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Abstract

This paper studies testing based on labelled transition systems, presenting two test generation

algorithms with their corresponding implementation relations. The first algorithm assumes that

implementations communicate with their environment via symmetric, synchronous interactions. It is

based on the theory of testing equivalence and preorder, as is most of the testing theory for labelled

transition systems, and it is found in the literature in some slightly different variations. The second

algorithm is based on the assumption that implementations communicate with their environment

via inputs and outputs. Such implementations are formalized by restricting the class of labelled

transition systems to those systems that can always accept input actions. For these implementations

a testing theory is developed, analogous to the theory of testing equivalence and preorder. It consists

of implementation relations formalizing the notion of conformance of these implementations with

respect to labelled transition system specifications, test cases and test suites, test execution, the

notion of passing a test suite, and the test generation algorithm, which is proved to produce sound

test suites for one of the implementation relations.

1 Introduction

Protocol conformance testing involves testing of a protocol implementation with respect to its specifi-
cation. The aim is to increase the level of confidence in the correct functioning of the implementation
as prescribed by the specification, and to contribute in this way to successful communication between
computer systems.

With the increasing use of formal methods for specifying the required behaviour it is necessary to consider
conformance testing of protocol implementations with respect to such specifications. Apart from this
necessity, the use of formal methods in conformance testing has its advantages, such as the precise, formal
definition of conformance and conformance testing concepts, the algorithmic, tool supported generation
of test suites from formal specifications, and the possibility of formally verifying the correctness of a
test case with respect to a specification. These possible advantages have led to a lot of research in the
area of formal conformance testing, leading to several methods for the algorithmic generation of tests
for different specification formalisms. To put these different methods in a general context, and to define
the basic concepts of conformance testing in an abstract way, also frameworks have been studied, among
others within the standardization community in the project ‘Formal Methods in Conformance Testing’
(ISO/IEC JTC 1/SC 21 Project 54, ITU T Q.8/10). The scope of this standardization activity is to
define ‘a general methodology on how to perform conformance testing of a protocol implementation given
a formal specification of a protocol standard’ [ISO95, section 1].
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One of the specification formalisms studied in the realm of formal conformance testing is that of labelled
transition systems. A labelled transition system is a structure consisting of states with transitions,
labelled with actions, between them. The formalism of labelled transition systems can be used for
modelling the behaviour of processes, and it serves as a semantic model for various formal specification
languages, e.g., CCS [Mil80, Mil89], CSP [Hoa85], ACP [BK85], and LOTOS [BB87, ISO89b]. Also a large
part of the semantics of languages like Estelle [ISO89a] and SDL [CCI92] can be expressed in labelled
transition systems. Testing theory and algorithms for the generation of tests from labelled transition
system specifications have been developed during the last decade, e.g., [Abr87, Bri88, BSS87, DAV93,
DNH84, DN87, FB92, Gla90, Led92, Phi87, PF90, TPB95, Wez90, Tre92]. All these methods, as most of
the theory on labelled transition systems, are based on synchronous, symmetric communication between
different processes: communication between two processes occurs if both processes offer to interact on
a particular action, and if the interaction takes place it occurs synchronously in both participating
processes, without a notion of distinction between input and output actions. For testing theories a
particular case where such communication occurs, is the modelling of the interaction between a tester
and an implementation under test during test execution. We will refer to above theories as testing with
symmetric interactions.

This paper will present two algorithms for the generation of tests from a labelled transition system
specification. The presentations will be in the vein of the framework in [ISO95]: they involve the definition
of a model to describe implementations, the definition of an implementation relation that formalizes the
notion of conformance of an implementation with respect to a specification, the description of test cases,
test suites, and how to pass a test suite, and finally the development of the test generation algorithm
that produces provably correct test cases.

The first algorithm is based on symmetric interactions as explained above, and it can be found in the
literature in some slightly different variations [Bri87, Bri88, DAV93, PF90, Wez90, Tre92].

The second algorithm approaches communication in a different manner by distinguishing explicitly be-
tween the inputs and the outputs of a system. Outputs are actions that are initiated by, and under
control of the system, while input actions are initiated by, and under control of the system’s environ-
ment; a system can never refuse to perform its input actions. Communication takes place between inputs
of the system and outputs of the environment, or the other way around. This implies that an interaction
is not symmetric anymore with respect to the communicating processes. Many real-life implementations
allow such a classification of their actions, communicating with their environment via inputs and outputs.

The next section introduces labelled transition systems as the formalism of our discourse. Section 3 gives
some basic testing concepts for labelled transition systems, such as a test case, a test suite, a test run,
and passing a test suite. The existing approaches to labelled transition system testing are presented
in section 4. A few implementation relations and a test generation algorithm are given, all based on
symmetric interactions. Section 5 introduces input-output transition systems to model implementations
that communicate via inputs and outputs. An input-output transition system is a special kind of labelled
transition system with the restriction that inputs are always enabled. Implementation relations for input-
output transition systems are studied in section 6. Finally, a test generation algorithm that produces
provably correct test cases to test input-output transition systems with respect to labelled transition
system specifications for one of the implementation relations of section 6 is developed in section 7. In
section 8 some concluding remarks are given, among which a comparison of symmetric and input-output
testing, and a brief comparison with other transition-system based models that distinguish between
inputs and outputs, like input-output state machines [Pha94], input/output automata [LT89], and queue
contexts [TV92]. Complete proofs for some of the theorems are found in appendix A.

2 Labelled Transition Systems

The formalism of labelled transition systems is used as the basis for describing the behaviour of processes,
such as specifications, implementations, and tests.

Definition 2.1
A labelled transition system is a 4-tuple 〈S, L, T, s0〉 where
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◦ S is a countable, non-empty set of states ;

◦ L is a countable set of labels ;

◦ T ⊆ S × (L ∪ {τ}) × S is the transition relation;

◦ s0 ∈ S is the initial state.
2

The labels in L represent the observable interactions of a system; the special label τ 6∈ L represents an
unobservable, internal action. We denote the class of all labelled transition systems over L by LTS(L).
For technical reasons we restrict LTS(L) to labelled transition systems that are strongly converging, i.e.,
ones that do not have infinite compositions of transitions with internal actions.

A trace is a finite sequence of observable actions. The set of all traces over L is denoted by L∗, with ǫ
denoting the empty sequence. If σ1, σ2 ∈ L∗, then σ1 ·σ2 is the concatenation of σ1 and σ2. With |σ |
the length of trace σ is denoted, i.e., the (finite) number of occurrences of actions in σ. Some additional
notations and properties are introduced in definitions 2.2 and 2.3.

Definition 2.2
Let p = 〈S, L, T, s0〉 be a labelled transition system with s, s′ ∈ S, and let µ(i) ∈ L ∪ {τ}, a(i) ∈ L, and
σ ∈ L∗.

s µ−−→ s′ =def (s, µ, s′) ∈ T

s µ1·...·µn−−−−−−→ s′ =def ∃s0, . . . , sn : s = s0
µ1−−→ s1

µ2−−→ . . . µn−−→ sn = s′

s µ1·...·µn−−−−−−→ =def ∃s′ : s µ1·...·µn−−−−−−→ s′

s
µ1·...·µn−−−−−−−→/ =def not ∃s′ : s µ1·...·µn−−−−−−→ s′

s
ǫ

=⇒ s′ =def s = s′ or s τ ·...·τ−−−−→ s′

s
a

=⇒ s′ =def ∃s1, s2 : s
ǫ

=⇒ s1
a−→ s2

ǫ
=⇒ s′

s
a1·...·an======⇒ s′ =def ∃s0 . . . sn : s = s0

a1==⇒ s1
a2==⇒ . . .

an==⇒ sn = s′

s
σ

=⇒ =def ∃s′ : s
σ

=⇒ s′

s
σ

=6⇒ =def not ∃s′ : s
σ

=⇒ s′
2

We will not always distinguish between a labelled transition system and its initial state: if p = 〈S, L, T, s0〉,

then we will identify the process p with its initial state s0, and we write, for example, p
σ

=⇒ instead of
s0

σ
=⇒ .

Definition 2.3

1. traces(p) =def { σ ∈ L∗ | p
σ

=⇒ }

2. init(p) =def { a ∈ L | p
a

=⇒ }

3. p after σ =def { p′ | p
σ

=⇒ p′ }

4. der(p) =def { p′ | ∃σ ∈ L∗ : p
σ

=⇒ p′ }

5. p has finite behaviour if there is an n ∈ N, such that ∀σ ∈ traces(p) : |σ | < n.

6. p is finite-state if der (p) is finite.

7. p is deterministic if for all σ ∈ L∗, p after σ has at most one element. If σ ∈ traces(p), then we
overload p after σ to denote this element.

2

We represent a labelled transition system by a tree or a graph, where nodes represent states and edges
represent transitions, or in a process-algebraic manner by a behaviour expression (cf. LOTOS [BB87,
ISO89b]).

Definition 2.4
A behaviour expression B is an expression with the following syntax:

B =def stop | a ; B | i ; B | B 2 B | B ‖B | Σ B

where a ∈ L, and B is a countable set of behaviour expressions.

The operational semantics are given by the following axioms and inference rules, which define for each
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behaviour expression all its possible transitions (stop has no transitions):

⊢ a; B a−→B
⊢ i; B τ−−→B

B1
µ−−→B′

1, µ ∈ L ∪ {τ} ⊢ B12B2
µ−−→B′

1

B2
µ−−→B′

2, µ ∈ L ∪ {τ} ⊢ B12B2
µ−−→B′

2

B1
τ−−→B′

1 ⊢ B1 ‖B2
τ−−→B′

1 ‖B2

B2
τ−−→B′

2 ⊢ B1 ‖B2
τ−−→B1 ‖B′

2

B1
a−→B′

1, B2
a−→B′

2, a ∈ L ⊢ B1 ‖B2
a−→B′

1 ‖B′
2

B µ−−→B′, B ∈ B, µ ∈ L ∪ {τ} ⊢ Σ B µ−−→B′

2

shil

p1 p5p4p3p2

chocliq

shil

liq

shil shil

liq choc

shil

choc

shil

choc liq τ

p1

p′1

p′′1 p′′′1

p3

p′3

p′′3
p′′′3

p′′′′3

Figure 1: Labelled transition systems

Example 2.5
To illustrate the concepts of labelled transition systems we use very simple and intuitive candy machines.
More complicate systems, e.g., communication protocols, can also be modelled as labelled transition
systems, however, for the moment the complexity of such systems would divert the attention, while not
being necessary to illustrate the main concepts of this paper.

Figure 1 gives examples of candy machines over the labelset L = {shil , liq , choc}. The candy machines
interact with their environment by insertions of shillings , and by supplying liquorice and chocolate.
System p3 models a machine that accepts a shilling, and then either it supplies liquorice, or it makes an
internal transition to a state where it cannot supply liquorice anymore, but where it offers chocolate. A

behaviour expression for p3 is shil ; (liq ; stop 2 i; choc; stop). For p3 we have, for example, p3
shil

===⇒ p′′′3

and p′′′3

liq
==6⇒ .

2

3 Conformance Testing for Labelled Transition Systems

Starting point for conformance testing is a specification in some (formal) notation, and an implementation,
that is, a device or program interacting with its environment, which is considered as a black box. Test
cases are derived from the specification, and applied to the implementation, such that from the results
of applying them it can be concluded whether the implementation conforms to the specification.

In this paper labelled transition systems, or any formal language with underlying semantics in terms of
labelled transition systems, are considered as the formal notation for specifications. Implementations,
being physical, real objects, are, in principle, not amenable to formal reasoning. We can only deal with
implementations in a formal way, if we make the assumption that any real implementation has a formal
model, with which we could reason formally. This formal model is only assumed to exist, but it is
not known a priori. This assumption is referred to as the test hypothesis [Ber91, ISO95, Tre94]. In
section 4 we will consider as the test hypothesis that also implementations could be described as labelled
transition systems. In sections 5, 6 and 7 a stronger test hypothesis will be put forward by assuming
that implementations can be modelled by a subclass of labelled transition systems: the input-output
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transition systems. Thus the test hypothesis allows us to reason about implementations as if they were
labelled transition systems, or input-output transition systems, respectively.

Having specifications and implementations the next important thing is to define what it means for an im-
plementation to conform to a specification, otherwise no useful test can ever be generated. Conformance
is defined by means of an implementation relation between the models of implementations and the spec-
ifications [BAL+90, ISO95, Tre94], in our case a relation imp ⊆ LTS(L) × LTS(L): an implementation
i ∈ LTS(L) conforms to specification s ∈ LTS(L) if and only if i imp s.

The next step is to consider test cases and test suites. A test case is a specification of the behaviour of a
tester in an experiment to be carried out with an implementation under test. Such behaviour, like other
behaviours, can be specified by a labelled transition system. An experiment should last for a finite time,
so a test case should have finite behaviour. Moreover, a tester executing a test case would like to have
as much control as possible over the testing process, so nondeterminism in a test case is undesirable. To
be able to decide about the success of a test a verdict (pass or fail) is attached to each state of the test
case.

Definition 3.1

1. A test case t is a 5-tuple 〈S, L, T, ν, s0〉, such that 〈S, L, T, s0〉 is a deterministic labelled transition
system with finite behaviour, and ν : S → {fail,pass} is a verdict function.

The class of test cases over actions in L is denoted by LTSt(L). Definitions applicable to LTS(L)
are extended to LTS t(L) by defining them over the underlying labelled transition system.

2. A test suite T is a set of test cases: T ∈ P(LTSt(L)), where P(LTSt(L)) is the powerset of LTSt(L),
i.e., the set of all possible subsets of LTSt(L).

2

Running a test case is modelled by the synchronous parallel execution of the test case with the implemen-
tation under test, which continues until no more interactions are possible, i.e., until a deadlock occurs.
This deadlock may occur when the (finite) test case reaches a final state, or when the combination reaches
a state where the actions proposed by the test case cannot be accepted by the implementation. An im-
plementation passes a test run if and only if the verdict of the test case in the state where the deadlock is
reached is pass. Since an implementation can behave nondeterministically different test runs of the same
test case with the same implementation may lead to different final states, and hence to different verdicts.
An implementation passes a test case if and only if all possible test runs lead to the verdict pass. This
means that each test case must be executed several times in order to give a final verdict, theoretically
even infinitely many times.

Definition 3.2

1. A deadlock of process p ∈ LTS(L) is a trace σ ∈ L∗, after which no more observable actions are
possible:

p after σ deadlocks =def ∃p′ : p
σ

=⇒ p′ and init(p′) = ∅

2. A test run of a test case t ∈ LTSt(L) with an implementation i ∈ LTS(L) is a trace of the
synchronous parallel composition of t and i leading to deadlock:

σ is a test run of t and i =def (t‖ i) after σ deadlocks

3. An implementation i passes a test case t, if all the test runs of t and i lead to a pass-state of t:

i passes t =def ∀σ ∈ L∗ : t‖ i after σ deadlocks implies ν( t after σ ) = pass

4. An implementation i passes a test suite T , if it passes all test cases in T :

i passes T =def ∀t ∈ T : i passes t

If an implementation does not pass a test suite, it fails: i fails T =def ∃t ∈ T : i /passes t.
2
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fail

pass
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fail

pass t′′1

t4

shil

fail

pass

Figure 2: Test cases

Example 3.3
Figure 2 gives some test cases. The only test run of t1 with p1 is shil ·liq :

t1 ‖p1
shil ·liq

======⇒ t′′1 ‖p′′1 and ∀a ∈ L : t′′1 ‖p′′1
a

=6⇒

Since ν(t′′1 ) = pass, we have that p1 passes t1.

The test runs of t1 with p3 are {shil ·liq , shil} :

t1 ‖p3
shil ·liq

======⇒ t′′1 ‖p′′3 and ∀a ∈ L : t′′1 ‖p′′3
a

=6⇒

t1 ‖p3
shil

===⇒ t′1 ‖p′′′3 and ∀a ∈ L : t′1 ‖p′′′3

a

=6⇒

Since ν(t′′1 ) = pass and ν(t′1) = fail, we have that p3 fails t1.
2

To obtain test suites test generation algorithms have to be developed, which, given a specification,
generate a test suite. Formally, a test generation algorithm can be expressed as a function

gen imp : LTS(L) −→ P(LTSt(L)) (1)

A generated test suite gen imp(s) must test implementations for conformance with respect to s and imp.
Ideally, an implementation should pass the test suite if and only if it is conforming. In this case the test
suite is called complete [ISO95]. Unfortunately, in almost all practical cases such a test suite would be
infinitely large, hence for practical testing we have to restrict to test suites that can only detect non-
conformance, but that cannot assure conformance. Such test suites are called sound . Test suites that
can only assure conformance, but not non-conformance are called exhaustive.

Definition 3.4
Let s be a specification, imp an implementation relation, and T a test suite, then

T is complete =def ∀i : i imp s iff i passes T
T is sound =def ∀i : i imp s implies i passes T
T is exhaustive =def ∀i : i imp s if i passes T

2

4 Conformance Testing based on Symmetric Interactions

This section presents some implementation relations for labelled transition systems, which can be found in
the literature, together with a sound test generation method for one of these relations: the relation conf.
These relations and the corresponding testing method use the test hypothesis that implementations
can be modelled as labelled transition systems. Communication between a labelled transition system
and its environment is modelled by the synchronized parallel composition ‖ (definition 2.4), where the
communication is symmetric: if a system wishes to communicate with its environment it proposes some
actions on which it is prepared to interact. The environment also proposes some actions, and then they
interact on one of the actions that they both propose. The role of both communicating processes is the
same and symmetric, and all actions (except for the internal action τ) are treated in the same way.
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Implementation relations

Many different possibilities for implementation relations on LTS(L) have been studied, e.g., observation
equivalence [Mil80], strong bisimulation equivalence and weak bisimulation equivalence [Par81, Mil89],
failure equivalence and preorder [Hoa85], testing equivalence and preorder [DNH84], failure trace equiv-
alence and preorder [BW90], generalized failure equivalence and preorder [Lan90], and many others
[Gla90, Gla93]. A straightforward example, based on the definitions of section 2, is trace preorder ≤tr ,
which requires inclusion of trace sets. The intuition behind this relation is that an implementation
i ∈ LTS(L) may show only behaviour, in terms of traces of observable actions, which is specified in the
specification s ∈ LTS(L).

Definition 4.1
Let i, s ∈ LTS(L), then i ≤tr s =def traces(i) ⊆ traces(s)

2

Example 4.2
Consider figure 1: p1 ≤tr p2 and p2 ≤tr p1, since traces(p1) = traces(p1) = {ǫ, shil , shil ·liq , shil ·choc}.
Also p4 ≤tr p1, but p1 6≤tr p4.

2

Considering example 4.2 we have, for example, p2 ≤tr p1, which is interpreted as ‘implementation p2

correctly implements specification p1 with respect to trace preorder’. However, p1 specifies that after
inserting a shilling the user has a choice between liquorice and chocolate, while p2 may refuse to supply
one of these sweets: after inserting a shilling the machine makes the nondeterministic choice between
offering liquorice or chocolate. Suppose the machine chooses to offer liquorice, and the user makes a
choice for chocolate, then a deadlock occurs: no further interaction is possible between the machine
offering the interaction liquorice and the user willing to interact on chocolate. A user faced with p2 as an
implementation of p1 will certainly be disappointed.

The reason for the disappointment is that trace preorder ≤tr only considers sequences of observable
actions; it does not care about who is going to resolve choices in the behaviour: the machine internally or
the external environment. A more sophisticated, and stronger implementation relation is testing preorder
[DN87]. In addition to requiring that the traces observed with the implementation are contained in those
observed with the specification, testing preorder requires that any possible user encountering a deadlock
with the implementation will experience the same deadlock when interacting with the specification. This
idea for an implementation relation is formalized by modelling the observing users themselves as labelled
transition systems, and by modelling the observation of deadlock as a trace leading to a combined state of
the machine and the user from which no further interactions are possible (see definition 3.2). One could
say that testing preorder is the relation on labelled transition systems, where any discrepancy of the
implementation from the specification can exactly be observed by another labelled transition system. As
such, testing preorder is an important implementation relation in this paper from which other relations
will be derived.

Definition 4.3

1. The sets of observations , obs and obs ′ respectively, that an observer u ∈ LTS(L) can make of
process p ∈ LTS(L) are given by the deadlocks, respectively the traces of the synchronized parallel
communication of u and p:

obs(u, p) =def { σ ∈ L∗ | (u‖p) after σ deadlocks }

obs ′(u, p) =def { σ ∈ L∗ | u‖p
σ

=⇒}

2. Implementation i ∈ LTS(L) is in testing preorder with specification s ∈ LTS(L), if for all possible
observers the observations made with i are included in those of s:

i ≤te s =def ∀u ∈ LTS(L) : obs(u, i) ⊆ obs(u, s) and obs ′(u, i) ⊆ obs ′(u, s)

2

The definition of ≤te in definition 4.3 is extensional, i.e., in terms of how the environment (i.c. the ob-
server u) perceives a system. This definition can be rewritten into an intensional characterization, i.e.,
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a characterization in terms of properties of the labelled transition systems themselves. This character-
ization, given in terms of failure pairs (proposition 4.5) coincides with failure preorder on our class of
strongly-converging transition systems (for a proof see, for example, [DN87, Tre92]).

Definition 4.4
Let p ∈ LTS(L), σ ∈ L∗, and A ⊆ L, then

p after σ refuses A =def ∃p′ : p
σ

=⇒ p′ and ∀a ∈ A : p′
a

=6⇒
2

Proposition 4.5
i ≤te s iff ( ∀σ ∈ L∗, ∀A ⊆ L : i after σ refuses A implies s after σ refuses A )

2

Example 4.6
Consider again figure 1. We have p1 ≤te p2: there is no σ, A, such that p1 after σ refuses A and
not ( p2 after σ refuses A ).

But p2 6≤te p1, since p2 after shil refuses {liq} and not ( p1 after shil refuses {liq} ). Also p4 6≤te p3,
because p4 after shil refuses {choc} , which does not hold for p3, but p5 ≤te p3, and also p1 ≤te p3.

The relation ≤te does not allow extra traces in the implementation:
p1 6≤te p4, since p1 after shil ·choc refuses ∅ , and not ( p4 after shil ·choc refuses ∅ ).

2

An implementation relation that is strongly related to ≤te is the relation conf [BSS87, Bri88]. It is a
modification of ≤te by restricting all observations to only those traces that are contained in the specifica-
tion s. This restriction makes testing a lot easier: only traces of the specification have to be considered,
not the huge complement of this set, i.e., the traces not explicitly specified. Saying it in other words,
conf requires that an implementation does what it should do, not that it does not do what it is not
allowed to do.

Definition 4.7
i conf s =def ∀u ∈ LTS(L) : ( obs(u, i) ∩ traces(s) ) ⊆ obs(u, s)

and ( obs ′(u, i) ∩ traces(s) ) ⊆ obs ′(u, s) 2

Proposition 4.8
i conf s iff ( ∀σ ∈ traces(s), ∀A ⊆ L : i after σ refuses A implies s after σ refuses A )

2

We conclude this part with relating the different implementation relations.

Proposition 4.9

1. ≤tr and ≤te are preorders; conf is reflexive, but not transitive.

2. ≤te = ≤tr ∩ conf
2

Example 4.10
Consider again figure 1. From proposition 4.9.2 follows that i ≤te s implies i conf s, hence all systems
that are related by ≤te (see example 4.6) are also related by conf.

Consider the ones not related by ≤te in example 4.6: p2 /conf p1, since p2 after shil refuses {liq} ,
not ( p1 after shil refuses {liq} ) and shil ∈ traces(p1). Analogously p4 /conf p3.

But the relation conf does allow extra traces in the implementation: p1 conf p4, although p1 after shil ·
choc refuses ∅ and not ( p4 after shil ·choc refuses ∅ ), but shil ·choc 6∈ traces(p4).

2

Test generation

Now that we have defined some implementation relations the next step is to develop test generation
algorithms. We will give here an algorithm for the derivation of sound test cases for conf (definition 4.7)
[Tre90, Tre92]. Test derivation for the relation conf has been studied a lot, especially in the context
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of protocol testing [Ald90, Bri87, Bri88, BSS87, DAV93, Eer87, Led92, PF90, Wez90]. Testing scenar-
ios for other relations can, for example, be found in [Abr87] (bisimulation equivalence), [Chr90, LS89]
(probabilistic testing), [DN87] (testing equivalence), [FB92] (testing preorder), [TPB95] (trace and failure
equivalence using techniques from Finite State Machine testing [BU91]), [Gla90, Gla93] (comparison of
several testing scenarios), [Lan90] (failure trace preorder), [Phi87] (refusal testing), and [VTKB93] (queue
preorder).

A sound test generation algorithm for conf is an algorithm that takes a specification s ∈ LTS(L), and
returns a test suite genconf (s) ⊆ LTSt(L), such that (definitions 3.2 and 3.4):

i conf s implies ∀t ∈ genconf (s), ∀σ ∈ L∗ : t‖ i after σ deadlocks implies ν( tafterσ ) = pass (2)

The following nondeterministic, recursive algorithm from [Tre92] satisfies (2). The nondeterminism in
the algorithm is a result of the freedom to choose any set of actions, A ⊆ init(s) in algorithm 4.11, having
the given properties. Each possible choice for this set will result in another test case, but all test cases
generated in this way are guaranteed to be sound (theorem 4.12). Moreover, the test suite that consists
of all test cases that can be generated in this way, is exhaustive, and thus complete, although not very
efficient. For complete proofs and optimizations with respect to efficiency we refer to [Tre92]. Analogous
algorithms, following more or less the same ideas, can be found in [Bri87, Bri88, DAV93, Wez90].

Algorithm 4.11
Let s ∈ LTS(L), then a test case t for s is

t := Σ { a ; ta | a ∈ A }

where, with Cs := {init(s′) | s
ǫ

=⇒ s′}, the set A ⊆ init(s) and the verdict ν(t) shall satisfy

∀C ∈ Cs : A ∩ C 6= ∅ and ν(t) = fail
or ∅ ∈ Cs and A = init(s) and ν(t) = pass
or A = ∅ and ν(t) = pass

and ta is a test case for Σ { i ; s′ | s
a

=⇒ s′ }, which is obtained by recursively applying the algorithm.

2

Theorem 4.12
Any test case obtained from a specification s with algorithm 4.11 is sound with respect to conf, and
the set of all possible test cases which can be obtained using algorithm 4.11, is exhaustive (and thus
complete).

2

Sketch of the proof
From the contraposition of the property in proposition 4.8 it follows that i must be tested for all combi-
nations of σ and A such that not ( s after σ refuses A ), i.e., s after σ can always continue with at least
one action of A. These are exactly the sets A in algorithm 4.11 satisfying ∀C ∈ Cs : A ∩C 6= ∅. To test
such sets for all σ ∈ traces(s) the algorithm does it for the trace ǫ, and then repeats it recursively for all
traces a ∈ init(s).

2

Example 4.13
We will derive some test cases from p3 in figure 1. In the first step determine Cp3

:= {init(p3)} = {{shil}},
so we can choose A := ∅ and ν(t) = pass, or A := {shil} and ν(t) = fail. Since the first choice does not
lead to a very useful test case, we continue with the latter: we get the test case Σ{a; ta | a ∈ {shil}} =
shil ; tshil .

To obtain tshil repeat the algorithm for p◦3 := i; (liq ; stop 2 i; choc; stop) 2 i; choc; stop. This gives

Cp◦

3
:= {init(p′) | p◦3

ǫ
=⇒ p′} = {{liq, choc}, {choc}}, so possibilities for A are A = {choc}, A = {liq, choc}

both with ν(t′) = fail, or A = ∅ with ν(t′) = pass.

With A = {choc} we have to repeat the algorithm for p◦◦3 := i; stop. This gives A := ∅ and ν(t) = pass.
Combining all steps we obtain test case t2 of figure 2. With A = {liq , choc} test case t3 is obtained, and
with A = ∅ we get t4.

2
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Algorithm 4.11 allows to construct arbitrary long, but finite test cases: the nondeterminism in choosing
any set A ⊆ init(s) satisfying one of the three constraints in the disjunction, makes that at any depth of the
recursion in the algorithm the test case can be made longer by choosing the first or the second alternative,
or the test case can be terminated by having the third alternative (A = ∅ implies that t := Σ{a; ta | a ∈ A}
= Σ∅ = stop). To avoid infinite recursion the third alternative must be chosen some time. This means
that the algorithm generates only finite test cases, thus complying with definition 3.1. However, the algo-
rithm may generate infinitely many test cases, e.g., in the case of a specification with infinite behaviour.
Consider, for example, the specification s := a; s, then the test suite of all possible test cases (without
their verdicts) generated by algorithm 4.11 is {stop, a; stop, a; a; stop, a; a; a; stop, a; a; a; a; stop, . . .},
i.e., a test suite with infinitely many test cases, but each of them with finite (but arbitrarily long) be-
haviour. The principle to describe, or test, a system with infinite behaviour as a (possibly infinite) set of
finite approximations is referred to as the approximation induction principle [BW90].

For a practical test campaign a selection from the complete, infinite test suite should be made. This is
referred to as test selection or test-suite size reduction [ISO95]. It is easy to see that any such a selection
will always result in a sound test suite (definition 3.4), i.e., a test suite that only detects errors (according
to conf), but not necessarily all errors. The importance of the second part of theorem 4.12 is in the
fact that for all possible errors there is a possible test case, i.e., there are no errors that are principally
undetectable with test suites generated with algorithm 4.11.

5 Input–Output Transition Systems

The implementation relations ≤te and conf are defined (definitions 4.3 and 4.7) based on symmetric
interaction between an implementation and its environment: all actions are treated the same way, and
the synchronous communication operator ‖ is commutative and fully symmetric in its operands. An
interaction can occur if both the implementation and its environment are able to perform that interaction.
If they both offer more than one interaction then it is assumed that by some mysterious negotiation
mechanism they will agree on a common interaction. There is no notion of input or output, nor of
initiative or direction. All actions are treated in the same way for all communicating systems.

Many real implementations, however, communicate in a different manner. They do make a distinction
between inputs and outputs, and one can clearly distinguish whether the initiative for a particular inter-
action is with the implementation or with its environment. There is a direction in the flow of information
from the initiating communicating process to the other. The initiating process determines which inter-
action will take place, and the other one can just take it or leave it. Even if the other one decides not to
accept the interaction, this is usually implemented by first accepting it, and then initiating a new interac-
tion in the opposite direction explicitly signalling the non-acceptance. One could say that the mysterious
negotiation mechanism is made explicit by exchanging two messages: one to propose an interaction and
a next one to inform the initiating process about the (non-)acceptance of the proposed interaction.

We will now consider a class of (models of) implementations for which the set of actions can be partitioned
into output actions, for which the initiative to perform them is with the implementation, and input ac-
tions, for which the initiative is with the environment. If an input action is initiated by the environment,
the implementation is always prepared to participate in such an interaction: all inputs of an implemen-
tation are always enabled; they can never be refused. Naturally an input action of the implementation
can only interact with an output of the environment, and vice versa. Although the initiative for any
interaction is in exactly one of the communicating processes, the communication is still synchronous: if
an interaction occurs it occurs at exactly the same time in both processes. The communication, however,
is not symmetric: the communicating processes have different roles in an interaction.

Definition 5.1
An input-output transition system p is a labelled transition system in which the set of actions L is
partitioned into input actions LI and output actions LU (LI ∪LU = L, LI ∩LU = ∅), and for which all
input actions are always enabled in any state:

∀p′ ∈ der(p), ∀a ∈ LI : p′
a

=⇒

The class of input-output transition systems with input actions in LI and output actions in LU is denoted
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by IOTS(LI , LU ) ⊆ LTS(LI ∪ LU ).
2

liqout

but in but in
but in

liqout
chocout

s0

s4

s5q3q2q1

but in

s1

s3

s2

liqout

but in

but in liqout

but in

Figure 3: Input-output transition systems

Example 5.2
Figure 3 gives some input-output transition systems with LI = {but in} and LU = {liqout, chocout}. In q1

we can push the button, which is an input for the candy machine, and then the machine outputs liquorice.
After the button has been pushed once, and also after having obtained liquorice, any more pushing of
the button does not make anything happen: the machine makes a self-loop. In the sequel we use the
convention that a self-loop of a state that is not explicitly labelled, is labelled with all inputs that cannot
occur in that state (and also not via τ -transitions, cf. definition 5.1).

Machine q2 describes a candy machine that will output either liquorice or chocolate after the button has
been pushed.

2

When studying input-output transition systems the notational convention will be that a, b, c . . . denote
input actions, and z, y, x, . . . denote output actions. Since input-output transition systems are labelled
transition systems all definitions for labelled transition systems apply. In particular, the synchronous
parallel communication can be expressed by ‖ (definition 2.4), but now care should be taken that the
outputs of one process interact with the inputs of the other.

6 Implementation Relations for Input–Output Transition Sys-
tems

When we assume that implementations can be modelled by input-output transition systems in
IOTS(LI , LU ), then the next step for a testing theory is the study of implementation relations for
such systems. Since specifications are not necessarily written in a style having the property that input
actions cannot be refused, we still allow specifications to be labelled transition systems: we consider
implementation relations imp ⊆ IOTS(LI , LU ) × LTS(LI ∪ LU ).

The implementation relations ≤te and conf were defined by relating the observations, made of the
implementation by a symmetrically interacting observer u ∈ LTS(L), to the observations made of the
specification (definitions 4.3 and 4.7). Now that we consider implementations that communicate via inputs
and outputs, it seems natural to restrict their observing environments in the same, complementary way:
u ∈ IOTS(LU , LI). In a real observer inputs and outputs can be distinguished, of which input actions
can never be refused, and communication takes place along the lines explained in section 5: the input
actions of the observer synchronize with the output actions of the implementation, and vice versa.

Analogous to the definition of testing preorder ≤te on LTS(L) the input-output testing relation ≤iot is
defined between an implementation i ∈ IOTS(LI , LU ) and a specification s ∈ LTS(LI ∪LU ) by requiring
that any possible observation made of i by any ‘output-input’ transition system is a possible observation
of s by the same observer (cf. definition 4.3).

Note that s can be any transition system, not necessarily an input-output transition system. This
transition system is best interpreted as a not-completely specified input-output transition system, i.e.,
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a transition system where a distinction is made between inputs and outputs, but where some inputs
are not specified in some states. Since, technically speaking, the only distinction between inputs and
outputs occurs in the transition systems themselves, and not in their communication or observations
(The definitions of obs , obs ′, ‖, and . after . deadlocks are exactly the same as for the symmetric
case), there is no problem in using an ‘output-input’ observer u to observe such a not-completely specified
input-output transition system. Below we will elaborate on this possibility to have s ∈ LTS.

Definition 6.1
Let L be partitioned into LI and LU , and let i ∈ IOTS(LI , LU ), s ∈ LTS(LI ∪ LU ), then

i ≤iot s =def ∀u ∈ IOTS(LU , LI) : obs(u, i) ⊆ obs(u, s) and obs ′(u, i) ⊆ obs ′(u, s)

2

The restriction to systems in which inputs and outputs can be distinguished, and in which inputs can never
be refused, appears to simplify the corresponding intensional characterization of ≤iot (cf. proposition 4.5):
instead of sets of pairs consisting of a trace and a set of actions (failure pairs), it suffices to look at two
sets of traces: the normal traces traces(p) (definition 2.3), and the output-suspension traces δ-traces(p).

Proposition 6.2
Let δ-traces(p) =def {σ ∈ L∗ | p after σ refuses LU } be the set of output-suspension traces of p,
then

i ≤iot s iff traces(i) ⊆ traces(s) and δ-traces(i) ⊆ δ-traces(s)
2

The notion of output suspension is analogous to the null -output that is sometimes used in Finite State
Machine-based testing [BU91] to model the situation where an input does not produce any output. The
null -output is then considered as a valid output, and it is an element of the output actions. In our
approach the set LU does not contain such a null -output; it only contains explicitly observable actions,
and the absence of any outputs after a certain trace is indicated by an output suspension trace. Below
we will consider how output suspension can be considered as a special output action in our model.

The characterization of the input-output testing relation in proposition 6.2 suggests to transform a
labelled transition system into another one representing exactly these two sets of traces, so that the
relation can be characterized by trace preorder ≤tr (definition 4.1) on the results of this transformation.
Such a transformation on a labelled transition system p can be defined, and the result is called the δ-
trace automaton ∆p. To obtain ∆p a special transition is attached to each state where output suspension
is possible. Then the resulting transition system is determinized (cf. the determinization of automata
[HU79]). The special transition indicating output suspension has label δ, and goes to a state stop, from
where no other transitions can be made. The label δ indicates the absence of output actions in a state,
i.e., it makes the absence of output actions to an explicit observable action. It follows that, if p ∈ LTS(L),
then ∆p ∈ LTS(L ∪ {δ}).

Definition 6.3
Let L be partitioned into LI and LU , and let p = 〈S, LI ∪ LU , T, s0〉 ∈ LTS(LI ∪ LU ) be a labelled
transition system, then the δ-trace automaton of p, ∆p, is the labelled transition system 〈Sδ, Lδ, Tδ, q0〉 ∈
LTS(LI ∪ LU ∪ {δ}), where

◦ Sδ =def P(S) ∪ {stop}, with stop a distinguished state not occurring in S or P(S);

◦ Lδ =def LI ∪ LU ∪ {δ}, with δ a distinguished label not occurring in LI ∪ LU ;

◦ Tδ =def { q a−→ q′ | a ∈ LI ∪ LU , q, q′ ∈ Sδ, q′ = {s′ ∈ S | ∃s ∈ q : s
a

=⇒ s′} 6= ∅ }

∪ { q δ−→ stop | ∃s ∈ q, ∀x ∈ LU : s
x

=6⇒ }

◦ q0 =def { s′ ∈ S | s0
ǫ

=⇒ s′ }
2

Example 6.4
Figure 4 gives the δ-trace automata for q1, q2, and q3 of figure 3. For ∆q3

the states, consisting of sets
of states of q3, have been added. Note that the nondeterminism of q3 has been removed, and that state
{s1, s2} has a δ-transition, since there is a state in {s1, s2}, i.c. s2, that can refuse all outputs.

2
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Figure 4: δ-trace automata for figure 3

From the δ-trace automaton of p the traces and the output-suspension traces of p are easily obtained,
as is stated in proposition 6.5.1 and 6.5.2: the traces of ∆p that contain no δ are exactly the traces of
p, and the traces of ∆p that terminate with a δ-action point to an output-suspension trace. Moreover,
∆p has the nice property that it is always deterministic (definition 2.3), so that the transition relations

σ−−→ and
σ

=⇒ coincide, and each trace σ always goes to a unique state, denoted by ∆p after σ . A state
∆p afterσ can always perform either an output transition with x ∈ LU , or it can perform a δ-transition.
Considering the special action δ as an output action of the δ-trace automaton, i.e., making the absence of
any output action into a special, observable output action of the δ-trace automaton (cf. the null -output
of an FSM, see above), we can say that any state of a δ-trace automaton (except stop) can always do at
least one output transition (proposition 6.5.4).

Proposition 6.5

1. traces(p) = traces(∆p) ∩ L∗

2. δ-traces(p) = { σ ∈ L∗ | σ ·δ ∈ traces(∆p) }

3. ∆p is deterministic.

4. ∀σ ∈ traces(∆p) ∩ L∗, ∃x ∈ LU ∪ {δ} : (∆p after σ ) x−−→
2

An immediate corollary of propositions 6.2 and 6.5 is that the input-output testing relation is completely
characterized by trace preorder ≤tr on the corresponding δ-trace automata. The δ-trace automaton of a
specification is sufficient and necessary to define the class of ≤iot -conforming implementations. For our
discussion concerning the implementation relation ≤iot we can now restrict to studying ≤tr on δ-trace
automata.

Theorem 6.6
Let i ∈ IOTS(LI , LU ), s ∈ LTS(LI ∪ LU ), then

i ≤iot s iff ∆i ≤tr ∆s

2

Example 6.7
From ∆q1

, ∆q2
, and ∆q3

(figures 3 and 4), using theorem 6.6, it follows that q1 ≤iot q2: an imple-
mentation capable of only producing liquorice conforms to a specification that prescribes to produce
either liquorice or chocolate. Although q2 looks deterministic, it in fact specifies that after button
there is a nondeterministic choice between supplying liquorice or chocolate. It also implies that for
this kind of testing q2 is equivalent to but in; liqout; stop 2 but in; chocout; stop (plus the input self-loops),
an equivalence which does not hold for the symmetric case. If we want to specify a machine that
produces both liquorice and chocolate, then two buttons are needed to select for the respective can-
dies: liq-button; liqout; stop 2 choc-button; chocout; stop.

On the other hand, q2 6≤iot q1, q3: if the specification prescribes to produce only liquorice, then an
implementation should not have the possibility to produce chocolate: but in ·chocout ∈ traces(∆q2

), while
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Figure 5: Two specifications and their δ-trace automata

but in ·chocout 6∈ traces(∆q1
), traces(∆q3

).

We have q1 ≤iot q3, but q3 6≤iot q1, q2, since q3 may refuse to produce anything after the button has been
pushed once, while both q1 and q2 will always output something. Formally: but in ·δ ∈ traces(∆q3

), while
but in ·δ 6∈ traces(∆q1

), traces(∆q2
).

Figure 5 presents two non-input-output transition system specifications with their δ-trace automata, but
none of q1, q2, q3 correctly implements s1 or s2 with respect to ≤iot ; the problem occurs with non-specified
input traces of the specification:
but in ·but in ∈ traces(∆q1

), traces(∆q2
), traces(∆q3

), while but in ·but in 6∈ traces(∆s1
), traces(∆s2

).
2

For the input-output testing relation it is allowed that the specification is not an input-output transition
system. A specification may have states that can refuse input actions. The intention of such specifications
often is that the specifyer does not care about the responses of an implementation on such non-specified
inputs. If a candy machine is specified to deliver liquorice or chocolate after pushing a button (s2 in
figure 5), then it is left open what an implementation may do after pushing the button twice: perhaps
ignoring it, supplying one of the candies, or responding with an error message. Many labelled transition
system specifications contain such intended implementation freedom.

Looking at theorem 6.6 and figure 5 in example 6.7, however, we see that such implementation freedom
cannot be expressed by the relation ≤iot . Trace inclusion implies that for any state of the implementation
all enabled actions, in particular all input actions, are also enabled in the corresponding state of the
specification. Consequently, all input actions must always be enabled in any state of the specification,
so the specification must be an input-output transition system, too, otherwise no implementation can
exist. Labelled transition system specifications that are not input-output transition systems are not
implementable with respect to ≤iot .

To allow for non-input-output transition system specifications to express implementation freedom for non-
enabled inputs, we introduce a weaker implementation relation. To define this relation, i/o-conformance
ioconf, we first give an alternative characterization of ≤iot (proposition 6.9) to see where the problem
occurs, and how it might be solved. For this characterization the output actions out(∆) of a δ-trace
automaton are defined, where δ occurs as a special output action as explained above.

Definition 6.8
Let ∆ be a δ-trace automaton, then out(∆) =def init(∆) ∩ (LU ∪ {δ})

2

The set out(∆) will be used in particular in expressions of the form out(∆ after σ ) to denote the
set of outputs (possibly including δ) of the state reached after σ. If σ 6∈ traces(∆), then we define
out(∆ after σ ) =def ∅.

Proposition 6.9
∆i ≤tr ∆s iff ∀σ ∈ L∗ : out(∆i after σ ) ⊆ out(∆s after σ )

2

In proposition 6.9 we see that ≤iot requires that the outputs of the implementation are included in the
outputs of the specification after any trace: traces of the specification, and traces that are not in the
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specification. A weaker implementation relation is obtained if this requirement is relaxed to inclusion
for those traces that are explicitly specified in the specification (cf. the relation between ≤te and conf,
definitions 4.3 and 4.7, and propositions 4.5 and 4.8).

Definition 6.10
Let i ∈ IOTS(LI , LU ), s ∈ LTS(LI ∪ LU ), then

i ioconf s =def ∀σ ∈ traces(∆s) ∩ L∗ : out(∆i after σ ) ⊆ out(∆s after σ )

2

Example 6.11
Consider again figures 3, 4, and 5. For q1, q2, q3 we still only have q1 ioconf q2 and q1 ioconf q3 (cf.
proposition 6.12 below).

But our goal of defining ioconf is to allow for implementation freedom for unspecified behaviour as in
s1 and s2. And indeed, we have q1 ioconf s1: following ioconf, s1 specifies only that after one button
liquorice must be produced; with ioconf s1 does not care what happens if the button is pushed twice, as
was the case with ≤iot .

On the other hand, q2 /ioconf s1, since q2 can produce more than just liquorice after the button has been
pushed once: out(∆q2

after but in ) = {liq , choc} 6⊆ {liq} = out(∆s1
after but in ).

Moreover, q1, q2 ioconf s2, but q3 /ioconf s1, s2, since δ ∈ out(∆q3
after but in ),

while δ 6∈ out(∆s1
after but in ), out(∆s2

after but in ).
2

The implementation relation ioconf will be the basis for the discussion of test generation in section 7.
We conclude this section with a brief comparison of the different implementation relations.

Relating implementation relations

The relation between the implementation relations for the symmetric case, ≤tr , ≤te , and conf (section 4)
is expressed in proposition 4.9.2. To relate the implementation relations for input-output transition
systems, first a generalization of ioconf is introduced. Let F ⊆ L∗ be any set of traces, then

i ioconfF s =def ∀σ ∈ F : out(∆i after σ ) ⊆ out(∆s after σ ) (3)

The relations ≤iot and ioconf are special cases of ioconfF , and different relations ioconfF1
and ioconfF2

are easily related if the sets F1 and F2 can be related: if F1 ⊆ F2 then ioconfF1
⊇ ioconfF2

.

One might suspect that putting the relation conf (definition 4.7) in an input-output context would result
in ioconf i.e., that confio defined by

i confio s =def ∀u ∈ IOTS(LU , LI) : ( obs(u, i) ∩ traces(s) ) ⊆ obs(u, s)
and ( obs ′(u, i) ∩ traces(s) ) ⊆ obs ′(u, s)

(4)

would be equal to ioconf. This is not the case. The implication holds in only one direction:

ioconf ⊂ confio (5)

A counter-example for the other direction is i = x; stop and s = stop, with LI = ∅ and LU = {x}. One
can even show that confio cannot be expressed in the form of (3); there is no F (depending only on s)
such that confio = ioconfF .

We conclude this section with observing that on IOTS(LI , LU ), i.e., the specification is an input-output
transition system, too, the two relations ≤iot and ioconf coincide.

Proposition 6.12
On IOTS(LI , LU ) : ≤iot = ioconf

2
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7 Testing Input-Output Transition Systems

The next point of discussion is the generation of sound test suites from labelled transition system speci-
fications in order to test input-output transition system implementations with respect to the implemen-
tation relation ioconf (section 6, definition 6.10). This implies that, given a specification s, a test suite
gen ioconf (s) ⊆ LTSt must be generated, such that for any input-output transition system i:

i ioconf s implies i passes gen ioconf (s) (6)

or, using definitions 3.2 and 3.4:

i ioconf s implies ∀t ∈ gen ioconf (s), ∀σ ∈ L∗ : (t‖ i) after σ deadlocks implies ν( tafterσ ) = pass
(7)

But before we can develop such a test generation algorithm, a brief discussion on the nature of test cases
is necessary. In sections 5 and 6 it was stated that input-output transition systems are observed by
‘output-input’ transition systems, while in definition 3.1 test cases where defined as finite, deterministic
labelled transition systems. The intersection of both is empty: an ‘output-input’ transition system can
never have finite behaviour (if LU 6= ∅).

Since, as explained in section 3, maximum control of the testing process by the tester is desirable,
we will not allow test cases with a choice between an input action and an output action (input and
output with respect to the implementation), nor a choice between multiple input actions. Both introduce
nondeterminism in the test run: if a test case offers multiple input actions, or a choice between input and
output, then the continuation of the test run is unnecessarily nondeterministic, since an implementation
can always accept any input. This implies that in any state of a test case either one particular input
is offered to the implementation, or all possible outputs are accepted. So such a test case is not an
‘output-input’ transition system. Moreover, we still want test runs to be finite. This implies that at some
instant the test case will stop: no actions are offered at all anymore. Combining these requirements we
have the following definition of a test case for testing input-output transition systems.

Definition 7.1
An input-output test case t is a test case (definition 3.1), which distinguishes between implementation
inputs in LI and implementation outputs in LU , such that for any state t′ of the test case, either
init(t′) = {a} for some a ∈ LI , or init(t′) = LU , or init(t′) = ∅.

The class of input-output test cases over LI and LU is denoted as IOTS t(LU , LI).
2

chocout

fail

but in
fail

fail

t1

t4

t0

t5

pass

t2 t3

chocout

fail
pass

liqout

liqout

Figure 6: An input-output test case

Example 7.2
For q2 (figure 3) there are two test runs with t in figure 6:

t‖q2
but in·liqout=========⇒ t2 ‖q′2 and ∀a ∈ L : t2 ‖q′2

a

=6⇒

t‖q2
but in·chocout

==========⇒ t3 ‖q′′2 and ∀a ∈ L : t3 ‖q′′2
a

=6⇒
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where q′2 and q′′2 are the final states of q2 after the liqout- and chocout-actions, respectively. Although
ν(t2) = pass, we have that q2 fails t, since ν(t3) = fail.

Similarly, q1 passes t and q3 fails t.
2

For the development of a test generation algorithm consider again the definition of ioconf (definition 6.10):

i ioconf s =def ∀σ ∈ traces(∆s) ∩ L∗ : out(∆i after σ ) ⊆ out(∆s after σ ) (8)

In (8) we see that to test for ioconf we have to check for each σ ∈ traces(∆s) ∩ L∗ whether
out(∆i after σ ) ⊆ out(∆s after σ ). Basically, this can be done by having a test case t that executes σ:

t‖ i
σ

=⇒ t′ ‖ i′

and then checks out(∆i after σ ) by having transitions to pass-states for all allowed outputs (those in
out(∆s after σ )), and transitions to fail-states for all erroneous outputs (those not in out(∆s after σ )).
Special care should be taken for the special output δ: δ actually models the absence of any output,
so no transition will be made at all if i ‘outputs’ δ; the test run will deadlock in t′ ‖ i′. This can be
checked by having the verdict pass in the state t′ if δ is allowed (δ ∈ out(∆s after σ )), and by having
the verdict fail in t′, if the specification does not allow to have an output suspension at that point. All
this is reflected in the following algorithm, which is proved to generate sound test cases with respect to
ioconf (theorem 7.4.1), and which has the ability to detect all possible non-conforming implementations
(theorem 7.4.2).

Algorithm 7.3
Let ∆ be the δ-trace automaton of a specification, then a test case t ∈ IOTS t(LU , LI) is obtained by a
finite number of recursive applications of one of the following three nondeterministic choices:

1. (∗ terminate the test case ∗)
t := stop ;
ν(t) := pass ;

2. (∗ give a next input to the implementation ∗)
t := a ; t′ ;
ν(t) := pass ;

where a ∈ init(∆) ∩ LI , and t′ is obtained by recursively applying the algorithm for ∆′, with
∆ a−→∆′.

3. (∗ check the next output of the implementation ∗)
t := Σ { x ; stop | x ∈ LU , x 6∈ out(∆) } 2 Σ { x ; tx | x ∈ LU , x ∈ out(∆) } ;
ν(t) := if δ ∈ out(∆) then pass else fail ;

where ν(stop) := fail for all x in the first operand, and tx is obtained by recursively applying the
algorithm for ∆′, with ∆ x−−→∆′.

2

Theorem 7.4

1. A test case obtained from ∆s with algorithm 7.3 is sound for s with respect to ioconf.

2. The set containing all possible test cases that can be obtained with algorithm 7.3 is exhaustive.
2

Sketch of the proof
(For a complete proof see appendix A.2).

1. The proof of soundness is based on defining a sufficient condition for soundness, and then using
induction on the structure of t:

1. Any test case generated according to the first choice of algorithm 7.3 is always sound.

2. Any test case generated according to the second choice is sound, if t′ is sound for ∆′.

3. In the third choice a test case with init(t) = LU is generated:

◦ If the implementation gives an output x 6∈ out(∆s), then the test case stops, and the
verdict fail is assigned, which is sound.
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◦ If the implementation gives an output x ∈ out(∆s), then soundness follows by induction
from soundness of tx for ∆′.

◦ If the implementation does not produce any output, i.e., δ ∈ out(∆i), then the test run
stops, and the verdict pass is assigned iff δ ∈ out(∆s), which is sound.

2. For proving exhaustiveness one defines a special test case t[∆s,σ] that tests whether out(∆iafterσ ) ⊆
out(∆s after σ ). It is shown that for each σ ∈ traces(∆s) ∩ L∗ such a test case can be generated
with the algorithm. Such a test case consists of the trace σ with transitions added at the end
for each x ∈ LU exactly like in the third choice of the algorithm, and with a minimal number of
transitions added in the other states of the test case to comply with definition 7.1.

2

Example 7.5
We generate a test case for s1 from ∆s1

(figure 5).
We start with giving an input: but in ∈ init(∆s1

) ∩ LI , so t := but in; t′ and ν(t) = pass.

In the next step we generate the test case t′ from ∆′ = liqout; δ; stop, where we check the outputs:
t′ := Σ{x; stop | x ∈ LU , x 6∈ {liqout}} 2 Σ{x; tx | x ∈ LU , x ∈ {liqout}} = chocout; stop 2 liqout; tliqout

.
Since δ 6∈ out(∆′), we have ν(t′) = fail. Moreover, ν(stop) = fail.

Now generating tliq
out

from ∆′′ = δ; stop we again check the outputs:
tliq

out
:= Σ{x; stop | x ∈ LU , x 6∈ {δ}} 2 Σ{x; tx | x ∈ LU , x ∈ {δ}} = chocout; stop 2 liqout; stop,

with for both ν(stop) = fail, and ν(tliq
out

) = pass.

Combining tliq
out

and t′ into t we get the test case t of figure 6 as a sound test case for s1, which is
consistent with the results that we found in examples 6.11 and 7.2: q1 ioconf s1, q2 /ioconf s1, and
q3 /ioconf s1, and indeed q1 passes t, q2 fails t, and q3 fails t.

2

8 Concluding Remarks

Two algorithms for test case generation from labelled transition system specifications have been pre-
sented, together with the implementation relations for which they test. The first relation, conf, and the
corresponding algorithm have been published several times in literature in slightly different variations.
The method is based on the assumptions that an implementation can be modelled as a labelled transition
system, and that the interactions between an implementation and its environment are symmetric. An
interaction can occur if both the implementation and the environment propose that interaction, which
also means that they can both prevent an action from occurring.

The second implementation relation, ioconf, together with its test generation algorithm, is new. This
method is based on the assumption that implementations communicate asymmetrically via inputs and
outputs, where the outputs are under complete control of the implementation, whereas the implementation
does not have any control over the inputs. Inputs are autonomously initiated by the environment, and the
implementation can never refuse them. Such implementations were modelled by input-output transition
systems, a subclass of labelled transition systems.

The theory of testing input-output transition systems can be applied to those domains where the imple-
mentations under test can be assumed to have the required property, which is the case for many realistic
systems, and where the specification is expressed in a language for which the semantics can be expressed
in labelled transition systems, which also holds for many formalisms. A special application area is the
standardized formal description techniques Estelle [ISO89a] and SDL [CCI92]. Estelle and SDL systems
communicate with their environment via unbounded queues, which can never refuse their inputs, so any
Estelle or SDL system can be modelled as an input-output transition system.

Symmetric testing versus testing with inputs and outputs

When comparing the testing theory for conf with that for ioconf, it can be noted that the additional
assumption of always enabled input actions renders a testing theory which is simpler in some aspects.
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Whereas implementation relations based on symmetric interactions are characterized by a set of sets of
actions for each trace (propositions 4.5 and 4.8), the corresponding relations using inputs and outputs
are characterized by just a set of actions for each trace (proposition 6.9 and definition 6.10). Moreover,
using inputs and outputs each system is easily fully represented by a deterministic transition system: the
δ-trace automaton (definition 6.3 and theorem 6.6).

The difference in simplicity between the respective test generation algorithms is also evident. For the
symmetric case (algorithm 4.11) the number of different possible sets A ⊆ init(s) that have to be con-
sidered, is exponential in | init(s) |, whereas for the input-output case (algorithm 7.3) the number of
possibilities is restricted by |(init(s) ∩ LI) |.

Comparison with other models

Input-output state machines The model of input-output transition systems is very much related to
the model of input-output state machines (IOSM) [Pha94]. The idea for the δ-trace automaton is inspired
by the way output suspension is treated in [Pha94]: a trace machine is made where a δ-transition is added
to all states where no outputs are possible. However, the δ-transitions of an IOSM do not go a special
state stop, but make a self-loop to the same state. This implies that the implementation relations of
[Pha94] (R1, . . . , R5), which are defined by trace inclusion on the resulting transformed machines, are
different from ours: δ-actions can occur everywhere in a trace, not just at the end (cf. proposition 6.5).
The precise relation between these implementation relations and ours is a topic for further study. In
particular, it would be interesting to relate them to implementation relations on LTS by means of a
testing scenario, in the same way as ≤te and ≤iot are related.

Two additional minor differences between IOTS and IOSM can be noted. First, the sets of states
and labels may be countably infinite in IOTS, where finiteness is required for IOSM. Secondly, IOTS,
by defining them as a restriction on labelled transition systems, allows for a more easy embedding in,
and relating to the more general theory of labelled transition systems, whereas [Pha94] uses two rather
complex mappings to map IOSM to LTS and vice versa.

Input/output automata Another model that is closely related to both IOSM and IOTS , is that
of Input/Output Automata (IOA) [LT89]. An IOA is a transition system with the requirement that
all inputs are directly enabled in all states, i.e., for all states s, for all a ∈ LI : s a−→ . This stricter
requirement on input enabling implies that some systems are more difficult to describe as IOA than as
IOTS . For example, a system consisting of an input/output automaton together with a bounded buffer
with which it communicates with the environment, is not IOA, when the communication between the
actual system and the buffer is hidden: if the buffer is full, no input actions are possible anymore without
first performing an internal event. Such a system is IOTS .

The implementation relation that is usually used for IOA is fair trace preorder [LT87]. This relation on
IOA requires inclusion of so-called fair traces, which can be finite and infinite. An approximation using
only finite traces is the quiescent trace preorder introduced in [Vaa91] and elaborated in [Seg93]. This
relation is characterized by inclusion of traces and quiescent traces, a quiescent trace being almost equal
to a deadlock-suspension trace: it is a trace to a state where only inputs are possible, i.e., no outputs and
no internal transitions. Hence quiescent trace preorder is almost equal to ≤iot (proposition 6.2). Our
conjecture is that it is equal for strongly-converging processes, but for diverging processes quiescent trace
preorder has some counter-intuitive properties. For example, let d be a divergent loop, d := τ ; d, then
i := a; d is in quiescent trace preorder with s := a; x; stop [Seg93]. This looks counter-intuitive, and it
does not hold for ≤iot if we apply proposition 6.2 to diverging systems.

An effect analogous to that of ioconf, i.e., leaving implementation freedom for non-specified inputs, is
obtained for IOA by having a so-called demonic semantics for process expressions. In this semantics a
transition to a demonic process Ω is added for each non-specified input in the specification. From Ω any
behaviour is possible. Thus, after such an input also any behaviour is allowed in the implementation
[DNS95].
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Queue contexts A special case of input-output transition systems are the queue systems of [TV92,
VTKB93]. These queue systems are labelled transition systems in a queue context, i.e., to which two
unbounded queues are attached to model asynchronous communication, one queue for input actions, and
one for output actions. Communication between two processes is modelled by putting actions in the
respective queues. An unbounded queue clearly has the property that input can never be refused, while
the output queue makes that from the system’s point of view output actions can never be refused by the
environment.

Some of the results obtained for queue systems are indeed special cases of the results obtained in this
paper, implying that only the distinction between inputs and outputs, and the permanent enabling of
input actions are important, not the explicit form of communication by means of queues. In this way, the
queue implementation relations of [TV92, VTKB93] are special cases of the relations ≤iot and ioconfF ,
which is seen by noting that the observations Os(σ) of a queue system are equal to our out -set (where
Qs is the queue context containing s):

Os(σ) =def {x ∈ LU | Qs
σ·x

===⇒} ∪ {δ | Qs after σ refuses LU } = out(∆Qs
after σ )

It follows that queue preorder ≤O is exactly the same as ≤iot applied to queue systems, and that ≤tr(S),
asco, and aconf are instantiations of ioconfF (equation (3)) with appropriate trace sets F . Moreover,
proposition 6.12 corresponds to the equality of ≤O and ≤tr(QS), which was derived for queue systems in
[TV92].

Open problems

Apart from establishing the precise relation with the other above mentioned theories based on inputs
and outputs, some other open issues remain. First of all, there is the relation with the well-known Finite
State Machine-based testing theories [BU91], which originate from hardware testing. These theories also
distinguish between inputs and outputs, however, each transition is labelled with a pair of input and
output, not with an input or an output. This implies that the notion of atomicity of actions differs,
which makes comparison more difficult.

The problem of atomicity of actions also occurs when symmetric testing is considered as an abstraction
of input-output testing. For example, the action choc of p1 in figure 1 can be seen as an abstraction
of first pushing a chocolate button and then obtaining chocolate. In this action refinement [Ace92] the
button-part can be seen as input to the candy machine, and obtaining chocolate as the output. Now
test generation can be accomplished by first deriving a test from the abstract, symmetric specification
in terms of the choc action, and then refining this test case into inputs and outputs, or the specification
can be first refined after which an input-output based test generation algorithm can be used. The precise
relation between testing, inputs and outputs, and action refinement needs further investigation.

A third open problem is the well-known test selection problem (test-suite size reduction [ISO95]). Al-
gorithms 4.11 and 7.3 can generate infinitely many sound test cases, but which ones shall be really
executed? Solutions can be sought by defining coverage measures, fault models, test hypotheses, etc.
[ACV93, BDD+92, BTV91, Pha95].

Another aspect is the incorporation of data in the test generation procedure. The state explosion caused
by the data in specifications needs to be handled in a symbolic way, otherwise automation of the test
generation algorithm will probably not be feasible.

A more practical problem is the implementation of the observation of an output suspension. In practical
testers timers will have to be used for this purpose, for which the time-out values need to be chosen
carefully, in order not to observe a suspension where there is none.

A final remark concerns divergence. Divergence causes a lot of trouble and need for extra attention in
the study of testing theories for labelled transition systems. That is why in this paper ‘for technical
reasons’ we assumed to deal with strongly converging systems (section 2). However, divergence is not
a problem that can always be neglected. As pointed out above, our conjecture is that also the relation
between the IOA and IOTS preorders depends on divergence. The main question about divergence is
whether fairness is assumed: if a system can perform infinitely many τ -transitions, while some observable
action is constantly enabled, can we assume that this observable action will be finally executed? Different
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approaches to deal with divergence can be found in literature [DN87, Led95, NC95, BRV95]. For the
moment we leave the topic of divergence in the context of conformance testing for further study.
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mance testing. In P. Dembiński and M. Średniawa, editors, Protocol Specification, Testing, and
Verification XV, Warszawa, Poland, 1995. Institute of Computer Science, Polish Academy of
Sciences. Also: publication # 958, Université de Montréal, Département d’Informatique et de
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A Proofs

A.1 Proofs of Section 6 (Implementation Relations for Input–Output Tran-
sition Systems)

Proposition 6.2
Let δ-traces(p) =def {σ ∈ L∗ | p after σ refuses LU } be the set of output-suspension traces of p,
then

i ≤iot s iff traces(i) ⊆ traces(s) and δ-traces(i) ⊆ δ-traces(s)
2

Proof (proposition 6.2)

only if : Let σ ∈ traces(i), and define uσ ∈ IOTS(LU , LI), such that ∃u′ : uσ
σ−−→u′, then

i
σ

=⇒ and uσ
σ−−→u′

implies uσ ‖ i
σ

=⇒
implies σ ∈ obs ′(uσ, i)
implies (∗ premiss, definition 6.1 ∗)

σ ∈ obs ′(uσ, s)

implies uσ ‖s
σ

=⇒

implies s
σ

=⇒
implies σ ∈ traces(s)

Let σ ∈ δ-traces(i), and define uσ as above, with additionally init(u′) = LU , then

i after σ refuses LU and ∃u′ : uσ
σ−−→u′ and init(u′) = LU

implies ( ∃i′ : i
σ

=⇒ i′ and ∀x ∈ LU : i′
x

=6⇒ ) and ( ∃u′ : uσ
σ

=⇒u′ and ∀a ∈ LI : u′
a

=6⇒ )

implies ∃i′, u′ : uσ ‖ i
σ

=⇒u′ ‖ i′ and ∀a ∈ L : u′ ‖ i′
a

=6⇒
implies uσ ‖ i after σ deadlocks
implies σ ∈ obs(uσ, i)
implies (∗ premiss, definition 6.1 ∗)

σ ∈ obs(uσ, s)
implies uσ ‖s after σ deadlocks

implies ∃u′, s′ : uσ ‖s
σ

=⇒u′ ‖s′ and ∀a ∈ L : u′ ‖s′
a

=6⇒

implies (∗ u ∈ IOTS(LU , LI), so u′ x
=⇒ for all x ∈ LU ∗)

∃s′ : s
σ

=⇒ s′ and ∀x ∈ LU : s′
x

=6⇒
implies s after σ refuses LU

implies σ ∈ δ-traces(s)

if : Let u ∈ IOTS(LU , LI), σ ∈ obs(u, i), then

u‖ i after σ deadlocks

implies ∃u′, i′ : u‖ i
σ

=⇒u′ ‖ i′ and ∀a ∈ L : u′ ‖ i′
a

=6⇒
implies (∗ u′ cannot refuse outputs; i′ cannot refuse inputs ∗)

∃u′, i′ : u
σ

=⇒u′ and i
σ

=⇒ i′ and init(u′) = LU and init(i′) = LI

implies ∃u′ : u
σ

=⇒u′ and init(u′) = LU and i after σ refuses LU

implies ∃u′ : u
σ

=⇒u′ and init(u′) = LU and σ ∈ δ-traces(i)
implies (∗ premiss ∗)

∃u′ : u
σ

=⇒u′ and init(u′) = LU and σ ∈ δ-traces(s)

implies ∃u′ : u
σ

=⇒u′ and init(u′) = LU and s after σ refuses LU

implies ∃u′ : u
σ

=⇒u′ and init(u′) = LU and ∃s′ : s
σ

=⇒ s′ and ∀x ∈ LU : s′
x

=6⇒

implies ∃u′, s′ : u‖s
σ

=⇒u′ ‖s′ and ∀a ∈ L : u′ ‖s′
a

=6⇒
implies u‖s after σ deadlocks
implies σ ∈ obs(u, s)

Let u ∈ IOTS(LU , LI), σ ∈ obs ′(u, i), then
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u‖ i
σ

=⇒

implies u
σ

=⇒ and i
σ

=⇒

implies u
σ

=⇒ and σ ∈ traces(i)
implies (∗ premiss ∗)

u
σ

=⇒ and σ ∈ traces(s)

implies u
σ

=⇒ and s
σ

=⇒

implies u‖s
σ

=⇒
implies σ ∈ obs ′(u, s)

2

Proposition 6.5

1. traces(p) = traces(∆p) ∩ L∗

2. δ-traces(p) = { σ ∈ L∗ | σ ·δ ∈ traces(∆p) }

3. ∆p is deterministic.

4. ∀σ ∈ traces(∆p) ∩ L∗, ∃x ∈ LU ∪ {δ} : (∆p after σ ) x−−→
2

Proof (proposition 6.5)

1. Without the additional δ-transitions (the second term of Tδ in definition 6.3), p and the trace
automaton of p accept the same language, i.e., have the same traces in L∗. This is easily proved by
induction on the length of the traces [HU79].

2. By adding the transitions q δ−→ stop the set of traces of ∆p is extended with exactly the traces

σ ·δ, such that ∆p
σ−−→ q, where there is s ∈ q, such that ∀x ∈ LU : s

x

=6⇒ , which corresponds to

s0
σ

=⇒ s
x

=6⇒ , so σ is an output-suspension trace.

3. Without the additional δ-transitions, the trace automaton of p is deterministic [HU79]. The addition
of the δ-transitions cannot violate determinism, since δ 6∈ LI ∪LU , and from any state of ∆p there
is at most one δ-transition.

4. By construction of ∆p (definition 6.3): either ∃x ∈ LU : (∆p after σ ) x−−→ , or a transition

(∆p after σ ) δ−→ stop is added.
2

Theorem 6.6
Let i ∈ IOTS(LI , LU ), s ∈ LTS(LI ∪ LU ), then

i ≤iot s iff ∆i ≤tr ∆s

2

Proof (theorem 6.6)
Directly from propositions 6.2, 6.5.1, and 6.5.2.

2

Proposition 6.9
∆i ≤tr ∆s iff ∀σ ∈ L∗ : out(∆i after σ ) ⊆ out(∆s after σ )

2

Proof (proposition 6.9)

only if : Let σ ∈ L∗, x ∈ out(∆i after σ ) ⊆ LU ∪ {δ}, then

∆i
σ−−→ (∆i after σ ) x−−→

implies σ ·x ∈ traces(∆i)
implies (∗ premiss ∗)

σ ·x ∈ traces(∆s)
implies x ∈ out(∆s after σ )

if : Let σ ∈ traces(∆i), and distinguish between σ ∈ L∗ and σ = σ′ ·δ with σ′ ∈ L∗, then
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σ ∈ L∗: ∆i
σ−−→

implies (∗ proposition 6.5.4 and definition 6.8 ∗)
out(∆i after σ ) 6= ∅

implies (∗ premiss ∗)
out(∆s after σ ) 6= ∅

implies ∃x ∈ LU ∪ {δ} : ∆s
σ−−→ (∆s after σ ) x−−→

implies σ ∈ traces(∆s)

σ = σ′ ·δ: ∆i
σ′·δ−−−→

implies δ ∈ out(∆i after σ′ )
implies (∗ premiss ∗)

δ ∈ out(∆s after σ′ )

implies ∆s
σ′

−−→ (∆s after σ′ ) δ−→
implies σ′ ·δ ∈ traces(∆s)

2

Proposition 6.12
On IOTS(LI , LU ) : ≤iot = ioconf

2

Proof (proposition 6.12)
Using theorem 6.6, proposition 6.9, and definition 6.10, the ⊆-part is trivial. For the ⊇-part, let σ ∈ L∗

and x ∈ out(∆i after σ ). If σ ∈ traces(∆s) ∩ L∗ also this part is trivial, so consider σ ∈ L∗\traces(∆s)
and prove by contradiction, i.e., prove:

∃σ ∈ L∗\traces(∆s) : out(∆i after σ ) 6⊆ out(∆s after σ )
implies ∃σ ∈ traces(∆s) ∩ L∗ : out(∆i after σ ) 6⊆ out(∆s after σ )

This is done as follows:

∃σ ∈ L∗, σ 6∈ traces(∆s), ∃x ∈ out(∆i after σ ) : x 6∈ out(∆s after σ )
implies (∗ σ 6∈ traces(∆s), so there is a longest prefix σ1 of σ which is in traces(∆s);

y ∈ LU , since s ∈ IOTS(LI , LU ), so input actions are always possible ∗)
∃σ1, σ2 ∈ L∗, y ∈ LU : σ = σ1 ·y ·σ2 and σ1 ∈ traces(∆s) and
σ1 ·y 6∈ traces(∆s) and σ1 ·y ∈ traces(∆i)

implies ∃σ1 ∈ traces(∆s) ∩ L∗, y ∈ LU : y 6∈ out(∆s after σ1 ) and y ∈ out(∆i after σ1 ) 2

A.2 Proofs of Section 7 (Testing Input-Output Transition Systems)

Algorithm 7.3 and theorem 7.4 of section 7 are generalized for the implementation relation ioconfF
(equation (3) in section 6):

i ioconfF s =def ∀σ ∈ F : out(∆i after σ ) ⊆ out(∆s after σ )

so that the algorithm can also be used for other implementation relations that can be expressed as
ioconfF for some F , such as ≤iot , asco,aconf, . . .. Taking F = traces(s) theorem 7.4 follows directly
from corollaries A.5 and A.8.

Definition A.1
Let F ⊆ L∗ and a ∈ L, then F after a =def {σ ∈ L∗ | a·σ ∈ F}.

2

Algorithm A.2
Let ∆ be the δ-trace automaton of a specification, and let F ⊆ L∗, then a test case t ∈ IOTS t(LU , LI)
is obtained by a finite number of recursive applications of one of the following three nondeterministic
choices:

1. (∗ terminate the test case ∗)
t := stop ;
ν(t) := pass ;
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2. (∗ give a next input to the implementation ∗)
t := a ; t′ ;
ν(t) := pass ;

where a ∈ LI , such that F after a 6= ∅, and t′ is obtained by recursively applying the algorithm
for F after a and ∆′, with ∆ a−→∆′.

3. (∗ check the next output of the implementation ∗)
t := Σ { x ; stop | x ∈ LU , x 6∈ out(∆) } 2 Σ { x ; tx | x ∈ LU , x ∈ out(∆) } ;
ν(t) := if (δ ∈ out(∆) or ǫ 6∈ F) then pass else fail ;

where ν(stop) := if ǫ ∈ F then fail else pass for all x in the first operand, and tx is obtained by
recursively applying the algorithm for F after x and ∆′, with ∆ x−−→∆′.

2

Lemma A.3
Test suite T ⊆ IOTS t(LU , LI) is sound for s ∈ LTS(LI ∪ LU ) with respect to ioconfF , if

∀t ∈ T, ∀σ ∈ traces(t) : ν( t after σ ) = fail implies
( ( ∃σ′ ∈ F , ∃x ∈ LU : σ = σ′ ·x and

x 6∈ out(∆s after σ′ ) )
or ( σ ∈ F and

δ 6∈ out(∆s after σ ) and
out(∆s after σ ) ⊆ init( t after σ ) ) ) 2

Proof (lemma A.3)
By contraposition:

T is not sound for s with respect to ioconfF
implies (∗ definition 3.4 ∗)

∃i ∈ IOTS(LI , LU ) : i ioconfF s and i fails T
implies (∗ definition 3.2 ∗)

∃i ∈ IOTS(LI , LU ) : i ioconfF s and
∃t ∈ T, ∃σ ∈ L∗ : t‖ i after σ deadlocks and ν( t after σ ) = fail

implies (∗ definition 4.4 ∗)
∃i ∈ IOTS(LI , LU ) : i ioconfF s and

∃t ∈ T, ∃σ ∈ L∗, ∃t′, i′ : t‖ i
σ

=⇒ t′ ‖ i′ and ∀a ∈ L : t′ ‖ i′
a

=6⇒ and
ν( t after σ ) = fail

implies (∗ ‖ in definition 2.4, definitions 5.1 and 7.1 ∗)
∃i ∈ IOTS(LI , LU ) : i ioconfF s and

∃t ∈ T, ∃σ ∈ L∗, ∃t′, i′ : t
σ

=⇒ t′ and i
σ

=⇒ i′ and
( init(t′) = ∅ or ( init(t′) = LU and init(i′) = LI ) ) and
ν( t after σ ) = fail

implies (∗ rewrite and reorder ∗)
∃i ∈ IOTS(LI , LU ) : i ioconfF s and
∃t ∈ T, ∃σ ∈ traces(t) : ν( t after σ ) = fail and

( ( ∃i′ : i
σ

=⇒ i′ and init( t after σ ) = ∅ ) or ( ∃i′ : i
σ

=⇒ i′ and init(i′) = LI ) ) and

( ∀σ′ ∈ F , ∀x ∈ LU : σ = σ′ ·x implies i
σ′·x

===⇒ )
implies (∗ definition ioconfF (3), propositions 6.5.1, 6.5.2, and 6.5.4 ∗)

∃i ∈ IOTS(LI , LU ) : ∀σ ∈ F : out(∆i after σ ) ⊆ out(∆s after σ ) and
∃t ∈ T, ∃σ ∈ traces(t) : ν( t after σ ) = fail and
( ( out(∆i after σ ) 6= ∅ and init( t after σ ) = ∅ ) or δ ∈ out(∆i after σ ) ) and
( ∀σ′ ∈ F , ∀x ∈ LU : σ = σ′ ·x implies x ∈ out(∆i after σ′ ) )

implies (∗ rewrite using the first line ∗)
∃t ∈ T, ∃σ ∈ traces(t) : ν( t after σ ) = fail and
( σ ∈ F implies
( ( out(∆s after σ ) 6= ∅ and init( t after σ ) = ∅ ) or δ ∈ out(∆s after σ ) ) ) and

( ∀σ′ ∈ F , ∀x ∈ LU : σ = σ′ ·x implies x ∈ out(∆s after σ′ ) )
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implies (∗ reorder ∗)
∃t ∈ T, ∃σ ∈ traces(t) : ν( t after σ ) = fail and

( ( ∀σ′ ∈ F , ∀x ∈ LU : σ = σ′ ·x implies
x ∈ out(∆s after σ′ ) )

and ( σ 6∈ F or
δ ∈ out(∆s after σ ) or
out(∆s after σ ) 6⊆ init( t after σ ) ) )

2

Lemma A.4
Let ∆ be a δ-trace automaton, F ⊆ L∗, and let t be a test case generated with algorithm A.2, then

∀σ ∈ traces(t) : ν( t after σ ) = fail implies
( ( ∃σ′ ∈ F , ∃x ∈ LU : σ = σ′ ·x and

x 6∈ out(∆ after σ′ ) )
or ( σ ∈ F and

δ 6∈ out(∆ after σ ) and
out(∆ after σ ) ⊆ init( t after σ ) ) )

2

Proof (lemma A.4)
By induction on the structure of t:

◦ Let t = stop and ν(t) = pass, then the lemma is trivially fulfilled.

◦ Let t = a; t′ and ν(t) = pass, with a ∈ LI , and t′ generated from F after a and ∆′, ∆ a−→∆′, and
let σ ∈ traces(t) and ν( t after σ ) = fail, then it follows that σ = a·σ′ (σ′ ∈ L∗), σ′ ∈ traces(t′),
and ν( t′ after σ′ ) = fail.

According to the induction hypothesis the lemma can be assumed to hold for ∆′, F after a , and
t′, hence

( ∃σ′′ ∈ F after a , ∃x ∈ LU : σ′ = σ′′ ·x and x 6∈ out(∆′ after σ′′ ) )
or ( σ′ ∈ F after a and δ 6∈ out(∆′ after σ′ ) and out(∆′ after σ′ ) ⊆ init( t′ after σ′ ) )

If the first operand of the disjunction holds, then it follows directly from definition A.1 that a·σ′′ ∈ F
and σ = a·σ′ = a·σ′′ ·x and x 6∈ out(∆ after a·σ′′ ).

If the second operand of the disjunction holds, then it follows directly from definition A.1 that
a·σ′ ∈ F and δ 6∈ out(∆ after a·σ′ ), and moreover:
out(∆ after a·σ′ ) = out(∆′ after σ′ ) ⊆ init( t′ after σ′ ) = init( t after a·σ′ ).

◦ Let t = Σ { x ; stop | x ∈ LU , x 6∈ out(∆) } 2 Σ { x ; tx | x ∈ LU , x ∈ out(∆) } with ν(t) = if
(δ ∈ out(∆) or ǫ 6∈ F) then pass else fail, ν(stop) = if ǫ ∈ F then fail else pass for all x in the
first operand, and tx is generated from F after x and ∆′, with ∆ x−−→∆′.

Let σ ∈ traces(t) and ν( t after σ ) = fail, then σ = ǫ or σ = y ·σ′ (σ′ ∈ L∗, y ∈ LU ). Distinguish
for the latter between y ∈ out(∆) and y 6∈ out(∆):

σ = ǫ: From ν( t after σ ) = ν(t) = fail we have δ 6∈ out(∆) and ǫ ∈ F , and since init(t) = LU we
have out(∆ after σ ) = out(∆) ⊆ init(t) = init( t after σ ).

σ = y ·σ′, y ∈ out(∆): According to the induction hypothesis the lemma can be assumed to hold
for ∆′, F after y , and ty, and moreover σ′ ∈ traces(ty) and ν( ty after σ′ ) = fail, hence

( ∃σ′′ ∈ F after y , ∃x ∈ LU : σ′ = σ′′ ·x and x 6∈ out(∆′ after σ′′ ))
or (σ′ ∈ F after y and δ 6∈ out(∆′ after σ′ ) and out(∆′ after σ′ ) ⊆ init( ty after σ′ ))

If the first operand of the disjunction holds, then it follows directly from definition A.1 that
y ·σ′′ ∈ F and σ = y ·σ′ = y ·σ′′ ·x and x 6∈ out(∆ after y ·σ′′ ).

If the second operand of the disjunction holds, then it follows directly from definition A.1 that
y ·σ′ ∈ F and δ 6∈ out(∆ after y ·σ′ ), and moreover:
out(∆ after y ·σ′ ) = out(∆′ after σ′ ) ⊆ init( ty after σ′ ) = init( t after y ·σ′ ).

σ = y ·σ′, y 6∈ out(∆): It follows that t y−→ stop and σ′ = ǫ, and hence from ν( ty after σ′ ) =
ν(ty) = fail that ǫ ∈ F , so σ = y ·σ′ = y = ǫ·y, and y 6∈ out(∆) = out(∆ after σ′ ). 2
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Corollary A.5
A test case obtained from ∆s and F with algorithm A.2 is sound for s with respect to ioconfF .

2

Proof (corollary A.5)
Directly from lemmas A.3 and A.4.

2

Definition A.6
Let ∆ be a δ-trace automaton, and σ ∈ L∗, then the test case t[∆,σ] ∈ IOTSt(LU , LI) is defined by

t[∆,ǫ] =def Σ { x ; stop | x ∈ LU }
where ν(t[∆,ǫ]) := if δ ∈ out(∆) then pass else fail
and for each branch x; stop :
ν(stop) := if x ∈ out(∆) then pass else fail

t[∆,a·σ] (a ∈ LI) =def a ; t[ ∆ after a ,σ]

where ν(t[∆,a·σ]) := pass

t[∆,y·σ] (y ∈ LU ) =def Σ { x ; stop | x ∈ LU , x 6= y } 2 y ; t[ ∆ after y ,σ]

where ν(t[∆,y·σ]) := pass
and for each branch x; stop : ν(stop) := pass

2

Lemma A.7

1. t[∆,σ]
σ−−→ t[ ∆ after σ ,ǫ]

2. Let F = {σ}, then t[∆,σ] can be obtained with algorithm A.2.

3. The test case t[∆s,σ] is exhaustive for s with respect to ioconf{σ}.

4. The test suite { t[∆s,σ] | σ ∈ F } is exhaustive for s with respect to ioconfF .
2

Proof (lemma A.7)

1. By induction on the length of σ:

σ = ǫ: Trivial.

σ = a·σ′, a ∈ LI : t[∆,a·σ′] = a ; t[ ∆ after a ,σ′]
a−→

t[ ∆ after a ,σ′]
σ′

−−→ (∗ induction ∗)
t[ (∆ after a ) after σ′ ,ǫ] = t[ ∆ after σ ,ǫ]

σ = y ·σ′, y ∈ LU : t[∆,y·σ′] = Σ { x ; stop | x ∈ LU , x 6= y } 2 y ; t[ ∆ after y ,σ′]
y−→

t[ ∆ after y ,σ′]
σ′

−−→ (∗ induction ∗)
t[ (∆ after y ) after σ′ ,ǫ] = t[ ∆ after σ ,ǫ]

2. By induction on the structure of t[∆,σ]:

t[∆,ǫ]: Apply the third choice of algorithm A.2, and apply for each tx the first choice.

t[∆,a·σ]: Apply the second choice of algorithm A.2, and repeat the algorithm for t[ ∆ after a ,σ].

t[∆,y·σ]: Apply the third choice of algorithm A.2, apply for each tx with x 6= y the first choice, and
repeat the algorithm for t[ ∆ after y ,σ].

3. To be proved (definitions 3.4, 3.2, and (3)): i passes t[∆s,σ] implies i ioconf{σ} s, i.e.,

∀ρ ∈ L∗ : (t[∆s,σ] ‖ i) after ρ deadlocks implies ν( t[∆s,σ] after ρ ) = pass
implies out(∆i after σ ) ⊆ out(∆s after σ )

Let x ∈ out(∆i after σ ), and distinguish between x ∈ LU and x = δ, then
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x ∈ LU : ∆i
σ·x−−−→

implies (∗ proposition 6.5.1 ∗)

∃i′, i′′ : i
σ

=⇒ i′
x

=⇒ i′′

implies (∗ lemma A.7.1 ∗)

t[∆s,σ] ‖ i
σ

=⇒ t[ ∆s after σ ,ǫ] ‖ i′
x

=⇒ stop‖ i′′

implies (∗ definition 4.4 ∗)
(t[∆s,σ] ‖ i) after σ · x deadlocks

implies (∗ premiss ∗)
ν( t[∆s,σ] after σ ·x ) = pass

implies (∗ t[∆s,σ] after σ ·x = t[ ∆s after σ ,ǫ] after x = stop,
verdict assignment for stop in definition A.6 ∗)

x ∈ out(∆s after σ )

x = δ: ∆i
σ·δ−−−→

implies (∗ proposition 6.5.2 ∗)

∃i′ : i
σ

=⇒ i′ and ∀x ∈ LU : i′
x

=6⇒
implies (∗ lemma A.7.1 and init(t[ ∆s after σ ,ǫ]) = LU ∗)

∃i′ : t[∆s,σ] ‖ i
σ

=⇒ t[ ∆s after σ ,ǫ] ‖ i′ and ∀a ∈ L : t[ ∆s after σ ,ǫ] ‖ i′
a

=6⇒
implies (∗ definition 4.4 ∗)

(t[∆s,σ] ‖ i) after σ deadlocks
implies (∗ premiss ∗)

ν( t[∆s,σ] after σ ) = pass
implies (∗ verdict assignment for ( t[∆s,σ] after σ ) = t[ ∆ after σ ,ǫ] ∗)

δ ∈ out(∆s after σ )

4. Immediately from lemma A.7.3.
2

Corollary A.8
The set containing all possible test cases that can be obtained with algorithm A.2 is exhaustive for s with
respect to ioconfF .

2

Proof (A.8)
Immediately from lemma A.7.4, together with lemma A.7.2, and the fact that for two test suites T1 and
T2, if T1 ⊆ T2 and T1 is exhaustive, then T2 is exhaustive, which follows directly from definitions 3.4
and 3.2.

2
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