special service-
time distributions and are, in general, not suited for
routine calculations in practice. A simple approxi-
mation for the tail probabilities of the waiting time
was given in Eikeboom and Tijms by using interpo-
lation of the asymptotic expansions for the particular
cases of deterministic and exponential services. This
approximate approach wuses only the first two
moments of the service time.

This paper presents an alternative approach that
uses the actual service-time distribution rather than
just its first two moments. This alternative approach
starts with the asymptotic expansion of the waiting-
time distribution. In Van Ommeren (1988) it is shown
that the complementary waiting-time probability of
an arbitrary customer in the M*/G/1 queue has an
exponentially fast decreasing tail under some mild
assumptions. By calculating the decay parameter and
the amplitude factor, we get the asymptotic expansion
of the waiting-time distribution. Such asymptotic
expansions already provide a very powerful tool in
practical queueing analysis, cf. Cromie, Chaudhry and
Grassman (1979) and Tijms. It turns out that for

nonlight traffic this asymptotic expansion can be used
as a good first-order approximation for the waiting-
time probabilities. Next, by incorporating exact results
for other quantities, such as the delay probability and
the first two moments of the waiting time, we are able
to give an improved second-order approximation.
This approximate method performs very well for a
wide range of values of the traffic intensity and the
coefficients of variation of the service-time distribu-
tion and the batch-size distribution.

The organization of this paper is as follows. In
Section 1, the model is defined and some prelimi-
naries, including the asymptotic expansion of the
waiting-time distribution, are given. The second-order
approximation is given in Section 2. In Section 3 we
give numerical results and discuss the performance of
the approximations. The Appendix deals with the
motivation of the second-order approximation.

1. THE MODEL AND PRELIMINARIES

In the M*/G/1 queue, customers arrive in batches and
are served individually by a single server. The batches
arrive according to a Poisson process with rate A. The
number of customers in the batches are independent
and identically distributed positive random variables.
Denote the number of customers in a batch by X and
the probability distribution of X by {g; := Pr{X = i},
i =1, 2, ...}. The generating function of {g;} is
denoted by G(z) := ¥7, g z’. The service times of
individual customers are independent identically dis-
tributed random variables. Denote the service time of
a customer by .S and the distribution of S by B(x) :=
Pr{S =< x}. We assume that B(0) = 0 and B’(0) :=
lim, ;o B(¢)/t exists. We denote the Laplace-Sticltjes
transform of B(-) by B(s) := [§ e~ dB(t). Let O(s)
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denote the Laplace-Stieltjes transform of the total
amount of service time required by all customers
belonging to one batch. It follows that

O(s) = G(B(s)).

The offered load is denoted by p := AE(S)E(X) and
it is assumed that p < 1.

Customers belonging to different batches are served
in order of arrival, while customers belonging to the
same batch are served according to their random
position in the batch. Let D, denote the delay in the
queue of the nth served customer. The limit dis-
tribution lim,_.Pr{D, < Xx} exists only when the
batch-size distribution {g;} is aperiodic (i.e., when
the g.c.d. {j|g > 0} = 1), cf. Cohen (1976). As a
counterexample, consider a constant batch size of
2 in which case Pr{D,, = 0} = 0 for all k = 1 and
lim_,Pr{Dy+; = 0} = (1 — p). In Van Ommeren
it is proved that the limit

W(t)—llm ZPr{D t}, t=0

n—o

always exists. Note that W, (¢) represents with proba-
bility 1 the long-run fraction of customers having a
waiting time of no more than ¢. Denote the Laplace-
Stieltjes transform of W,(-) by

W,(s) := f e~ dW,(t).

0
From Cohen we can easily get the following theorem.
Theorem 1. The Laplace-Stieltjes transform of the
stationary waiting-time distribution W,(-) is given by

W,(s) = Wi(s)Wa(s) with

(1 —p)s

M) =T8T = o)
and
Wz(s) - 1 — Q(s)

EX)(1 = B(s))’

Burke (1975) and Cooper (1981, pages 241-243),
use another, more intuitive, probabilistic approach.
Following their approach, we find that () is the
Laplace-Stieltjes transform of the stationary waiting-
time distribution of the first customer in a batch.
Wy(-) represents the Laplace-Stieltjes transform of
the distribution of the waiting time of an arbitrary
customer caused by customers who arrived in the
same batch and are served before him. From Wq(.),
the Laplace-Stieltjes transform of the stationary wait-
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ing-time distribution, we can easily derive exact results
for the delay probability, the derivative of W,(x) at
= () and the first two moments of the waiting
time. The following results will be needed in order to
obtain a second-order approximation to W,(-)

—p
E(X) 0

W, (0) = lim s(W,(s) — W,(0))

W,(0) = lim W,(s) =

_d=pl1 —£)B"(0) + A]

500 (2)
fow (1 — W,@t)) dt = =W, (0)
= —W7(0) — W3 (0) )
and
fo (1 — W,()) dt = %W{’(O)
+ W{(0)W(0)
Lz ). 0)

Here the derivatives should be interpreted as the right
derivatives in ¢ = 0. In order to evaluate the right-
hand sides of (3) and (4) we have to use ’Hopital’s
rule repeatedly to obtain

. A0"(0)
WO =300

A" 0 R
W) = Seie )+ 2AWOF
., Q"(0) — EXX)B"(0)
Wi0) ==k 5 0
and
W2 (0)

2[0”(0)B’(0) — Q' (0)B” (0)]B"(0)
- 3[Q"(0)B’ (0) — 0’ (0)B” (0)]B” (0)
6E(X)(B’(0))’

where
B’ (0) = —E(S), B"(0)= E(S?)
”(0) = —E(S?)

Q() —E(S)E(X)

0”(0) = E(X(X — 1)E(S)* + E(X)E(S?)
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and

0" (0) = —E(X(X = 1)(X = 2)E(S)’
- 3E(X(X — D))E(S)E(S?)
— E(X)E(S?).

Here, it is assumed that the service time and the batch
size have finite third moments.

To give the asymptotically exponential expansion
of the complementary waiting-time distribution 1 —
W,(t) for t — o, we need a mild assumption on the
service-time and batch-size distributions. Essentially,
we have to require that both the service-time and the
batch-size distributions do not have an extremely long
tail. This can be stated precisely as follows.

Assumption

a. The radius of convergence R of the power series
G(z) = ¥ %, gz’ is larger than one and the integral
B(s) = J& e~ dB(t) is finite for some s < 0.

b. Lim,rB(s) = R

where
f e dB(t) < R}.
0

c. Lim,z[G(2)]™' = 0.

T= inf{s

This assumption is satisfied in most cases of practical
interest. It is always satisfied if the service-time distri-
bution is of phase type and if the batch-size distribu-
tion has finite support. Assumption c excludes
batch-size distributions of the form n2p” though.

Theorem 2. The stationary waiting-time distribution
W,(-) satisfies

lim e (1 — W,(¢)) = «, %)

1—>

where 8 is the smallest positive solution to
MO(B) - 1)=8

and o is defined by

_ A (1 —p)B _
AE(X)(AQ' (=) + (1 — B(-8))"

a

This theorem follows as an immediate corollary of
the general results for the GI*/G/1 queue in Van
Ommeren. It can also be derived from Theorem 12
in Gaver (1959), where an asymptotic expansion is
given for the virtual waiting-time distribution in the
M*/G/1 queue.

2. APPROXIMATIONS

The asymptotic expansion stated in Theorem 2 sug-
gests the following first-order approximation to W, ()

1 — W,(t) = ae™™ for ¢ large enough.

This approximation gives practically useful results for
moderate values of ¢ as long as the traffic load is not
too low. The performance of this first-order approxi-
mation improves as p increases. As a rule of thumb,
in terms of the pth percentile of the waiting-time
distribution function W,(t), the first-order approxi-
mation can also be used for practical purposes when
p=1-=p(1 — W,0)), cf. also the numerical results
in Section 3.

A refinement of the first-order approximation for
the complementary waiting-time distribution 1 —
W,(t) that can be used for all values of ¢ is given by

Waon(t) = ae™ + ye™ + ne™, t=0. (6)

Here « and 8 are the coefficients of the asymptotic
expansion (5). The motivation of an approximation
with three (rather than two) exponential terms is as
follows. A close look at the derivation of the asymp-
totic expansion reveals that the behavior of the wait-
ing-time distribution is determined by the poles of the
Laplace-Stieltjes transform of this waiting-time distri-
bution and the residues at these points. The pole with
the largest negative real part is simple and real and
gives a first-order approximation. The poles that have
the second largest negative real parts lead to a second-
order approximation. However, it is difficult to find
these poles because they no longer have to be real.
We, therefore, try to determine <, 6, » and ¥ by
matching the exact explicit results for the delay prob-
ability, the derivative of W,(x) at x = 0 and the first
two moments of the stationary waiting time. This
yields the relations

Wapp(0) = 1 — W,(0) )
Wion(0) = =W, (0) ®)
fow Wapp(t) dt = J: (1 — W,@t)) dt ©)
and

fow tWapn(t) dt = J: (1 = Wy(1)) dr. (10)

The numbers v, §, n and ¥ may or may not be real. If
they are not real, they are complex conjugates, that is,
8 =@ and v = 7, and we find after some algebra that
(6) involves a cosine term, cf. Remark 1 in the
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Appendix. Furthermore, we require that both Re(6) >
8 and Re(¥) > 8 hold. Otherwise, the asymptotically
exponential expansion would be violated for ¢ large.
If the poles are complex, it is preferable to approxi-
mate 1 — W,(¢) by three exponential terms rather
than by two exponential terms. Moreover, numerical
investigations indicate that for small values of ¢, the
three-term approximation to 1 — W,(¢) usually per-
forms much better than the two-term approximation.

As further support for the approximation (6), note
that the approximation is exact when the service time
as a K-distribution and the batch size is geometrically
distributed (cf. Van Ommeren). If the service time has
a K;-distribution and the batch size is geometrically
distributed the approximation is also exact provided
that the function A\(Q(—s) — 1) — s has no double
zero, which is usually the case.

In order to give closed form expressions for v, 6, n
and ¥, we define the constants

Cii=(1 - W,(0) — a

Cy = W(0) — af

G :=J(: (1 — W,@)) dt — /B (1

Cs:= J.: W1 — W,(@t)) dt — /B>

and
A= (C1C = GG = HCF — CiC)(CT = C.Cs).

Note that the C/’s represent the deviations of the
moments of 1 — W, (x) and the moments of the first-
order approximation ae™. We can give a simple
scheme for computation of the numbers v, 6, n and
#. For clarity of presentation, we give only the results
and refer to the Appendix for their derivation. Let 8,
denote some constant with 8, > 8, e.g., 8o = 28. We
have to distinguish between the following cases.

Casei. C, = C, = C; = Cy = 0. In this case, the first-
order approximation already matches the four pro-
posed conditions (7)-(10), and we set ¥ = = 0 and
o=¢ = Bo.

Case ii. C; # 0, C,/C; > 8, C? = C,C; and C3 =
C,C,. In this case, only two exponential terms are
needed in the approximation (6) and we set v = C|,
6= C]/C3, n=0and¢=ﬁo.

Caseiii. C35# C,Cy, (CiCs — C,C)/2(CE — CiCy) >
Band 0 < A < [(C\C; — C,Cy) — 2(C3 — C,Ch)BY.
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We then get three exponential terms in the approxi-
mation (6) where the numbers v, 6, n» and ¥ are all
real and are given by

6_aq—aa+ﬁ

2(C§ - C4C1)
w_aa—aa-&
2(C3 = CCy)
_CZ—‘pCI and _C2—6C1
Y TT e

Case iv. C?# C,Cy, (C,C; — C,Cy)/2(C3 — C,Cy) >
B and A < 0. In this case, the numbers v, §, » and ¢
are complex and ¥ = 7 and § = @. This gives the
following representation for the approximation (6)

Wo(t) = ae™ + y*cos(P*t + y*)e*™ (12)

where 6* = Re(6), ¢ * = Im(5) and v * are given by

5* - C1C3 - C2C4
2(C3 - CCy)

ot VA (13)
2(C§ - C4C|)

v*=VC} +((C,— 6*C,)/P*)?

and y * is defined by cos(y *) = C, /vy * and sin(y *) =
(6*C\ — G)/(y*¢™).

Remark 1. In most applications, the constants C,, (5,
C; and C; match one of these four cases. In case they
do not, we propose to try approximation (6) with two
exponential terms (i.e., n = 0), where the approxima-
tion matches the exact results for the delay probability
and the first moment of the waiting time. This approx-
imation is given by

Won(t) = ae™ + C e/

and should, of course, satisfy the requirement that
C; # 0 and 8 < C,/Cs. If this requirement is not
satisfied, we propose to use the asymptotically expo-
nential expansion. However, in our numerical inves-
tigations, this contingency never arose.

Remark 2. For the M*/D/1 queue with deterministic
services it may be hazardous to use the above approx-
imations, particularly when the traffic load is low. Due
to batches that arrive in an empty system, the waiting-
time distribution has a positive mass at n.D when

Y g#0.

k=n+1
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The effect of this phenomenon is considerable when
the traffic load is low, but becomes less important for
high traffic when most batches arrive in a nonempty
system. It was shown in Eikeboom and Tijms that the
total mass of the waiting-time distribution at the dis-
crete points nD with n = 1 equals (1 — p)(1 — 1/E(X)).
Since the approximations given in this paper are all
continuous, it cannot be expected that they perform
well in the case of deterministic services and low
traffic. In this particular case we, therefore, suggest to
use the approximate method given in Eikeboom and
Tijms. Next, assume that the service-time distribution
has a similar shape as the discount distribution, i.e.,
there is a large probability that the service time is
within a relatively narrow interval. For these systems
we have the same effect as in the case where the service
times are constant: When p is small the waiting-time

distribution will have most of its mass in a number of
narrow intervals. This explains the fact that our
approximation performs slightly less for the E,o-
distribution and p = 0.2 (see Section 3).

To conclude this section, we give a short outline of
the approximate method.

Step 1. Determine « and 8 (see Theorem 2).

Step 2. Compute C;, C,, C3, Cyand A (see (11)) by
using (1), (2), (3) and (4).

Step 3. If one of the cases 1, ii or iii (see below (11))
applies, then use the formulas given there to compute
v, 6, n and ¥. In these three cases, the approximation
is given by (6). In Case iv, use (13) to find v*, 6*, ¢*
and y*. The approximation is then given by (12). If
none of these four cases apply, then follow the proce-
dure described in Remark 1.

Table I
Conditional Waiting-Time Percentiles When E(X) = 2
Ep, C3=0.1 E,,Ci=05 H,, C3=2
Ck 000 017 050 200 000 017 050 200 000 017 050  2.00
p=02 p=02 asy 056 080 085 052 041 068 075 038 000 000 000 000
app 070 082 088 118 048 061 072 106 024 033 046 0.8l
exa 075 083 090 L1l 048 060 072 106 024 034 046  0.82
p=05 asy 094 128 173 334 095 131 176 332 000 005 097 298
app 107 135 173 335 104 134 176 341 084  L12 157 338
exa 107 135 174 338 104 134 176 341 084 112 157 337
p=08 asy 171 222 346 885 201 254 373 903 215 285 425 9.4
app 164 224 346 885 204 258 373 903 253 313 435 970
exa 1.63 227 346 885 204 258 373 903 252 311 435 970
p=09 asy 228 294 476 1301 281 348 521 1336 418 497 673 1467
app 223 292 476 1301 282 350 521 1336 431 504 675 14.68
exa 227 288 476 1301 281 349 521 1336 430 505 675 14.69
p=05 p=02 asy 072 092 104 08 063 084 099 083 000 000 021  0.53
app 083 097 105 141 067 083 098 139 047 061 079  1.32
exa 085 095 105 133 067 083 098 139 047 062 079  1.32
p=05 asy 152 188 247 468 165 202 262 48 150 195 274 521
app 150 189 247 468 166 203 262 48 183 221 288 540
exa 148 192 247 470 166 204 262 486 183 221 288 540
p=08 asy 308 376 526 1214 365 432 579 1259 550 620  7.68 1434
app 309 376 526 1214 365 432 579 1259 552 621  7.68 1436
exa 309 376 526 1204 365 432 579 1259 552 621  7.68 1436
p=09 asy 427 518 737 1778 516 606 819 1848 852 942 1141  21.25
app 427 518 737 1778 516 606 819 1848 853 942 1141 2125
exa 427 518 737 1778 516 606 819 1848 853 942 1141 2125
p=08 p=02 asy 140 168 202 295 147 L74 212 312 132 165 218 358
‘ app 139 169 202 306 147 175 212 327 155 1.84 229 377
exa 138 170 203 305 147 175 212 327 153 183 229 377
p=05 asy 371 438 564 1098 427 495 622 1159 616 686 821 1377
app 371 438 564 1098 427 495 622 1159 616 686 821 1378
exa 371 438 564 1098 427 495 622 1159 6.6 686 821 1378
p=08 asy 821  9.66 1269 2665 975 1120 1420 2809 1558 17.02 1996  33.63
app 821  9.66 1269 2665 975 1120 1420 2809 1558 17.02 1996 33.63
exa 821  9.66 1269 2665 975 1120 1420 2809 1558 17.02 1996  33.63
p=09 asy 161  13.65 1803 3850 1390 1592 2024 40.57 2272 2470 28.86  48.65
app 1161 1365 1803 3850 1390 1592 2024 4057 2272 2470 28.86  48.65
exa 161 13.65 18.03 38.50 13.90 1592 2024 40.57 2272 2470 28.86  48.65
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3. NUMERICAL RESULTS

In this section, we present numerical results for var-
ious models. We consider four different batch-
size distributions: i) the constant batch size
(C% = 0), ii) the uniformly distributed batch size
(C%= E(X — 1)/3E(X)), iii) the geometrically distrib-
uted batch size (C3 = E(X — 1)/E(X)), and iv) a
batch size with a mixed-geometric distribution with
balanced means, where C% is taken to be equal
to 2. A batch-size distribution {,, n = 1} is said to be
a mixed-geometric distribution with balanced means
when b, = gp(1 = p)"™' + (1 = q)p(1 = p2)" ', n=
1 with ¢/p, = (1 — q)/p,. Here C% denotes the
squared coefficient of variation of the batch size X
(i.e., the ratio of the variance to the squared mean).
For the service time S of a customer, we consider the
Erlang- 10 distribution (C3= Y10), the Erlang-2 distribu-
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tion (C? = Y2) and the hyperexponential distribution
of order 2 with balanced means where C? = 2
is taken for the latter distribution. In all cases, we
have taken E(S) = 1.

In Tables I and II we present numerical results
which are obtained by: a) the first-order approxima-
tion (asy), b) the second-order approximation (app),
and c) the exact solution (exa). The results are dis-
played by using the waiting-time percentiles. Since the
percentiles »( p) of the conditional waiting-time distri-
bution of the delayed customer are defined for all 0 <
p< 1, itis convenient to use this conditional percentile
rather than the percentiles £(p) of the unconditional
waiting-time distribution W,(-). Note that »(p) is
determined by (1 — (W,(»(p))/(1 — W,0))=1—-p
and thus £(po) = v(p1) when po =1 — (1 = pi)(1 —
W,(0)). The numerical investigations reveal that for

Table 11
Conditional Waiting-Time Percentiles When E(X) = 5
Ey, C2=0.1 E, C2=05 H,, C2=2

Ci 000 027 080 200 000 027 080 200 000 027 0.0 2.00
p=02 p=02 asy 1.64 229 171 000 153 218 158 000 000 093  0.73 0.00
app 153 170 171 194 127 161 158 178 078 098  1.16 1.38
exa 141 156 172 1.8 123 140 158 178 080 097 116 1.38
p=05 asy 256 356 423 410 260 359 436 402 177 302 404 3.61
app 269 345 423 578 262 337 436 582 229 305 411 5.79
exa 284 351 423 578 270 344 436 582 228 306 4.1l 5.79
p=08 asy 436 603 957 1697 468 634 979 1710 528 7.0 1049  17.54
app 444 615 957 1705 477 629 979 1721 539 711 1049  17.84
exa 433 626 957 1705 474 649 979 1721 537 7.0 1049  17.84
p=09 asy 571 7.89 1350 2671 625 842 1390 27.00 794 10.18 1538  28.08
app 572 802 1350 2671 631 840 1390 2701 796 10.19 1538  28.13
exa 554 786 1350 2671 623 847 1390 2701 797 10.19 1538  28.13
p=02 p=02 asy 188 244 244 000 176 232 236 000 078 148 179 0.00
app 194 225 244 28 173 212 236 274 129 162 198 2.44
exa 193 217 244 278 174 204 236 274 130 163  1.98 2.44
p=05 asy 381 498 671 898 391 508 681 908 387 514  7.03 9.37
app 385 500 671 956 394 505 681 972 400 518 704  10.20
exa 387 510 671 957 396 514 681 972 398 517 704 1020
p=08 asy 756 9.93 1503 2658 809 1045 1551 27.00  9.89 1226 1725  28.56
app 756 995 1503 2659 809 1045 1551 2701  9.89 1227 1725 286l
exa 759 990 1503 2659 809 1043 1551 2701 989 1227 1725  28.61
p=09 asy 1040  13.67 21.33 3990 1125 14.51 22.08 4055 1444 1765 2498  43.08
app 1040 13.68 2133 3990 1125 1451 2208 4056 1444  17.65 2498  43.09
exa 1039 1368 2133 3990 1125 1451 2208 40.56 1444 17.65 2498  43.09
p=02 p=02 asy 349 439 547 622 350 441 552 634 330 428 557 6.67
app 352 439 547 700 352 439 552 713 341 432 559 7.46
exa 357 445 547 700 354 443 552 713 339 432 559 7.46
p=05 asy 9.07 1154 1615 2563  9.58 1205 1668 2618 1135 1386 1857  28.20
app 9.07 1154 1615 2564  9.58 1205 1668 2620 1135 1386 18.57 2823
exa 9.06 1154 16.15 2564  9.58 1205 1668 2620 1135 1386 18.57  28.23
p=08 asy 1995 2548 3698 6347 2144 2696 3843 64.87 2703 3253 4390  70.17
app 1995 2548 3698 6347 2144 2696 3843 6487 27.03 3253 4390  70.17
exa 1995 2548 3698 6347 2144 2696 3843 6487 27.03 3253 4390  70.17

p=09 asy 28.18 3603 5274 9209 3040 3824 5488 94.14 3890 4666 6306 1019

app 2818 3603 5274 9209 30.40 3824 5488 94.14 3890 4666 6306 101.9

exa 2818 3603 5274 9209 30.40 3824 5488 9414 3890 4666 6306 1019
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nonlight traffic, the first-order approximation can be
used for relatively small values of z. In terms of the
conditional waiting-time percentile »(p), the first-
order approximation (1/8)In(a/(1 — p)p) to v(p) can
be used for practical purposes when p = 1 — p. This
rule of thumb reflects the fact that the performance of
the first-order approximation improves as p gets larger.
The numerical results show the excellent performance
of the second-order approximation to W,(¢) for all
values of 7. Therefore, this approximation is well suited
for practical purposes because it combines accuracy
with ease of computation.

APPENDIX

The Derivation of the Second-Order
Approximation

In this Appendix, we derive the approximation given
in Section 2. The proposed conditions (7) to (11) for
the determination of the numbers v, é, n and © in
approximation (6) lead to the following equations for
these numbers

Ci=v+n, CG=vi+7%

Ci=v/6+n/¥

5=/ n/ (A1)
and

Cyo=7v/8%+n/®>.

In these four nonlinear equations, we restrict the
feasible (complex) numbers as follows: for vy # 0 we
require that Re(6) > 8 and for n # 0 we require that
Re(¥) > 6. From (6)-(11), when v = 0, the number &
is not determined by (A1) and, hence, can be taken as
any real (or complex) number with Re(§) > 8. The
same applies for ¥ when n = 0. Also, it will be used
below that the roles of v and é in (A1) are interchange-
able with the roles of n and ¥, respectively. In the
following, let A := (C,C; — C,C,)? — 4(C} —
C,C)(C} — C,Cs) and let 8, denote some real con-
stant with 8, > 3, e.g., 8o = 28.

Theorem Al. The four nonlinear equations in (Al)
have a solution if and only if one of the following four
(exclusive) cases applies:

1. C1=C2=C3=C4=0

ii. C3¢O, %>ﬁ, C12=C2C3 and C§=C|C4
3

oon Cl C3 - C2C4
. C? _—
ii. C3# C,C,, 2ACE = C,C4)>6
and 0 < A< [(C,C; — C,Cy) — 2(C? — C,C,)BYF
. Cl C3 - C2C4
C3 _— .
1V. 3¢C1C4> 2(C§ — C1C4) ﬂ) A<O
For the respective cases, we have as solutions
iLy=9=0 and 6=9¢ =5 (A2)
. C
i.y=C, ==, n=0 and =0, (A3)
C; ‘
iii. and iv.
6 _ C1C3 - C2C4 + ‘/&
T 2AC - GCY)
C\Cs = C,Cy— VA
Y= E-ac) (A9
C,—¥C, C, — 6C,
ST Te M Ty

Proof. a. Suppose that (v, 8, », ) is a solution to
(A1) satisfying the restriction stated below (A1). First
consider the case of yn = 0. Because of (6), the pairs
(v, 6) and (n, ¥) are interchangeable. Without loss of
generality, we can thus assume that » = 0. This means
that the set of equations (A1) reduces to

Ci=v, GC=ys,

% and C, = 573 (A5)
If C, = 0 it follows from (AS) that all C;’s are zero
andsoy =7n=0and é§ =¥ = 3, is a solution (Case
i). If C, # 0, then v # 0 and so by the convention
below (A1) Re(6) > @ which implies 6 # 0. Hence
C, # 0 implies that all C;’s are nonzero and, therefore,
6= Cz/Cl = CI/C:; = C3/C4. This leads to the results
for Case ii of Theorem Al.

Secondly consider the case that yn # 0 and 6 = ¥.
By our convention § # 0. The set of equations (Al)
reduces to

C3 =

Ci=v+n C=(+n)s,

+ +
c3=76’7 and c4=762”. (A6)

This set of equations is identical to (AS) with v’ =
v + v and 6’ = 6 and, thus, either i or ii applies. Next,
we can replace the solution (v, 8, 5, ¢) with a solution
as in (A2) or (A3).
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Finally, consider the remaining case of yn # 0 and
6 # @. Since yn(6 — ¥) # 0 it is easily derived from
(A1) that (6C, — (), (6C3 — C,) and (6C, — C3) are
all nonzero and that ¢ is equal to both (6C, — C,)/
(6C; — Cy) and (6C; — C1)/(6C4 — C3). Thus, 6 must
satisfy the relation

(C3 = CiCa)s? — (C1C5 — CCa)d
+(C1 — GG) = 0. (A7)

Since the pairs (v, 6) and (5, ¥) can be interchanged,
the same relation applies to ¥, that is

(C3 — CiC)P? — (C1Cs — C,Cy)P
+ (Ci = C,C3) = 0. (A8)

Since 6 # ¥ and C? — C,Cy = yn(1/6 — 1/¢)* #0, it
follows from (A7) and (A8) that 4 and ¥ can be taken
as in (A4). From the condition that Re(6) > 8 and
Re(¥) > B, it easily follows that (C,C; — C,C,)/
2C}—CC)>Band A< [(C,Cs — C,Cy) — 2(C3 —
C,C,)BT>. We must also have A # 0, since other-
wise 6 = ¥. Next, using (A1), we find the equations
v =(PCi— G)/(¢ —d)and n = (6C, — (3)/(6 — ).
Note that 5 and vy are nonzero since (6C; — C,) and
(¢C, — C,) are nonzero. Hence yn # 0 and 6 # ¢
imply the conditions of Case iii or Case iv.

b. By the construction of the solutions given in a,
it follows that under the conditions stated in Cases
i-iv the corresponding solutions satisfy the nonlinear
equations (A1) with restrictions.

Remark Al. Note that in Case iv of the previous
theorem, A < 0, which implies that the numbers v, 4,
7 and ¢ are not real. In this case, we have v = 5 and
6 = @ and, therefore, we also have that ne*" is the
complex conjugate of ye™. In the remaining anal-
ysis, we use the relations e™ = cos(x) + i sin(x) and
0 cos(x) + w sin(x) = (% + w?)"?cos(x + y) with
6% + w? > 0 and y such that cos(y) = /(6% + w?)"?
and sin(y) = —w/(0? + w?)"/?. After some algebra, we
find that ye™ + ne™® = y*cos(P*t + yY*)e™™
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where 6* = Re(d), ¥ * = Im(§) and v * are given by

6* — C1C3 - C2C4
2(C3 = C.Cy)

v=A
O =
2(C§ - C4C1)

v* = JC} + ((C, — 6*Cy)/P*)

and ¢ * is defined by cos(¢*) = C,/v* and sin(y *) =
(6*C — Gy)/y*e*.
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